

[查询CMBT2222供应商](#)

Continental Device India Limited

An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

捷多邦，专业PCB打样工厂，24小时加急出货

SOT-23 Formed SMD Package

CMBT2222

CMBT2222A

SILICON PLANAR EPITAXIAL TRANSISTORS

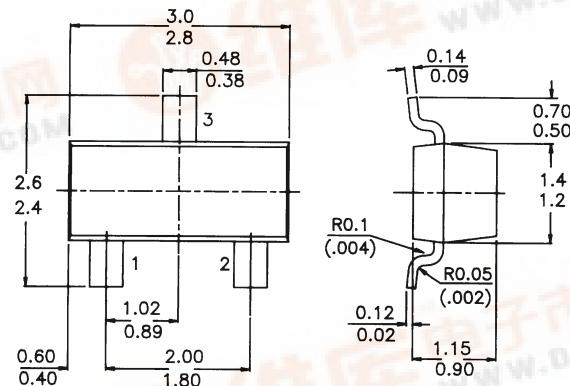
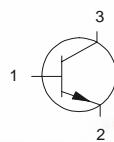
N-P-N silicon transistors

Marking

CMBT2222 = I_B

CMBT2222A = I_P

PACKAGE OUTLINE DETAILS



ALL DIMENSIONS IN mm

Pin configuration

1 = BASE

2 = Emitter

3 = Collector

ABSOLUTE MAXIMUM RATINGS

Collector-base voltage (open emitter)

	CMBT2222	CMBT2222A
V_{CB0}	max. 60	75
V_{CE0}	max. 30	40
V_{EB0}	max. 5,0	6,0
I_C	max. 600	mA
P_{tot}	max. 250	mW

Collector-emitter voltage (open base)

Emitter base voltage (open collector)

Collector current (d.c.)

Total power dissipation up to $T_{amb} = 25^\circ C$

D.C. current gain

$I_C = 150mA; V_{CE} = 10V$

$I_C = 500mA; V_{CE} = 10V$

Transition frequency at $f = 100$ MHz

$I_C = 20 mA; V_{CE} = 20 V$

CMBT2222
CMBT2222A

RATINGS (at $T_A = 25^\circ\text{C}$ unless otherwise specified)

Limiting values

		CMBT2222	CMBT2222A
Collector-base voltage (open emitter)	V_{CBO}	max. 60	75 V
Collector-emitter voltage (open base)	V_{CEO}	rmax. 30	40 V
Emitter-base voltage (open collector)	V_{EBO}	max. 5,0	6,0 V
Collector current (d.c.)	I_C	max. 600	mA
Total power dissipation up to $T_{amb} = 25^\circ\text{C}$	P_{tot}	max. 250	mW
Storage temperature range	T_{stg}	-55 to +150	°C
Junction temperature	T_j	max. 150	°C

THERMAL RESISTANCE

From junction to ambient	$R_{th\ j-a}$	500	K/W
--------------------------	---------------	-----	-----

CHARACTERISTICS

$T_j = 25^\circ\text{C}$ unless otherwise specified

		CMBT2222	CMBT2222A
Collector cut-off current			
$I_E = 0; V_{CB} = 50\text{ V}$	I_{CBO}	< 0,01	μA
$I_E = 0; V_{CB} = 60\text{ V}$	I_{CBO}	< -	0,01 μA
$I_E = 0; V_{CB} = 50\text{ V}; T_i = 125^\circ\text{C}$	I_{CBO}	< 10	- μA
$I_E = 0; V_{CB} = 60\text{ V}; T_j = 125^\circ\text{C}$	I_{CBO}	< -	10 μA
$V_{EB} = 3\text{ V}; V_{CE} = 60\text{ V}$	I_{CEX}	< -	10 nA
Base current			
with reverse biased emitter junction			
$V_{FB} = 3\text{ V}; V_{CE} = 60\text{ V}$	I_{BEX}	< -	20 nA
Emitter cut-off current			
$I_C = 0; V_{EB} = 3\text{ V}$	I_{EBO}	< -	10 nA
Saturation voltages			
$I_C = 150\text{ mA}; I_B = 15\text{ mA}$	V_{CEsat}	< 400	mV
	V_{BEsat}	< 1,3	- V
	V_{BEsat}	-	0,6 to 1,2 V
$I_C = 500\text{ mA}; I_B = 50\text{ mA}$	V_{CEsat}	< 1,6	1,0 V
	V_{BEsat}	< 2,6	2,0 V
Breakdown voltages			
$I_C = 1,0\mu\text{A}; I_B = 0$	$V_{(BR)CEO}$	> 30	V
$I_C = 100\mu\text{A}; I_E = 0$	$V_{(BR)CBO}$	> 60	V
$I_C = 0; I_E = 10\mu\text{A}$	$V_{(BR)EBO}$	> 5,0	6,0 V

CMBT2222
CMBT2222A

			CMBT2222	CMBT2222A
<i>D.C. current gain</i>				
$I_C = 0,1 \text{ mA}; V_{CE} = 10V$	h_{FE}	>	35	
$I_C = 1 \text{ mA}; V_{CE} = 10V$	h_{FE}	>	50	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	h_{FE}	>	75	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = -55 \text{ }^{\circ}\text{C}$	h_{FE}	>	35	
$I_C = 150 \text{ mA}; V_{CE} = 10V$	h_{FE}		100 to 300	
$I_C = 150 \text{ mA}; V_{CE} = 1 \text{ V}$	h_{FE}	>	50	
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$	h_{FE}	>	30	40
<i>Transition frequency at $f = 100 \text{ MHz}$</i>				
$I_C = 20 \text{ mA}; V_{CE} = 20 \text{ V}$	f_T	>	250	300
<i>Output capacitance at $f = 1 \text{ MHz}$</i>				
$I_E = 0; V_{CB} = 10V$	C_o	<	8,0	pF
<i>Input capacitance at $f = 1 \text{ MHz}$</i>				
$I_C = 0; V_{EB} = 0,5V$	C_i	<	30	25
<i>Noise figure at $R_S = 1 \text{ k}\Omega$</i>				
$I_C = 100 \mu\text{A}; V_{CE} = 10V; f = 1 \text{ kHz}$	F	<	4,0	dB
<i>Switching times (between 10% and 90% levels)</i>				
<i>Turn-on time switched to $I_c = 150 \text{ mA}$</i>				
<i>delay time</i>	t_d	<	10	ns
<i>rise time</i>	t_r	<	25	ns
<i>Turn-off time switched from $I_c = 150 \text{ mA}$</i>				
<i>storage time</i>	t_s	<	225	ns
<i>fall time</i>	t_f	<	60	ns
<i>Small Signal Current Gain</i>				
$V_{CE} = 10V; I_C = 1 \text{ mA}; f = 1 \text{ KHz}$	h_{fe}	>	50	
		<	300	
$V_{CE} = 10V; I_C = 10mA; f = 1 \text{ KHz}$	h_{fe}	>	75	
		<	375	

Customer Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/ CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.
Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119
email@cdil.com www.cdisemi.com