查询ADG1411供应商

捷多邦,专业PCB打样工厂,24小时加急出货

ANALOG 2Ω Max On Resistance, **DEVICES** ± 15 V/12 V/ ± 5 V *i*CMOSTM Quad SPST Switch

ADG1411/ADG1412/ADG1413

 2Ω Max On Resistance,

FEATURES

 2Ω Max On Resistance 0.5 Ω Max On Resistance Flatness 200mA continuous current per channel WWW.DZSC.COM 33 V supply range Fully specified at +12 V, ±15 V, ±5 V No V_L supply required **3 V logic-compatible inputs Rail-to-rail operation** 16-lead TSSOP and 16-lead LFCSP Typical power consumption: <0.03 µW

Preliminary Technical Data

APPLICATIONS

Automatic test equipment Data aquisition systems **Battery-powered systems** Sample-and-hold systems Audio signal routing Video signal routing **Communication systems Relay Replacement**

GENERAL DESCRIPTION

The ADG1411/ADG1412/ADG1413 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an *i*CMOS process. *i*CMOS (industrial CMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAM

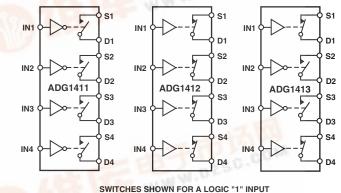


Figure 1.

*i*CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

The ADG1411/ADG1412/ADG1413 contain four independent single-pole/single-throw (SPST) switches. The ADG1411 and ADG1412 differ only in that the digital control logic is inverted. The ADG1411 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1412. The ADG1413 has two switches with digital control logic similar to that of the ADG1411; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1413 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 1. 2Ω Max On Resistance over temperature.
- 2. Minimum distortion
- 3 V logic-compatible digital inputs: $V_{IH} = 2.0$ V, $V_{IL} = 0.8$ V. 3.
- 4. No V_L logic power supply required.
- 5. Ultralow power dissipation: <0.03 µW.
- 16-lead TSSOP and 4 mm × 4 mm LFCSP packages. 6.

Rev-PrPDF

Information furnished by Analog Devices is believed to be accurate and reliable. owerer, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specification Subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Il sights so

TABLE OF CONTENTS

Specifications	3
Dual Supply	3
Single Supply	6
Absolute Maximum Ratings	7
ESD Caution	7
Pin Configurations and Function Descriptions	8

REVISION HISTORY

Preliminary Technical Data

Terminology 9 Typical Performance Characteristics 10 Test Circuits 13 Outline Dimensions 15 Ordering Guide 16

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

	25°C	-40°C to +85°C	-40°C to +125°C		
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (R _{ON})	1.5			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$; Figure 20
		2		Ωmax	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	0.1			Ωtyp	$V_{s} = \pm 10 \text{ V}$, $I_{s} = -10 \text{ mA}$
		0.5		Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.1	0.5		Ωtyp	$V_{s} = -5 V/0 V/+5 V; I_{s} = -10 mA$
	0.1	0.5		Ωmax	
LEAKAGE CURRENTS		0.5		321110	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
	10.01			10 A 41 410	
Source Off Leakage, Is (Off)	±0.01			nA typ	V_{S} = ±10 V, V_{D} = ∓10 V; Figure 21
	±0.5	±2.5	±5	nA max	
Drain Off Leakage, I_D (Off)	±0.01			nA typ	$V_{\text{S}}=\pm10\text{V},$ $V_{\text{D}}=\mp10\text{ V};$ Figure 21
	±0.5	±2.5	±5	nA max	
Channel On Leakage, I _D , I _S (On)	±0.04			nA typ	$V_s = V_D = \pm 10 V$; Figure 22
	±1	±5	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, Inc or Inh	0.005		±2.5	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.5	µA max	
Digital Input Capacitance, C _{IN}	2.5		_0.0	pF typ	
DYNAMIC CHARACTERISTICS ¹	2.5			prop	
ton	105			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
ton			105		
	125		185	ns max	$V_s = +10 V$; Figure 23
toff	40			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	50		60	ns max	$V_s = +10 V$; Figure 23
Break-Before-Make Time Delay, t_D	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(ADG1413 only)			10	ns min	$V_{s1} = V_{s2} = 10 V$; Figure 24
Charge Injection	50			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; Figure 25
Off Isolation	50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 26
Channel-to-Channel Crosstalk	60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Total Harmonic Distortion + Noise	0.015			% typ	$R_L = 110 \Omega$, 5 V rms, f = 20 Hz to 20 kHz
–3 dB Bandwidth	200			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 28
Cs (Off)	35			pF typ	$V_s = 0 V, f = 1 MHz$
C _D (Off)	35			pF typ	$V_s = 0 V, f = 1 MHz$
C_D, C_S (On)	150			pF typ	$V_{s} = 0 V, f = 1 MHz$
	150			pi typ	V3 - 0 V, I - 1 MI12
POWER REQUIREMENTS					$V_{DD} = +16.5 V, V_{SS} = -16.5 V$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
I _{DD}	220			μA typ	Digital inputs = 5 V
עטי		I	I	1 10,000	

Preliminary Technical Data

	25°C	-40°C to +85°C	-40°C to +125°C		
			320	μA max	
Iss	0.001			μA typ	Digital inputs = $0 V$, $5V \text{ or } V_{DD}$
			1.	µA max	
V _{DD} /V _{SS}			±4.5/±16.5	V	Gnd = 0V
				min/max	

¹ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		Y Version		Unit	Test Conditions/Comments
	25°C	-40°C to +85°C	–40°C to +125°C		
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	v	
On Resistance (R _{ON})	2			Ωtyp	$V_s = +10 V$, $I_s = -10 mA$; Figure 20
	3	4		Ωmax	$V_{DD} = +10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	0.1			Ωtyp	$V_{s} = +10 V$, $I_{s} = -10 mA$
				Ωmax	
On Resistance Flatness (R _{FLAT(ON}))	0.1			Ω typ	$V_s = -5 V/0 V/+5 V$, $I_s = -10 mA$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/0 \text{ V};$ Figure 21
	±0.5	±2.5	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/0 \text{ V};$ Figure 21
	±0.5	±2.5	±5	nA max	
Channel On Leakage, I _D , I _S (On)	±0.04			nA typ	$V_{s} = V_{D} = 1 V \text{ or } 10 V$; Figure 22
	±1	±5	±5	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
1 1			±0.5	µA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹				1 /1	
t _{on}	120			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	155		225	ns max	$V_s = 8 V$; Figure 23
t _{off}	45			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
	65		85	ns max	$V_s = 8 V$; Figure 23
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG1413 only)			10	ns min	$V_{s1} = V_{s2} = 8 V$; Figure 24
Charge Injection	50			pC typ	$V_s = 6 V, R_s = 0 \Omega, C_L = 1 nF;$ Figure 25
Off Isolation	50			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 26
Channel-to-Channel Crosstalk	60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 27
Total Harmonic Distortion + Noise	0.015			% typ	$R_L = 110 \Omega$, 5 V rms, f = 20 Hz to 20 kHz
-3 dB Bandwidth	200			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 28
Cs (Off)	35				$V_s = 6V, f = 1 MHz$
C _D (Off)	35			pF typ pF typ	$V_{s} = 6V, f = 1 \text{ MHz}$
C_D (OII) C_D , C_s (On)	150			pF typ pF typ	$V_{S} = 6V, f = 1 \text{ MHz}$ $V_{S} = 6V, f = 1 \text{ MHz}$
	150			ргтур	-
POWER REQUIREMENTS	0.001				$V_{DD} = 13.2 V$
I _{DD}	0.001		1	μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
	220		1	µA max	
I _{DD}	220			μA typ	Digital inputs = 5 V
			320	µA max	
V _{DD}			5/16.5	V min (man)	Gnd = 0V, Vss = 0V
				min/max	

¹ Guaranteed by design, not subject to production test.

DUAL SUPPLY

 V_{DD} = 5 V ± 10%, V_{SS} = -5 V ± 10%, GND = 0 V, unless otherwise noted.

Table 3.

	25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	3			Ωtyp	$V_s = \pm 3.3V$, $I_s = -10$ mA; Figure 20
	4			Ωmax	$V_{DD} = +4.5 \text{ V}, \text{ V}_{SS} = -4.5 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	0.1			Ω typ	$V_{s} = \pm 3.3 \text{ V}$, $I_{s} = -10 \text{ mA}$
				Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.1			Ωtyp	$V_s = -3 V/0 V/+3 V; I_s = -10 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = \pm 4.5 V$, $V_{D} = \mp 4.5 V$; Figure 21
-	±0.5	±2.5	±5	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = \pm 4.5V, V_{D} = \mp 4.5 V;$ Figure 21
	±0.5	±2.5	±5	nA max	$v_{3} = \pm 4.5 v, v_{0} = \pm 4.5 v, rigure 21$
Channel On Leakage, I _D , I _S (On)	±0.3 ±0.04	<u> </u>		nA typ	$V_{s} = V_{D} = \pm 4.5V$; Figure 22
Charmer On Leakage, 10, 15 (OII)	±0.04 ±1	±5	±5	nA typ	$v_5 = v_0 = \pm 4.5v$, Figure 22
DIGITAL INPUTS	<u> </u>	<u> </u>	+		
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINI			0.8	V max	
	0.001		0.8	μA typ	VIN = VINI OF VINH
Input current, INLOF INH	0.001		±0.5	μΑ typ μΑ max	
Digital Input Capacitance, C _{IN}	3		10.5		
	5			pF typ	
	120			nc tun	$R_L = 300 \Omega, C_L = 35 pF$
ton	155		225	ns typ ns max	$V_s = 3 V;$ Figure 23
toff	45		225		$R_L = 300 \Omega, C_L = 35 \text{ pF}$
LOFF	65		85	ns typ ns max	$V_s = 3 V$; Figure 23
Break-Before-Make Time Delay, t _D	50		85	ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
(ADG1413 only)	50		10	ns min	$V_{s1} = V_{s2} = 8 V$; Figure 24
Charge Injection	10		10	pC typ	$V_{s1} = V_{s2} = 0.0$, Figure 24 $V_s = 0V$, $R_s = 0.0$, $C_L = 1.$ nF; Figure 25
Off Isolation	50			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz; Figure 26$
Channel-to-Channel Crosstalk	60			dB typ	$R_L = 50 \Omega_2$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; Figure 27 $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; Figure 27
Total Harmonic Distortion + Noise	0.015			% typ	$R_L = 30.02$, $C_L = 3 \text{ pr}$, $T = 1.0012$, Figure 27 $R_L = 110 \Omega$, 5 V rms, f = 20 Hz to 20 kHz
-3 dB Bandwidth	200				$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 28
C _s (Off)	35			MHz typ pF typ	$V_{s} = 0.02$, $C_{L} = 0.07$, P_{r}
C₂ (Off) C⊳ (Off)	35			pF typ pF typ	$V_{s} = 0V, f = 1 \text{ MHz}$ $V_{s} = 0V, f = 1 \text{ MHz}$
C_D (OII) C_D , C_s (On)	150			pF typ pF typ	$V_{S} = 0V, T = T MHZ$ $V_{S} = 0V, f = 1 MHZ$
POWER REQUIREMENTS	130			pr typ	$V_{DD} = 5.5 \text{ V}$, $V_{SS} = -5.5 \text{ V}$
	0.001			uA turo	$V_{DD} = 5.5 \text{ V}$, $VSS = -5.5 \text{ V}$ Digital inputs = 0 V or V_{DD}
I _{DD}	0.001		1.0	μA typ	Digital inputs = $0 \text{ v or } v_{DD}$
	0.001		1.0	μA max	Digital inputs = 5 V
I _{SS}	0.001		1.0	μA typ	Digital inputs = $5 v$
V _{DD} /V _{SS}			1.0 ±4.5/±16.5	μA max V	Gnd = 0V
	1		1 + + + + + + + + + + + + + + + + + + +	I V	1 (1) (1) (2)

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V}$ to $V_{DD} + 0.3 \text{ V}$
Digital Inputs ¹	GND – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	300 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	200 mA
Operating Temperature Range	
Automotive (Y Version)	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance	150.4°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance	72.7°C/W
Reflow Soldering Peak Temperature, Pb free	260°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

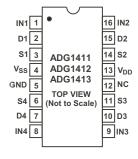
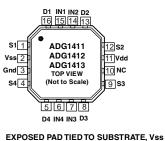



Figure 2. TSSOP Pin Configuration

EXPOSED PAD TIED TO SUBSTRATE, Vss NC = NO CONNECT

Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

P	'in No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. Can be an input or output.
3	1	S1	Source Terminal. Can be an input or output.
4	2	V _{ss}	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. Can be an input or output.
7	5	D4	Drain Terminal. Can be an input or output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. Can be an input or output.
11	9	S3	Source Terminal. Can be an input or output.
12	10	NC	No Connection.
13	11	V _{DD}	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. Can be an input or output.
15	13	D2	Drain Terminal. Can be an input or output.
16	14	IN2	Logic Control Input.

Table 6. ADG1411/ADG1412 Truth Table

ADG1411 INx	ADG1412 INx	Switch Condition
0	1	On
1	0	Off

Table 7. ADG1413 Truth Table

Logic - INx	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

ADG1411/ADG1412/ADG1413

TERMINOLOGY

I_{DD}

The positive supply current.

Iss

The negative supply current.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{S}\right)$ The analog voltage on Terminals D and S.

R_{ON} The ohmic resistance between D and S.

 $\mathbf{R}_{\text{FLAT(ON)}}$ Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off) The source leakage current with the switch off.

 I_D (Off) The drain leakage current with the switch off.

 $I_{\rm D},\,I_{\rm S}\left(On\right)$ The channel leakage current with the switch on.

 $\label{eq:Vinl} V_{\text{INL}}$ The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

I_{INL} (I_{INH}) The input current of the digital input.

 C_{s} (Off) The off switch source capacitance, measured with reference to ground.

 C_D (Off) The off switch drain capacitance, measured with reference to ground. C_D, C_s (On) The on switch capacitance, measured with reference to ground.

 \mathbf{C}_{IN} The digital input capacitance.

 $t_{\rm ON}$ The delay between applying the digital control input and the output switching on. See Figure 23.

t_{OFF} The delay between applying the digital control input and the output switching off.

Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

THD + N The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of V_D (V_s) for Dual Supply

Figure 5. On Resistance as a Function of V_D (V_S) for Single Supply

Figure 6. On Resistance as a Function of $V_{\rm D}$ (V_s) for Different Temperatures, Dual Supply

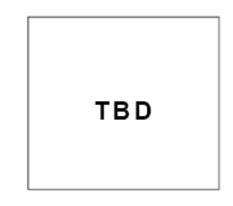


Figure 7. On Resistance as a Function of $V_{\rm D}$ (Vs) for Different Temperatures, Single Supply

Figure 8. Leakage Currents as a Function of Temperature, Dual Supply

Figure 9. Leakage Currents as a Function of Temperature, Single Supply

TBD

Figure 10. Logic Threshold Voltage vs. Supply Voltage

Figure 11. IDD vs. Logic Level

Figure 12. Charge Injection vs. Source Voltage

Figure 13. TON/TOFF Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 17. Capacitance vs. Source Voltage, Dual Supply

Figure 18. Capacitance vs. Source Voltage, Single Supply

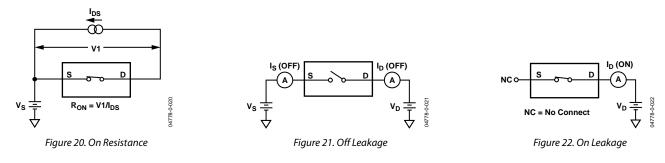



Figure 19. THD + N vs. Frequency

TEST CIRCUITS

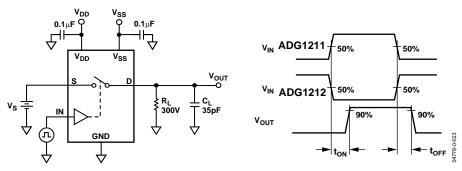


Figure 23. Switching Times

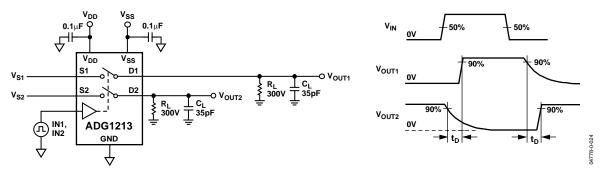


Figure 24. Break-Before-Make Time Delay

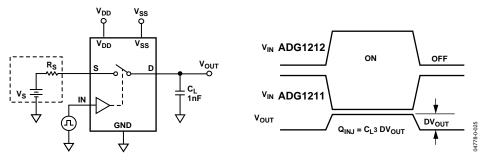


Figure 25. Charge Injection

Preliminary Technical Data

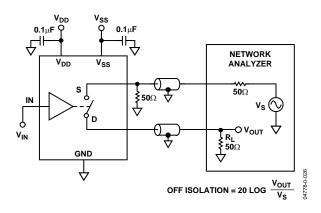


Figure 26. Off Isolation

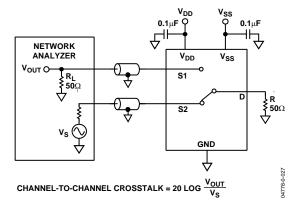


Figure 27. Channel-to-Channel Crosstalk

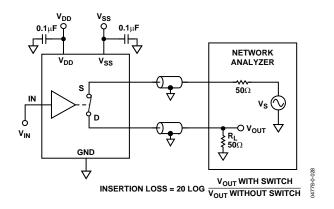
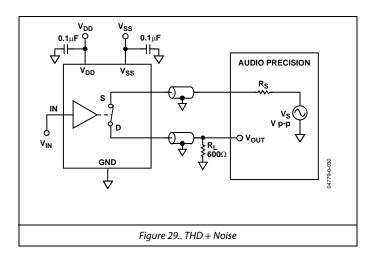



Figure 28. Bandwidth

OUTLINE DIMENSIONS

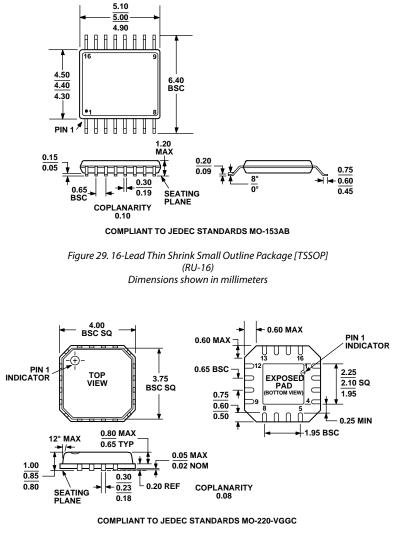


Figure 30. 16-Lead Lead Frame Chip Scale Package [VQ_LFCSP] 4 mm × 4 mm Body, Very Thin Quad (CP-16-4) Dimensions shown in millimeters

Preliminary Technical Data

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1411YRUZ ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YRUZ-REEL ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YRUZ-REEL71	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YCPZ-500RL71	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1411YCPZ-REEL71	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1412YRUZ ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YRUZ-REEL ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YRUZ-REEL71	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YCPZ-500RL71	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1412YCPZ-REEL7 ¹	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1413YRUZ ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YRUZ-REEL ¹	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YRUZ-REEL71	-40°C to +125°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YCPZ-500RL71	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1413YCPZ-REEL71	-40°C to +125°C	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4

 1 Z = Pb-free part.

ADG1411/ADG1412/ADG1413

NOTES

© 2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR06615-0-5/07(PrE)

www.analog.com

Pov PrE | Page 17 of 17