查询B39202-B7653-G210供应商

捷多邦,专业PCB打样工厂,24小时加急出货

SAW Components

EPCOS

Data Sheet B7653

Data Sheet

EPCOS	
SAW Components	B7653
Low-Loss Dual Band Filter for Mobile Communic	cation 881,5 & 1960,0 MHz
Data Sheet	
	Chip Sized Saw Package QCS10C
Features	0.1
 Low-loss 2-in-1 RF filter for mobile telephone AMPS and PCS bands, receive path Usable passband: Filter 1 (AMPS): 25 MHz Filter 2 (PCS): 60 MHz Unbalanced to balanced operation for both filters Impedance transformation from 50 Ω to 200 Ω 	$\begin{array}{c c} & 0.8 \\ \hline 0.8 \\ \hline 1 & 2 & 3 \\ \hline 1 & 2 & 3 \\ \hline 0 & 1 & 2 \\ \hline 0 & 1 & 1 \\ \hline 0 & 1 & 2 \\ \hline 0 & 1 & 2 \\ \hline 0 & 1 & 1 \\ \hline 0 & 1 \\ \hline 0 & 1 & 1$
 for AMPS filter Suitable for GPRS class 1 to 12 Package for Surface Mounted Technology (SMT) 	side view
	top view

â

Dimensions in mm, approx. weight 0,015g

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B7653	B39202-B7653-G210	C61157-A7-A129	F6104-V8156-Z000

Electrostatic Sensitive Device (ESD)

Output, balanced [Filter 1] Output, balanced [Filter 2]

Input Filter 2

Input Filter 1

Case Ground

Maximum ratings

Terminals

1,2

3,4

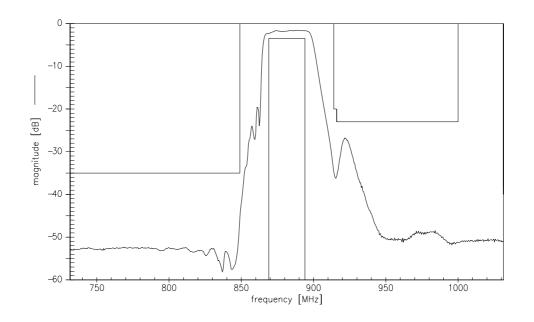
6

9 5,7,8,10

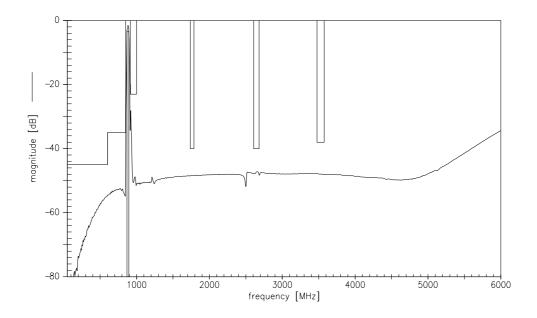
Ni, gold-plated
 Pin configuration

Operable temperature range	Т	- 20 /+ 70	°C	
Storage temperature range	T _{stg}	- 40 /+ 85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V _{ESD}	50	V	
Input power at GSM850, GSM900, GSM1800, GSM1900 Tx bands: Filter 1 (AMPS-Rx) Filter 2 (PCS-Rx)	P _{IN} P _{IN}	15 13	dBm dBm	peak power of GSM signal, duty cycle 4:8

2


SAW Components B7653					37653
Low-Loss Dual Band Filter for Mobile Communication 881,5 & 1960,0 MH) MHz
Data Sheet					
Characteristics of Filter 1 (AMPS)					
Operating temperature range: $T = -20 \text{ to } + 70 \degree \text{C}$ Terminating source impedance: $Z_S = 50 \Omega$ Terminating load impedance: $Z_L = 200 \Omega \parallel 56 \text{ nH}$					
		min.	typ.	max.	
Center frequency	f _c		881,5		MHz
Maximum insertion attenuation 869,0 894,0	α _{max} MHz	·	3,0	3,5*	dB
Amplitude ripple (p-p) 869,0 894,0	MHz Δα	_	1,5	2,0	dB
Input return loss 869,0 894,0	MHz	8,0	12,0		dB
Output return loss 869,0 894,0	MHz	8,0	11,0	_	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+18$ 869,0 894,0	0°) MHz	-5,0	_	+10,0	•
Output amplitude balance (S_{31}/S_{21}) 869,0 894,0	MHz	-1,1	_	+0,7	dB
Inter-band isolation 1930,01990,0	α _{min} MHz	30,0	40,0		dB
Attenuation 10,0 600,0 600,0 849,0 914,0 916,0 916,01000,0 1738,01788,0 2607,02682,0 3476,03576,0	α _{min} MHz MHz MHz MHz MHz MHz MHz	45,0 35,0 20,0 23,0 40,0 40,0 38,0	54,0 40,0 24,0 27,0 48,0 48,0 46,0		dB dB dB dB dB dB dB dB
Tx band suppression 824,0 849,0	α _{min} MHz	35,0	_		dB

 $\overline{*3,0~\text{dB}~(2,6~\text{dB typ.})}$ for temperature range $25\pm10^\circ\text{C}$


	EPCOS	
SAW Components		B7653
Low-Loss Dual Band Filter fo	r Mobile Communication	881,5 & 1960,0 MHz
Data Sheet	SMD	

â

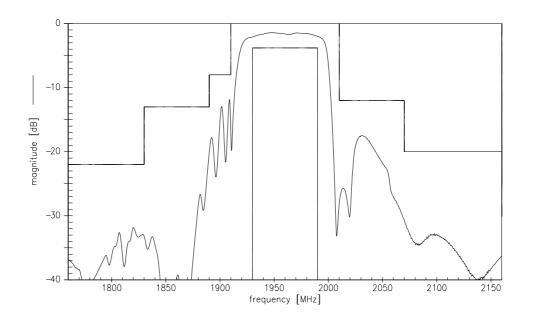
Transfer function Filter 1 (AMPS)

Transfer function Filter 1 (AMPS) - wideband

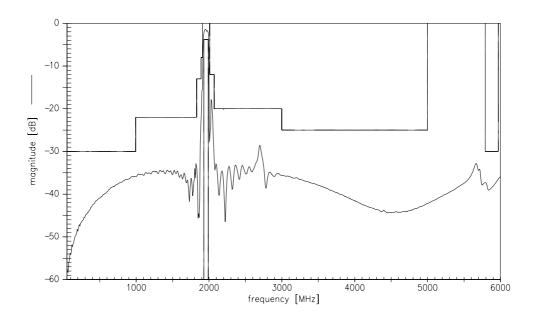
Δ

Oct 16, 2003

SAW Components B765					B7653			
Low-Loss Dual Ba	and Filte	r for Mobi	le Con	nmunio	cation	881	, 5 & 1960 ,	0 MHz
Data Sheet								
Characteristics of Fi	lter 2 (PC	CS)						
Operating temperature range: $T = -20 \text{ to } + 70 \degree \text{C}$ Terminating source impedance: $Z_S = 50 \Omega$ Terminating load impedance: $Z_L = 50 \Omega$								
					min.	typ.	max.	
Center frequency				f _c	—	1960,0	—	MHz
Maximum insertion a	attenuati	on		α_{max}				
		1990,0	MHz	max	_	3,3	3,8*	dB
Amerika de sinele								
Amplitude ripple	1930.0	1990,0	MHz			1,3	2,2	dB
	,-	,-				, -	,	-
Input return loss	1020.0	1990,0	MHz		8,0	10,0		dB
	1930,0	1990,0			8,0	10,0		uв
Output return loss								
	1930,0	1990,0	MHz		8,0	10,0		dB
Output phase balance	e (\$\phi(S_{31});)-\$(\$21)+18	0°)					
		1990,0	MHz		-15,0	—	+15,0	•
Output amplitude ba	lance (19	S. (S. I)						
		1990,0	MHz		-2,7**		+2,7**	dB
Inter-band isolation	869.0	894,0	MHz	α_{min}	30,0	40,0		dB
	000,0	00 1,0			00,0	10,0		
Attenuation	10.0	005.0	N 41 1_	$lpha_{min}$	00.0	00.0		
	10,0 995,0	995,0 1830,0	MHz MHz		30,0 22,0	36,0 30,0		dB dB
		1890,0	MHz		13,0	30,0 17,0		dB
	1890,0	1910,0	MHz		8,0	10,0	_	dB
	2010,0	2070,0	MHz		12,0	14,0	_	dB
	2070,0	3000,0	MHz		20,0	28,0	_	dB
	3000,0	5000,0	MHz		25,0	35,0	_	dB
	5790,0	5970,0	MHz		30,0	39,0	_	dB
Tx band suppression	n			α.				
17 pana 2000 2300	1830,0	1890,0	MHz	α_{min}	13,0	17,0	_	dB
	1890,0	1910,0	MHz		8,0	10,0	_	dB
					0,0	,.		


* 3,5 dB (2,9 dB typ.) for temperature range 25 \pm 10 $^{\circ}C$

** -2,3 dB (min.) and 2,3 dB (max.) @ 25 $^\circ\text{C}$


5

	EPCOS	
SAW Components		B7653
Low-Loss Dual Band F	ilter for Mobile Communication	881,5 & 1960,0 MHz
Data Sheet	SMD	

Transfer function Filter 2 (PCS)

Transfer function Filter 2 (PCS) - wideband

6

Oct 16, 2003

	EPCOS	
SAW Components		B7653
Low-Loss Dual Band Filt	er for Mobile Communication	881,5 & 1960,0 MHz
Data Sheet		

Â

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2003. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.