AAT7103 25V N-Channel Power MOSFET

General Description

The AAT7103 25V N-Channel Power MOSFET is a member of AnalogicTech™'s TrenchDMOS™ product family. Using the ultra-high density proprietary TrenchDMOS technology, the product demonstrates high power handling and small size.

Features

- $V_{DS(MAX)} = 25V$
- I_{D(MAX)}⁽¹⁾ = 6.8 A @ 25°C
- Low R_{DS(ON)}:
 - 26 m Ω @ V_{GS} = 4.5V
 - 41 m Ω @ V_{GS} = 2.5V

Applications

- Battery Packs
- · Cellular & Cordless Telephones
- · PDAs, Camcorders, and Cell Phones

Dual SOP-8 Package

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Description		Value	Units	
V _{DS}	Drain-Source Voltage		25	.,	
V _{GS}	Gate-Source Voltage		±12	V	
	Continuous Drain Current @ T _J =150°C ¹	T _A = 25°C	±6.8		
'D		T _A = 70°C	±5.4		
I _{DM}	Pulsed Drain Current ³		±24	A	
I _S	Continuous Source Current (Source-Drain Diode) 1		1.8	P.C - n -	
P _D	Maximum Power Dissipation ¹	T _A = 25°C	2.0	147	
		T _A = 70°C	1.25	W	
T _{.I} , T _{STG}	Operating Junction and Storage Temperature Range		-55 to 150	°C	

Thermal Characteristics

Symbol	Description	Value	Units	
$R_{\theta JA}$	Typical Junction-to-Ambient steady state, one FET on ² 100 °C/W			
$R_{\theta JA2}$	Maximum Junction-to-Ambient Figure, t < 10 sec. ¹ 62.5 °C/W		°C/W	
$R_{\theta JF}$	Typical Junction-to-Foot, one FET on ¹		°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

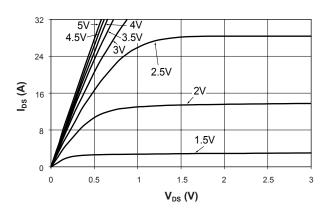
Symbol	Description	Conditions	Min	Тур	Max	Units
DC Chara	DC Characteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	25			V
R _{DS(ON)}	Drain-Source ON-Resistance ³	V _{GS} =4.5V, I _D =6.8A		19	26	mΩ
		V _{GS} =2.5V, I _D =5.4A		28	41	11152
I _{D(ON)}	On-State Drain Current ³	V _{GS} =4.5V ,V _{DS} =5V (Pulsed)	24			Α
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	0.6			V
I _{GSS}	Gate-Body Leakage Current	V _{GS} = ±12V, V _{DS} =0V			±100	nA
	Drain Source Leakage Current	V_{GS} =0V, V_{DS} =25V			1	
I _{DSS}		V _{GS} =0V, V _{DS} =20V, T _J =70°C			5	μA
g_{fs}	Forward Transconductance ³	V_{DS} =5V, I_{D} =6.8A		20		S
Dynamic (Dynamic Characteristics ⁴					
Q_G	Total Gate Charge	V_{DS} =15V, R_{D} =2.2 Ω , V_{GS} =4.5V		13	19	
Q_{GS}	Gate-Source Charge	V_{DS} =15V, R_{D} =2.2 Ω , V_{GS} =4.5V		1.9		nC
Q_{GD}	Gate-Drain Charge	V_{DS} =15V, R_{D} =2.2 Ω , V_{GS} =4.5V		2.9		
t _{D(ON)}	Turn-ON Delay	V_{DD} =15V, V_{GS} =10V, R_{D} =2.2 Ω , RG=6 Ω		15		
t _R	Turn-ON Rise Time	V_{DD} =15V, V_{GS} =10V, R_{D} =2.2 Ω , RG=6 Ω		18		ns
t _{D(OFF)}	Turn-OFF Delay	V_{DD} =15V, V_{GS} =10V, R_{D} =2.2 Ω , RG=6 Ω		36		115
t _F	Turn-OFF Fall Time	V_{DD} =15V, V_{GS} =10V, R_{D} =2.2 Ω , RG =6 Ω		27		
Source-Di	Source-Drain Diode Characteristics					
V _{SD}	Source-Drain Forward Voltage ³	V _{GS} =0, I _S =6.8A			1.5	V
I _S	Continuous Diode Current ¹				1.8	Α

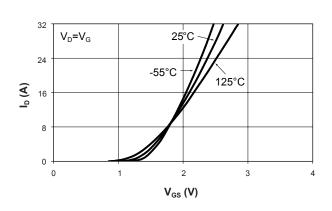
Note 1: Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 10 second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in many applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design; however, $R_{\theta FA}$ is determined by PCB design. Actual maximum continuous current is limited by the application's design.

2 7103.2003.04.0.61

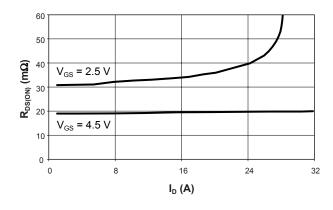
Note 2: Steady state thermal response while mounted on a 1" x 1" PCB with maximum copper area is provided for comparison with other devices. This test condition approximates many battery pack applications.

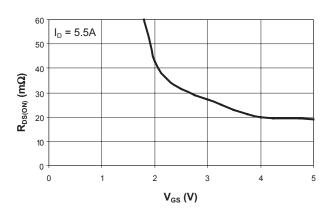
Note 3: Pulsed measurement 300 μs , single pulse.

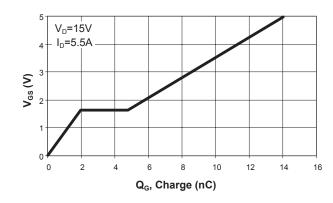

Note 4: Guaranteed by design. Not subject to production testing.

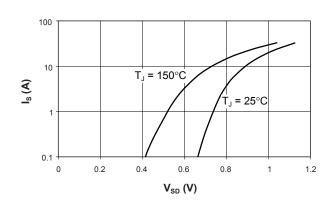

Typical Characteristics

(T₁ = 25°C unless otherwise noted)


Output Characteristics


Transfer Characteristics

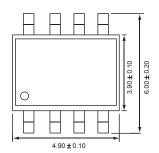

On-Resistance vs. Drain Current

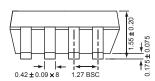

On-Resistance vs. Gate to Source Voltage

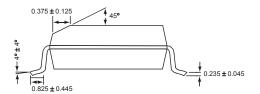
Gate Charge

Source-Drain Diode Forward Voltage

7103.2003.04.0.61




Ordering Information


Package	Marking	Part Number (Tape and Reel)
SOP-8	7103	AAT7103IAS-T1

Note: Sample stock is generally held on all part numbers listed in BOLD.

Package Information

All dimensions in millimeters.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

Advanced Analogic Technologies, Inc.

830 E. Arques Avenue, Sunnyvale, CA 94085 Phone (408) 737-4600 Fax (408) 737-4611

