－Typical Volp（Output Ground Bounce） $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－High－Drive Outputs（ $-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{IOL}^{\text {）}}$
－I ${ }_{\text {off }}$ and Power－Up 3－State Support Hot Insertion
－Latch－Up Performance Exceeds 500 mA Per JEDEC Standard JESD－17
－ESD Protection Exceeds JESD 22
－2000－V Human－Body Model（A114－A）
－200－V Machine Model（A115－A）
 SN74ABT125 ．．．D，DB，N，NS，

OR PW PACKAGE （TOP VIEW）


SN74ABT125 ．．．RGY PACKAGE
（TOP VIEW）


SN54ABT125 ．．．FK PACKAGE （TOP VIEW）


NC－No internal connection

## description／ordering information

The＇ABT125 quadruple bus buffer gates feature independent line drivers with 3 －state outputs．Each output is disabled when the associated output－enable（ $\overline{\mathrm{OE}}$ ）input is high．

These devices are fully specified for hot－insertion applications using $\mathrm{I}_{\text {off }}$ and power－up 3－state．The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs，preventing damaging current backflow through the devices when they are powered down． The power－up 3－state circuitry places the outputs in the high－impedance state during power up and power down， which prevents driver conflict．
To ensure the high－impedance state during power up or power down，$\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{\mathrm{C}}$ through a pullup resistor；the minimum value of the resistor is determined by the current－sinking capability of the driver．

ORDERING INFORMATION

| $\mathrm{T}_{\mathbf{A}}$ | PACKAGE $\dagger$ |  | ORDERABLE PART NUMBER | TOP－SIDE MARKING |
| :---: | :---: | :---: | :---: | :---: |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | PDIP－N | Tube | SN74ABT125N | SN74ABT125N |
|  | QFN－RGY | Tape and reel | SN74ABT125RGYR | AB125 |
|  | SOIC－D | Tube | SN74ABT125D | ABT125 |
|  |  | Tape and reel | SN74ABT125DR |  |
|  | SOP－NS | Tape and reel | SN74ABT125NSR | ABT125 |
|  | SSOP－DB | Tape and reel | SN74ABT125DBR | AB125 |
|  | TSSOP－PW | Tape and reel | SN74ABT125PWR | AB125 |
| $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | CDIP－J | Tube | SNJ54ABT125J | SNJ54ABT125J |
|  | CFP－W | Tube | SNJ54ABT125W | SNJ54ABT125W |
|  | LCCC－FK | Tube | SNJ54ABT125FK | SNJ54ABT125FK |

$\dagger$ Package drawings，standard packing quantities，thermal data，symbolization，and PCB design guidelines are available at www．ti．com／sc／package．

Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

| FUNCTION TABLE <br> (each buffer) |  |
| :---: | :---: |
| INPUTS  OUTPUT <br> Y $\overline{\mathrm{OE}}$ A Y <br> L H H <br> L L L <br> H X Z |  |

## logic diagram (positive logic)



Pin numbers shown are for the D, DB, J, N, NS, PW, RGY, and W packages.

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

[^0]recommended operating conditions (see Note 4)

|  |  | SN54ABT125 |  | SN74ABT125 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage | 4.5 | 5.5 | 4.5 | 5.5 | V |
| $\mathrm{V}_{\text {IH }}$ | High-level input voltage | 2 |  | 2 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage |  | 0.8 |  | 0.8 | V |
| $\mathrm{V}_{1}$ | Input voltage | 0 | $\mathrm{V}_{\mathrm{CC}}$ | 0 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| ${ }^{\mathrm{OH}}$ | High-level output current |  | -24 |  | -32 | mA |
| $\mathrm{IOL}^{\text {l }}$ | Low-level output current |  | 48 |  | 64 | mA |
| $\Delta t / \Delta v$ | Input transition rise or fall rate |  | 10 |  | 10 | ns/V |
| $\Delta t / \Delta \mathrm{V}_{\mathrm{CC}}$ | Power-up ramp rate | 200 |  | 200 |  | $\mu \mathrm{s} / \mathrm{V}$ |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature | -55 | 125 | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |

NOTE 4: All unused inputs of the device must be held at $\mathrm{V}_{\mathrm{CC}}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | SN54ABT125 |  | SN74ABT125 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP $\dagger$ | MAX | MIN | MAX | MIN | MAX |  |
| $\mathrm{V}_{\text {IK }}$ |  |  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ |  |  | -1.2 |  | -1.2 |  | -1.2 | V |
| V OH |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{OH}=-3 \mathrm{~mA}$ | 2.5 |  |  | 2.5 |  | 2.5 |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{OH}=-3 \mathrm{~mA}$ | 3 |  |  | 3 |  | 3 |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{IOH}=-24 \mathrm{~mA}$ | 2 |  |  | 2 |  |  |  |  |
|  |  | $\mathrm{IOH}=-32 \mathrm{~mA}$ | $2^{*}$ |  |  |  |  | 2 |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ |  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | $\mathrm{IOL}=48 \mathrm{~mA}$ |  |  | 0.55 |  | 0.55 |  |  |  |
|  |  | $\mathrm{IOL}=64 \mathrm{~mA}$ |  |  |  | 0.55* |  |  |  | 0.55 |  |
| $\mathrm{V}_{\text {hys }}$ |  |  |  |  | 100 |  |  |  |  |  | mV |
| I |  | $\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V , | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | $\pm 1$ |  | $\pm 1$ |  | $\pm 1$ | $\mu \mathrm{A}$ |
| IozPU |  | $\mathrm{V}_{\mathrm{CC}}=0$ to $2.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$ |  |  |  | $\pm 50$ |  | $\pm 50$ |  | $\pm 50$ | $\mu \mathrm{A}$ |
| IOZPD |  | $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$ |  |  |  | $\pm 50$ |  | $\pm 50$ |  | $\pm 50$ | $\mu \mathrm{A}$ |
| IOZH |  | $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to 5.5 V , | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}, \overline{\mathrm{OE}} \geq 2 \mathrm{~V}$ |  |  | 10 |  | 10 |  | 10 | $\mu \mathrm{A}$ |
| IOZL |  | $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to 5.5 V , | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \overline{\mathrm{OE}} \geq 2 \mathrm{~V}$ |  |  | -10 |  | -10 |  | -10 | $\mu \mathrm{A}$ |
| $\mathrm{l}_{\text {off }}$ |  | $\mathrm{V}_{\mathrm{CC}}=0$, | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$ |  |  | $\pm 100$ |  |  |  | $\pm 100$ | $\mu \mathrm{A}$ |
| ICEX |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$ | Outputs high |  |  | 50 |  | 50 |  | 50 | $\mu \mathrm{A}$ |
| $10^{\ddagger}$ |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | -50 | -100 | -200§ | -50 | -200§ | -50 | -200§ | mA |
| ICC |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | Outputs high |  | 1 | 250 |  | 250 |  | 250 | $\mu \mathrm{A}$ |
|  |  | Outputs low |  | 24 | 30 |  | 30 |  | 30 | mA |  |
|  |  | Outputs disabled |  | 0.5 | 250 |  | 250 |  | 250 | $\mu \mathrm{A}$ |  |
| ${ }^{\text {a }} \mathrm{CCW}$ | Data inputs |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ <br> One input at 3.4 V , <br> Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND | Outputs enabled |  |  | 1.5 |  | 1.5 |  | 1.5 | mA |
|  |  |  |  | Outputs disabled |  |  | 0.05 |  | 0.05 |  | 0.05 |  |
|  | Control inputs | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  |  | 1.5 |  | 1.5 |  | 1.5 |  |  |
| $\mathrm{C}_{\mathrm{i}}$ |  | $\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V |  |  | 3 |  |  |  |  |  | pF |  |
| $\mathrm{C}_{0}$ |  | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V |  |  | 7 |  |  |  |  |  | pF |  |

* On products compliant to MIL-PRF-38535, this parameter does not apply.
$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
$\ddagger$ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This limit may vary among suppliers.
II This is the increase in supply current for each input that is at the specified TTL voltage level, rather than $\mathrm{V}_{\mathrm{CC}}$ or GND.

SN54ABT125, SN74ABT125 QUADRUPLE BUS BUFFER GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  | SN54ABT125 |  | SN74ABT125 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | MAX | MIN | MAX |  |
| ${ }_{\text {tPLH }}{ }^{\dagger}$ | A | Y | 1 | 3.2 | 4.6 | 1 | 6 | 1 | 4.9 | ns |
| ${ }_{\text {tPHL }}{ }^{\dagger}$ |  |  | 1 | 2.5 | 4.6 | 1 | 6.2 | 1 | 4.9 |  |
| ${ }_{\text {tPZH }}{ }^{\dagger}$ | $\overline{\mathrm{OE}}$ | Y | 1 | 3.6 | 5 | 1 | 6 | 1 | 5.9 | ns |
| ${ }_{\text {tPZL }}{ }^{\text { }}$ |  |  | 1 | 2.5 | 6.2 | 1 | 7.5 | 1 | 6.8 |  |
| tPHZ | $\overline{\mathrm{OE}}$ | Y | 1 | 3.8 | 5.4 | 1 | 6.3 | 1 | 6.2 | ns |
| tPLZ ${ }^{\dagger}$ |  |  | 1 | 3.3 | 5.3 | 1 | 6.5 | 1 | 6.2 |  |

$\dagger$ This limit may vary among suppliers.

## PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT


VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

| TEST | S1 |
| :---: | :---: |
| tPLH/tPHL | Open |
| tPLZ/tPZL | 7 V |
| tPHZ/tPZH | Open |



VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES


VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{tr}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{tf}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006

## PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package Drawing |  | Package Qty | $\text { e Eco Plan }{ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-9676801Q2A | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N/ A for Pkg Type |
| 5962-9676801QCA | ACTIVE | CDIP | J | 14 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| 5962-9676801QDA | ACTIVE | CFP | W | 14 | 1 | TBD | A42 | N / A for Pkg Type |
| SN74ABT125D | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DBLE | OBSOLETE | SSOP | DB | 14 |  | TBD | Call TI | Call TI |
| SN74ABT125DBR | ACTIVE | SSOP | DB | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DBRE4 | ACTIVE | SSOP | DB | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DE4 | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DG4 | ACTIVE | SOIC | D | 14 | 50 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DR | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DRE4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125DRG4 | ACTIVE | SOIC | D | 14 | 2500 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | N/ A for Pkg Type |
| SN74ABT125NE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free (RoHS) | CU NIPDAU | N/ A for Pkg Type |
| SN74ABT125NSR | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125NSRE4 | ACTIVE | SO | NS | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PW | ACTIVE | TSSOP | PW | 14 | 90 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PWE4 | ACTIVE | TSSOP | PW | 14 | 90 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PWG4 | ACTIVE | TSSOP | PW | 14 | 90 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PWLE | OBSOLETE | TSSOP | PW | 14 |  | TBD | Call TI | Call TI |
| SN74ABT125PWR | ACTIVE | TSSOP | PW | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text { ) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PWRE4 | ACTIVE | TSSOP | PW | 14 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125PWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABT125RGYR | ACTIVE | QFN | RGY | 14 | 1000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$ | CU NIPDAU | Level-2-260C-1YEAR |
| SN74ABT125RGYRG4 | ACTIVE | QFN | RGY | 14 | 1000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1YEAR |
| SNJ54ABT125FK | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N/ A for Pkg Type |
| SNJ54ABT125J | ACTIVE | CDIP | J | 14 | 1 | TBD | A42 SNPB | N/ A for Pkg Type |
| SNJ54ABT125W | ACTIVE | CFP | W | 14 | 1 | TBD | A42 | N/ A for Pkg Type |

PACKAGE OPTION ADDENDUM
${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony (Sb) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J ( $\mathrm{R}-\mathrm{GDIP}-\mathrm{T} * *$ )
CERAMIC DUAL IN-LINE PACKAGE
14 LEADS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

## W (R-GDFP-F14)

CERAMIC DUAL FLATPACK


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Falls within JEDEC MS-001, except 18 and 20 pin minimum body length ( $\operatorname{Dim} A$ ).
(D) The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)
PLASTIC SMALL-OUTLINE PACKAGE


$$
-\frac{0.010(0,25)}{0.004(0,10)}
$$



4040047-3/H 11/2006
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AB.


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance.
Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
The Pin 1 identifiers are either a molded, marked, or metal feature.
F. Package complies to JEDEC MO-241 variation BA.
THERMAL PAD MECHANICAL DATA
RGY (S-PQFP-N14)

THERMAL INFORMATION
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGY (R-PQFP-N14)


## MECHANICAL DATA

NS (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14-PINS SHOWN


| DIM PINS ** | 14 | 16 | 20 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| A MAX | 10,50 | 10,50 | 12,90 | 15,30 |
| A MIN | 9,90 | 9,90 | 12,30 | 14,70 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

DB (R-PDSO-G**)
28 PINS SHOWN


| DIM PINS ** | $\mathbf{1 4}$ | $\mathbf{1 6}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 8}$ | $\mathbf{3 0}$ | $\mathbf{3 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 6,50 | 6,50 | 7,50 | 8,50 | 10,50 | 10,50 | 12,90 |
| A MIN | 5,90 | 5,90 | 6,90 | 7,90 | 9,90 | 9,90 | 12,30 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-150


| PIM PINS $^{* *}$ | $\mathbf{8}$ | $\mathbf{1 4}$ | $\mathbf{1 6}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 3,10 | 5,10 | 5,10 | 6,60 | 7,90 | 9,80 |
| A MIN | 2,90 | 4,90 | 4,90 | 6,40 | 7,70 | 9,60 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

| Amplifiers | amplifier.ti.com |
| :--- | :--- |
| Data Converters | dataconverter.ti.com |
| DSP | dsp.ti.com |
| Interface | interface.ti.com |
| Logic | logic.ti.com |
| Power Mgmt | power.ti.com |
| Microcontrollers | microcontroller.ti.com |
| Low Power Wireless | www.ti.com/lpw |

## Applications

| Audio | www.ti.com/audio |
| :--- | :--- |
| Automotive | www.ti.com/automotive |
| Broadband | www.ti.com/broadband |
| Digital Control | www.ti.com/digitalcontrol |
| Military | www.ti.com/military |
| Optical Networking | www.ti.com/opticalnetwork |
| Security | www.ti.com/security |
| Telephony | www.ti.com/telephony |
| Video \& Imaging | www.ti.com/video |
| Wireless | www.ti.com/wireless |

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265


[^0]:    Supply voltage range, $\mathrm{V}_{\mathrm{CC}}$ -0.5 V to 7 V
    Input voltage range, $\mathrm{V}_{\mathrm{I}}$ (see Note 1) .............................................................. -0.5 V to 7 V
    Voltage range applied to any output in the high or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . . . . .$.
    Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}$ : SN54ABT125 ........................................... 96 mA SN74ABT125 ............................................. 128 mA
    Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$........................................................................... 18 mA
    
    Package thermal impedance, $\theta_{\mathrm{JA}}$ (see Note 2): D package ......................................... $86^{\circ} \mathrm{C} / \mathrm{W}$
    (see Note 2): DB package ........................................ $96^{\circ} \mathrm{C} / \mathrm{W}$
    (see Note 2): $N$ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $80^{\circ} \mathrm{C} / \mathrm{W}$
    (see Note 2): NS package ......................................... $76^{\circ} \mathrm{C} / \mathrm{W}$
    (see Note 2): PW package ........................................ $113^{\circ} \mathrm{C} / \mathrm{W}$
    (see Note 3): RGY package ........................................... $47^{\circ} \mathrm{C} / \mathrm{W}$
    
    $\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
    NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
    2. The package thermal impedance is calculated in accordance with JESD 51-7.
    3. The package thermal impedance is calculated in accordance with JESD 51-5.

