

[查询B3841供应商](#)

[捷多邦，专业PCB打样工厂，24小时加急出货](#)

SAW Components

Data Sheet B3841

Data Sheet

EP

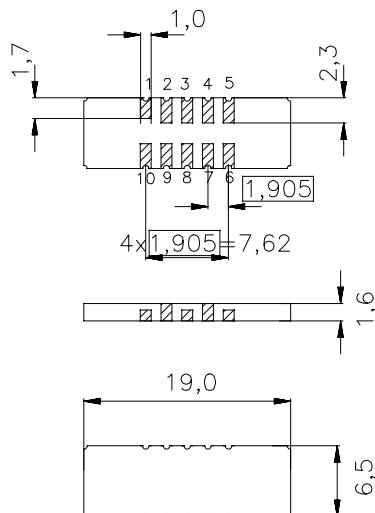
SAW Components

B3841

Low-Loss Filter

174,2 MHz

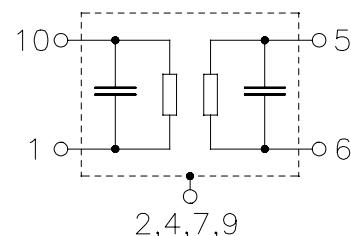
Data Sheet


Features

- Low-loss IF filter for GSM base station
- Temperature stable
- Ceramic SMD package
- Unbalanced or balanced operation

Terminals

- Gold plated


Ceramic package DCC18

Dimensions in mm, approx. weight 0,8 g

Pin configuration

10	Input or balanced input
1	Input ground or balanced input
5	Output or balanced output
6	Output ground or balanced output
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3841	B39171-B3841-U210	C61157-A7-A54	F61074-V8069-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +85	°C	
Storage temperature range	T_{stg}	-40 / +85	°C	
DC voltage	V_{DC}	0	V	
Source power	P_s	10	dBm	

SAW Components

B3841

Low-Loss Filter

174,2 MHz

Data Sheet

Characteristics

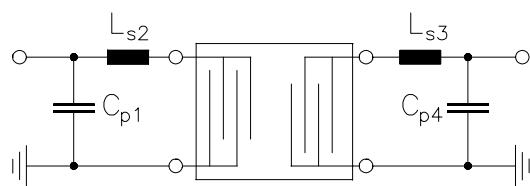
Operating temperature range: $T = -5$ to $+85$ °C
 Terminating source impedance: $Z_S = 250 \Omega \parallel 43 \text{ nH}$
 Terminating load impedance: $Z_L = 400 \Omega \parallel 92 \text{ nH}$

			min.	typ.	max.	
Nominal frequency	f_N	—	174,2	—	—	MHz
Minimum insertion attenuation	α_{\min}	—	6,2	8,0	—	dB
3dB bandwidth						
$\alpha_{\text{rel}} \leq 3,0$ dB	$B_{3,0\text{dB}}$	660	730	—	—	kHz
Amplitude ripple (p-p)	$f_N \pm 67$ kHz	$\Delta\alpha$	—	0,1	0,25	dB
	$f_N \pm 125$ kHz	$\Delta\alpha$	—	0,3	1,0	dB
	$f_N \pm 200$ kHz	$\Delta\alpha$	—	0,6	1,2	dB
Absolute group delay (at f_N)	τ	—	2,3	2,6	—	μs
Group delay ripple (p-p)	$f_N \pm 200$ kHz	$\Delta\tau$	—	190	260	ns
Relative attenuation (relative to α_{\min})	α_{rel}					
$f_N \pm 469$ kHz ... $f_N \pm 600$ kHz		4	10	—	—	dB
$f_N \pm 600$ kHz ... $f_N \pm 860$ kHz		11	20	—	—	dB
$f_N \pm 860$ kHz ... $f_N \pm 1200$ kHz		20	30	—	—	dB
20 MHz ... 168,2 MHz		50	60	—	—	dB
168,2 MHz ... $f_N - 1200$ kHz		40	50	—	—	dB
$f_N + 1200$ kHz ... 180,2 MHz		40	43	—	—	dB
180,2 MHz ... 400 MHz		50	70	—	—	dB
Return loss (at f_N)		10	12	—	—	dB
Temperature coefficient of frequency ¹⁾	TC_f	—	—0,036	—	—	ppm/K ²
Turnover temperature	T_0	—	40	—	—	°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

SAW Components

B3841


Low-Loss Filter

174,2 MHz

Data Sheet

Matching network to 50 Ω

(Element values depend on PCB layout)

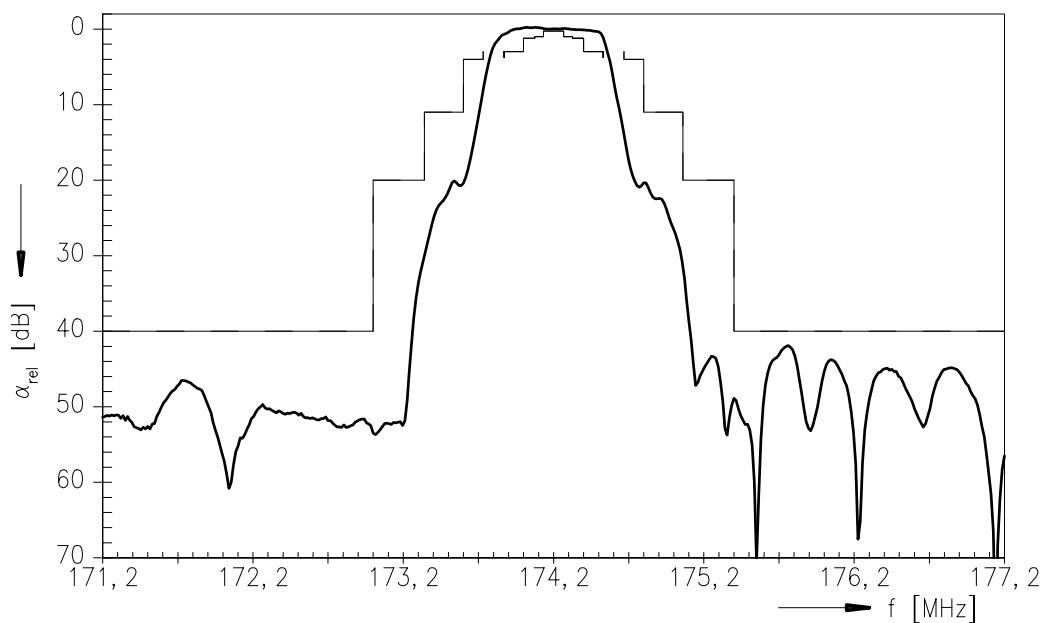
$$C_{p1} = 47 \text{ pF}$$

$$L_{s2} = 39 \text{ nH}$$

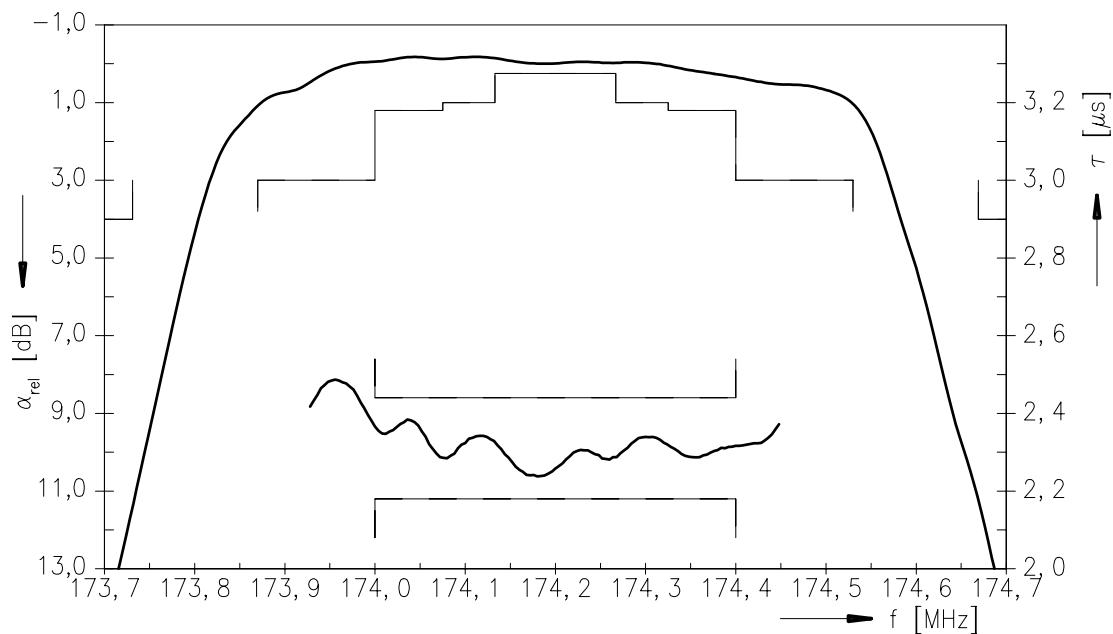
$$L_{s3} = 36 \text{ nH}$$

$$C_{p4} = 56 \text{ pF}$$

SAW Components


B3841

Low-Loss Filter


174,2 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

SAW Components

B3841

Low-Loss Filter

174,2 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC IS

P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2002. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.