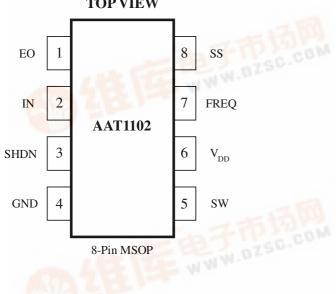
查询AAT1102供应商

Advanced Analog Technology, Inc.

AAT1102

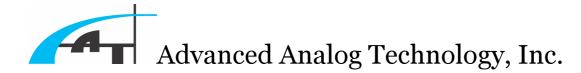

Product information presented is current as of publication date. Details are subject to change without notice

ADVANCED PWM DC-DC CONVERTER WITH INTERNAL SWITCH AND SOFT-START

FEATURES

- 1.6A, 0.23Ω, Internal Switch
- High Efficiency: 90%
- Adjustable Output: V_{DD} to 12.5V
- Adjustable Frequency: 640kHz or 1.3MHz
- Wide Input Range: +2.6V to +5.5V
- Low Shutdown Current: 0.1µA
- Programmable Soft-Start
- Small 8-Pin MSOP Package

PIN CONFIGURATION TOP VIEW


GENERAL DESCRIPTION

The AAT1102 is a step-up DC-DC converter with a 1.6A, 0.23Ω internal switch. Equipped with an external compensation pin, this device offers user flexibility in determining loop dynamic and adjusting operating frequency. AAT1102 also allows the use of small, low equivalent resistance (ESR) ceramic output capacitor, and it's capable of converting a standard input of 3.3V to multiple outputs of 8V, -8V, and 23V. Furthermore, filtering and loop performance are facilitated and enhanced by a high switching frequency of either 640 kHz or1.3MHz.

The AAT1102's versatility comes with а power-smart design. A soft-start programmed with an external capacitor that sets the input current ramp rate, reduces the current consumption to 0.1µA in shutdown mode. When operating, a mere 2.6V input yields an impressive output voltage as high as 12.5V.

High switching frequency and economical design allow AAT1102 to be less than 1.1mm high. Its compact 8-pin MSOP package and superior performance make it an ideal part for biasing TFT displays.

PIN DESC	PIN DESCRIPTIONS							
PIN	NAME	FUNCTION						
1	EO	Compensation Pin for Error Amplifier						
2	IN	Feedback Pin with a Typical Reference Voltage of 1.24V, $V_{OUT} = IN(1 + \frac{R1}{R2})$						
3	SHDN	Shutdown Control Pin. The Device Will Turn Off When SHDN is Low						
4	GND	Ground						
5	SW	Switch Pin						
6	V _{DD}	Power Supply Pin						
7	FREQ	Frequency Select Pin. Switch Oscillator Frequency to 640kHz When FREQ is Low, and 1.3MHz When FREQ is High						
8	SS	Soft-Start Control Pin. No Soft-Start When the Pin is Left Open						

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
SW to GND		-0.3 to +18	V
IN, SHDN, V_{DD} , FREQ to GND		-0.3 to +6	V
SS, EO to GND		-0.3 V to (V _{DD} +0.3V)	V
RMS SW Pin Current	I_{sw}	1.2	А
Continuous Power Dissipation ($T_c = +70$ °C) 8-Pin MSOP (De-Rate 4.1 mW /°C above +70°C)	P _d	330	mW
Operation Temperature Range	T _c	- 20 to +85	°C
Storage Temperature Range	T _{storage}	-45 to +125	°C
Lead Temperature (Soldering for 10 seconds)	T _L	+300	°C

Note:

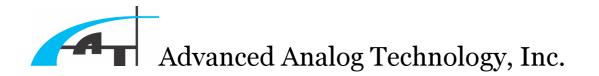
1. Absolute Maximum Ratings are threshold limit values that must not be exceeded.

2. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device.

3. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

 $V_{DD} = \overline{SHDN} = 3V$, FREQ = GND, unless otherwise specified. Typical values are at $T_{C} = +25^{\circ}C$)


PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Supply Voltage Range	V _{DD}		2.6		5.5	V
V _{DD} Under Voltage Lockout	UVLO	When V_{DD} is rising, typical hysteresis is 40mV; SW remains off below this level		2.38	2.52	V
Quiescent Current	I _{DD}	$V_{IN} = 1.3V$, not switching		0.21	0.35	mA
Quiescent Current	¹ DD	$V_{IN} = 1.0V$, switching		1.2	5.0	IIIA
Shutdown Current	I _{SC}	$\overline{\text{SHDN}} = \text{GND}$		0.1	10.0	μΑ

ERROR AMPLIFIER

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Feedback Voltage	V_{IN}	Level to produce $V_{EO} = 1.24V$	1.222	1.240	1.258	V
V _{DD} Input Bias Current	I _{IN}	$V_{IN} = 1.24V$		0	40	nA
Feedback-Voltage Line Regulation		Level to produce $V_{EO} = 1.24V$, 2.6V < $V_{DD} < 5.5V$		0.05	0.15	%/V
Transconductance	^g m	$\Delta I = 5 \ \mu A$	70	105	240	μΑ /V
Voltage Gain	A_{V}			1,500		V/V

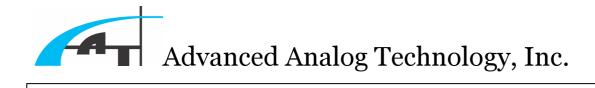
OSCILLATOR

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
English		FREQ = GND	540	640	740	1.11-
Frequency	¹ OSC	$FREQ = V_{DD}$	1,100	1,320	1,600	kHz
Marian Data Carl	D	FREQ = GND	79	85	92	01
Maximum Duty Cycle	D _{MAX}	$FREQ = V_{DD}$		85		%

ELECTRICAL CHARACTERISTICS

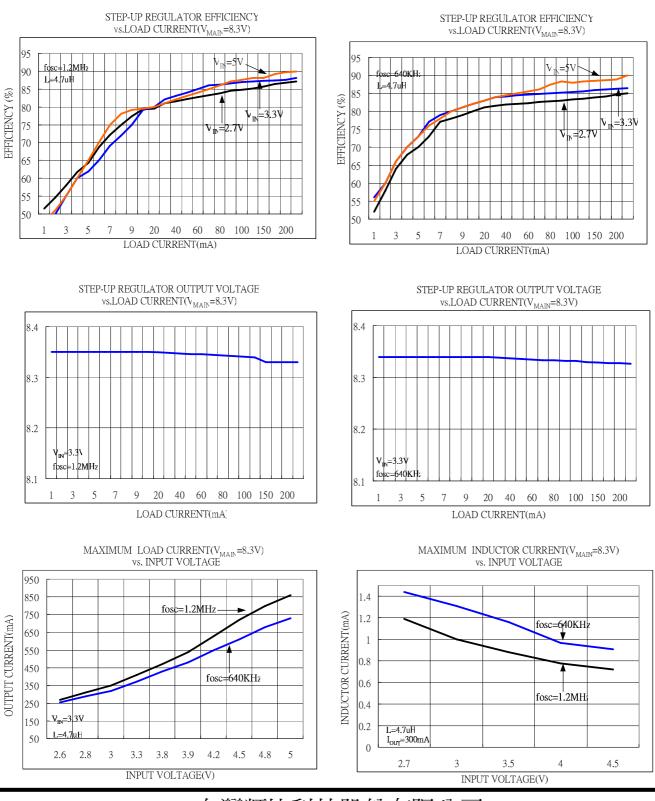
 $V_{DD} = \overline{SHDN} = 3V$, FREQ = GND, unless otherwise specified. Typical values are at $T_C = +25^{\circ}C$)

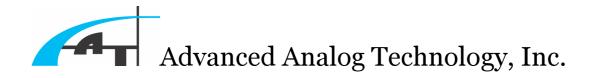
N-CHANNEL SWITCH

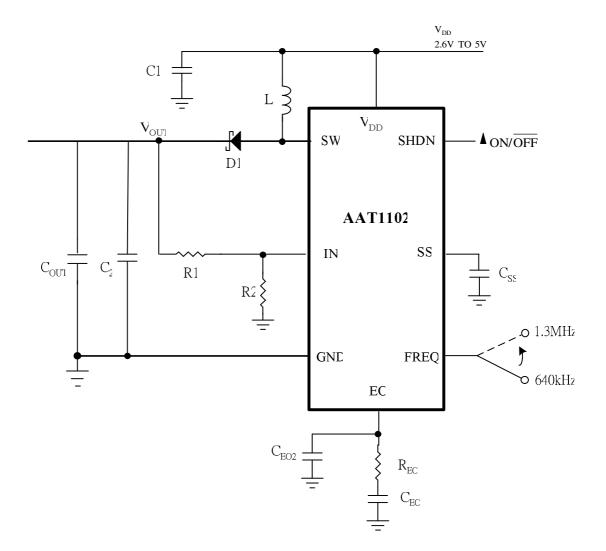

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Current Limit	I	$V_{DD} = 1V$, Duty Cycle = 65%	1.2	1.6	2.3	А
On-Resistance	R _{ON}	$I_{sw} = 1.2A$		0.23	0.50	Ω
Leakage Current	I _{SWOFF}	$V_{SW} = 12V$		0.01	20.00	μΑ

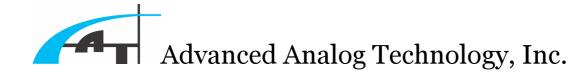
SOFT-START

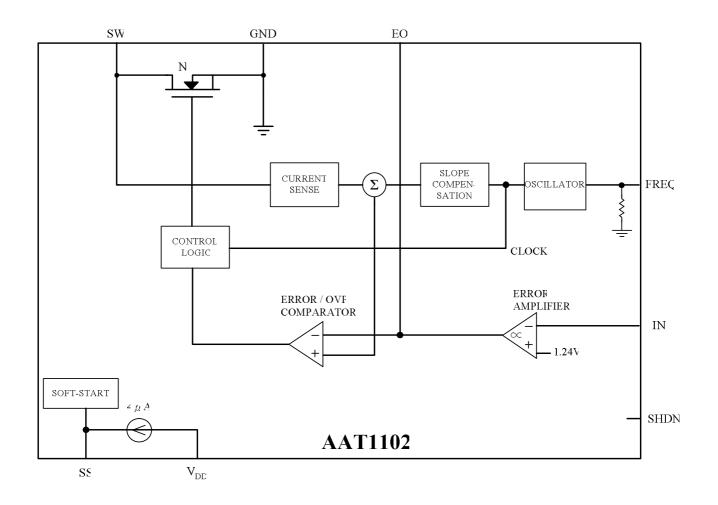
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Reset Switch Resistance					300	Ω
Charge Current		$V_{ss} = 1.2V$	1.5	4.0	7.0	μΑ

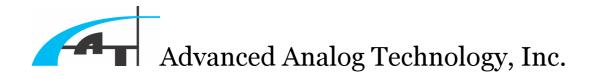

CONTROL INPUTS

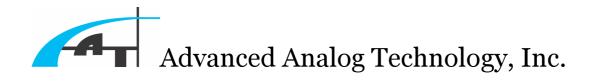

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Low Voltage	V _{IL}	SHDN, FREQ; $V_{DD} = 2.6V$			0.3	v
input Low Voltage	, IT	to 5.5V			V_{DD}	· ·
Input High Valtage	V	SHDN, FREQ; $V_{DD} = 2.6V$	0.7^{\cdot}			V
Input High Voltage	V_{IH}	to 5.5V	V_{DD}			v
II		CUDN EDEO		0.1		V
Hysteresis		SHDN, FREQ		V_{DD}		v
FREQ Pull-Down Current	I _{freq}		1.8	5.0	9.0	μΑ
SHDN Input Current	I			0.001	1.000	μΑ


Typical Operating Characteristics


AAT1102




Fig. 1 TYPICAL APPLICATION CIRCUIT


Fig. 2 BLOCK DIAGRAM

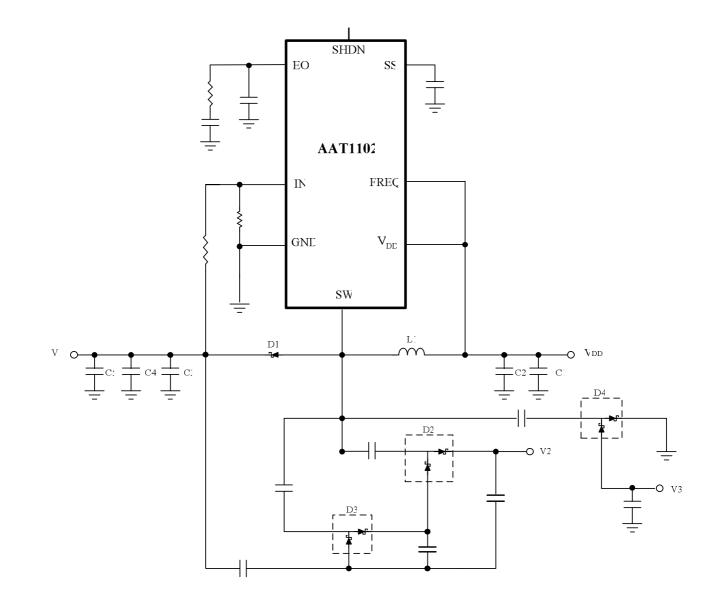


Fig. 3 AAT1102 IN A SEPIC CONFIGURATION

Fig. 4 MULTIPLE-OUTPUT TFT LCD POWER SUPPLY

Inductor selection

$$I_{L(peak)} = I_{IN} + \frac{V_{IN}D}{2Lf_s}, \text{ where } D \text{ is duty cycle}$$

And $I_{IN} = \frac{I_o}{1-D}, D = 1 - \frac{V_{IN}}{V_o},$

The inductor current rating must be greater than $I_{L(peak)}$.

Loop Compensation Design

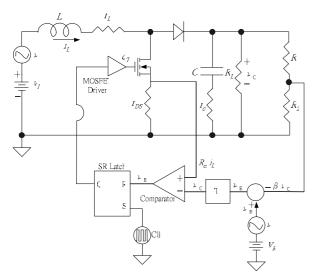


Fig.1. Closed-current loop for boost with PCM

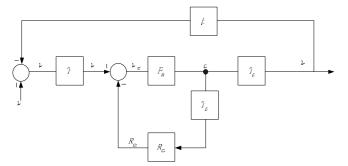


Fig.2. Block diagram of boost converter with PCM

Power Stage Transfer Functions

The duty to output voltage transfer function T_p is:

$$T_{p}(s) = \frac{v_{o}}{d} = T_{p0} \frac{(s + w_{esr})(s - w_{z2})}{s^{2} + 2\xi w_{n} s + w_{n}^{2}}$$

Where
$$T_{p0} = V_O \frac{-r_c}{(1-D)(R_L + r_c)}$$
, $w_{esr} = \frac{1}{Cr_c}$

And

$$w_{z2} = \frac{R_L (1-D)^2 - r}{L}, w_n = \sqrt{\frac{(1-D)^2 R_L + r}{LC(R_L + r_c)}}$$
$$\xi = \frac{C[r(R_L + r_c) + R_L r_c (1-D)^2] + L}{2\sqrt{LC(R_L + r_c)[r + (1-D)^2 R_L]}},$$

$$r = r_L + Dr_{DS} + (1 - D)R_F$$

 r_L is the inductor equivalent series resistance, r_c is capacitor ESR, R_L is the converter load resistance, C is output filter capacitor, r_{DS} is the transistor on-resistance, and R_F is the diode forward resistance.

The duty to inductor current transfer function T_{pi} is:

$$T_{pi}(s) = \frac{i_{l}}{d} = T_{pi0} \frac{s + w_{zi}}{s^{2} + 2\xi w_{n}s + w_{n}^{2}}$$

Where $T_{pi0} = \frac{V_{O}(R_{L} + 2r_{c})}{L(R_{L} + r_{c})}, w_{zi} = \frac{1}{C(R_{L} / 2 + r_{c})}$

- 台灣類比科技股份有限公司 - Advanced Analog Technology, Inc.-

Page 10 of 18

Current Sampling Transfer Function

Error voltage to duty transfer function F_m is:

$$F_m(s) = \frac{d}{v_{ei}} = \frac{2f_s^2 \left(s^2 + 2\xi w_n s + w_n^2\right)}{T_{pi0} R_{cs} s \left(s + w_{zi}\right) \left(s + w_{sh}\right)}$$

Where
$$w_{sh} = \frac{3w_s}{\pi} \left(\frac{1-\alpha}{1+\alpha} \right), \alpha = \frac{M_2 - M_a}{M_1 + M_a},$$

 $w_s = 2\pi f_s$

$$= \beta g_m R_c \frac{S + W_c}{s} \frac{S_s - \rho_0}{R_{cs} T_{\rho i0}} \times \frac{(s + w_{z1})(s - w_{z2})}{(s + w_{zi})(s^2 + s w_{sh} + 12 f_s^2)}$$

Where $\beta = \frac{V_{FB}}{Vo}$,

 $s + w = 12 f^2 T_{a}$

The compensator transfer function

Therefore, F_m depends on duty to inductor current $T_c(s) = \frac{v_c}{v_m} = g_m R_c \frac{s + w_c}{s}$, where $w_c = \frac{1}{R_c C_c}$ transfer function T_{pi} , and f_s is the clock switching frequency; R_{cs} is the current-sense amplifier transresistance. For the boost converter $M_1 = V_{IN}/L$ and $M_2 = (V_0 - V_{IN})/L$ For AAT1102, $R_{cs} = 0.275$ V/A, M_a is slope compensation, $M_a = 0.8 \times 10^{6}$.

The closed-current loop transfer function T_{icl} is:

$$T_{icl}(s) = \frac{12f_s^2}{R_{cs}T_{pi0}} \times \frac{\left(s^2 + 2\xi w_n s + w_n^2\right)}{\left(s + w_{zi}\right)\left(s^2 + w_{sh}s + 12f_s^2\right)}$$

The Voltage-Loop Gain With **Current Loop Closed**

The control to output voltage transfer function T_d is:

$$T_{d}(s) = \frac{v_{o}(s)}{v_{c}(s)} = T_{icl}(s)T_{p}(s)$$

The voltage-loop gain with current loop closed is:

 $L_{vi}(s) = \beta T_c(s) T_d(s)$

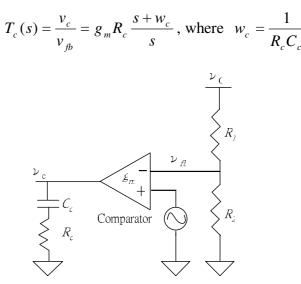
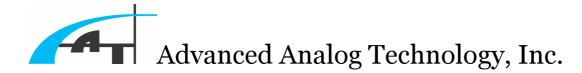


Fig.3. Voltage loop compensator


Compensator design guide:

- 1. Crossover frequency $f_{ci} < \frac{1}{2} f_s$
- 2. Gain margin>10dB
- 3. Phase margin> 40°

4. The $|L_{vi}(s)| = 1$ at crossover frequency, Therefore, the compensator resistance, R_c is determined by:

- 台灣類比科技股份有限公司 -Advanced Analog Technology, Inc.-

Page 11 of 18

$$R_{c} = \frac{V_{o}}{V_{FB}} \frac{2\pi f_{ci} C R_{cs}}{kg_{m}} \frac{(R_{L} + 2r_{c})}{\left[(1 - D)R_{L} - \frac{r}{(1 - D)}\right]}$$

 V_{FB} is equal to reference voltage, V_{REF} . $V_{REF} = 1.24$ V, *k* is the correct factor, and k = (6-8)

5. The output filter capacitor is chosen so C. R_L pole cancels $R_c \cdot C_c$ zero

$$R_{c}C_{c} = \frac{C}{(1-3)} \left(\frac{R_{L}}{2} + r_{c}\right), \text{ and}$$
$$C_{c} = \frac{C}{(1-3)R_{c}} \left(\frac{R_{L}}{2} + r_{c}\right)$$
Example:

 $V_{IN} = 5$ V, $V_o = 9.6$ V, $I_o = 250$ mA, $f_s = 600$ kHz, $V_{FB} = 1.25$ V, $L = 6.8 \mu$ H, $g_m = 105 \mu$ S, $R_{cs} = 0.275$ V/A, $r_L = 0.1\Omega$, $r_{DS} = 0.23\Omega$, $r_c = 50 m\Omega$, k = 7 $R_F = 1.4\Omega$, $f_{ci} = 21.4$ kHz, $C_c = 1.3$ nF, $R_c = 27$ k Ω , C = 4.7uF

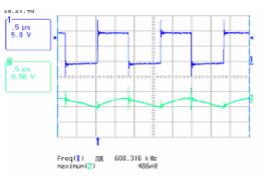


Fig.4. CH1: PWM waveform, CH2, v_{p-p} for *Vo*

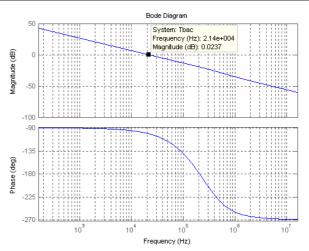
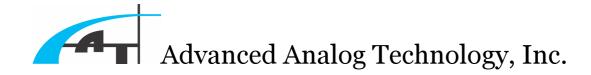
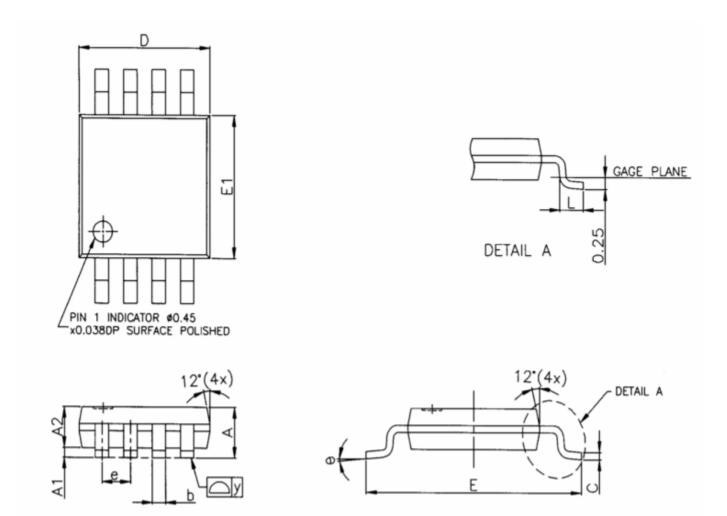
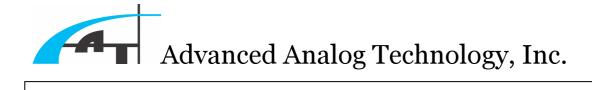
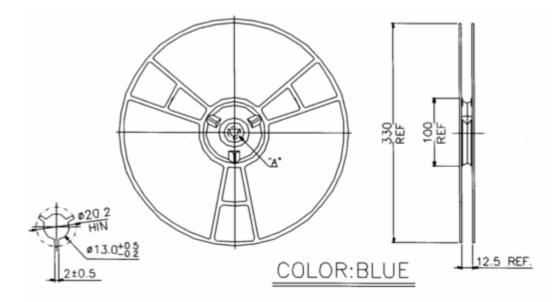




Fig.5. Bode diagram using Matlab simulation

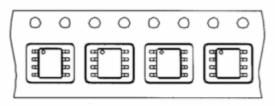
PACKAGE DIMENSION MSOP-8



PACKAGE DIMENSION (CONT.) MSOP-8

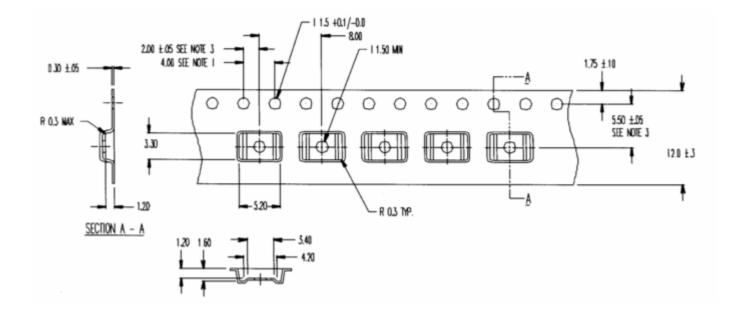

	DIMENSI	ONS IN MIL	LIMETERS	DIMEN	SIONS IN I	NCHES
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	0.81	1.02	1.22	0.032	0.040	0.043
▲ A1	0.05	—	0.15	0.002	—	0.006
A2	0.76	0.86	0.97	0.030	0.034	0.038
b	0.28	0.30	0.38	0.011	0.012	0.015
С	0.13	0.15	0.23	0.005	0.006	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.80	4.90	5.00	0.189	0.193	0.197
E1	2.90	3.00	3.10	0.114	0.118	0.122
е	—	0.65		—	0.0256	_
L	0.40	0.53	0.66	0.016	0.021	0.026
у		—	0.076		—	0.003
ð	0.	3.	6'	0.	3.	6'

NOTE :


- 1. CONTROLLING DIMENSION : mm
- 2. LEAD FRAME MATERIAL : OLIN C7025
- 3. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, TIE BAR BURRS AND GATE BURRS. MOLD FLASH, TIE BAR BURRS AND GATE BURRS SHALL NOT EXCEED 0.006"[0.15mm] PER END. DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010"[0.25mm] PER SIDE. 4. DIMENSION "b" DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE 0.003"[0.08mm] TOTAL IN EXCEED OF THE "b" DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.0028"[0.07mm]. 5. TOLERANCE : ±0.010"[0.25mm] UNLESS
- OTHERWISE SPECIFIED.
- 6. OTHERWISE DIMENSION FOLLOW ACCEPTABLE SPEC.

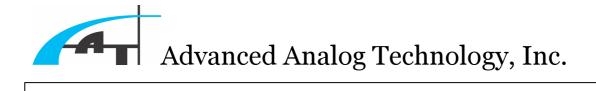
TAPE AND REEL PACKING METHOD: 2,500PCS/REEL, 1 REEL/BOX

	<u> </u>	••••• •••••	
20 PCS(MIN.)		50 PCS(MIN.)	TAPE SEALING



MSOP 8L

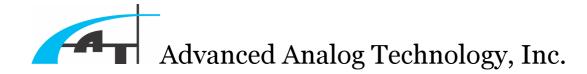
包裹方式: 2500 EA/PER REEL 1 REEL/BOX


TAPE AND REEL (CONT.)PACKING METHOD: 2,500PCS/REEL, 1 REEL/BOX

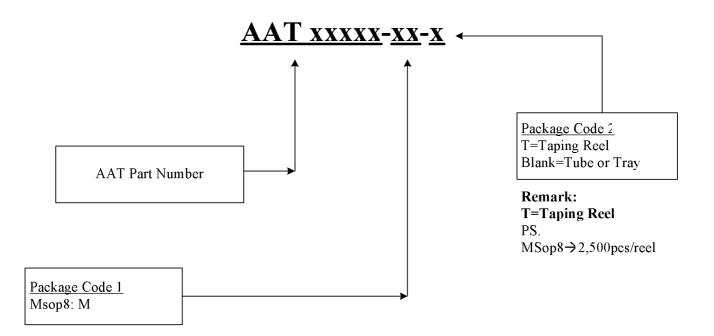
NOTES:

- 1. 1D SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
- 2. CAMBER IN COMPLIANCE WITH EIA 481
- 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

X.XXX ±0.0025 X.XXX ±0.006 X.XX ±0.025 X.X ±0.10 X. ±0.25 N.4 ±0.25


PART MARKING

MSOP8 TOP MARKING


1102 MAAC

MSOP8 BACK MARKING

YYWW

ORDERING INFORMATION

