查询ADG702LBRJ-REEL供应商

ANALOG DEVICES

多<mark>邦,专业PCB打样工厂,24小时加急出货</mark>

CMOS Low Voltage 2 Ω SPST Switches

ADG701L/ADG702L

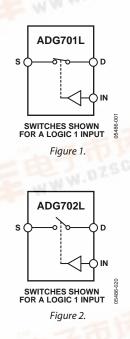
FEATURES

1.8 V to 5.5 V single supply 2 Ω (typical) on resistance Low on resistance flatness Guaranteed leakage specifications up to 85°C -3 dB bandwidth > 200 MHz Rail-to-rail operation Fast switching times ton 18 ns toFF 12 ns Typical power consumption < 0.01 μW TTL/CMOS-compatible

APPLICATIONS

Battery-powered systems Communication systems Sample-and-hold systems Audio signal routing Video switching Mechanical reed relay replacement

GENERAL DESCRIPTION


The ADG701L/ADG702L are monolithic CMOS SPST switches. These switches are designed using an advanced submicron process that provides low power dissipation, yet offers high switching speed, low on resistance, and low leakage currents. In addition, –3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG701L/ADG702L can operate from a single 1.8 V to 5.5 V supply, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices.

Figure 1 and Figure 2 show that with a logic input of 1, the switch of the ADG701L is closed, while that of the ADG702L is open. Each switch conducts equally well in both directions when on.

The ADG701L/ADG702L are packaged as 5-lead SOT-23, 6-lead SOT-23, and 8-lead MSOP.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

- 1.8 V to 5.5 V single-supply operation. The ADG701L/ ADG702L offer high performance, including low on resistance and fast switching times. The ADG701L/ ADG702L are fully specified and guaranteed with 3 V and 5 V supply rails.
- 2. Very low R_{ON} (3 Ω maximum at 5 V, 5 Ω maximum at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- 3. On resistance flatness $R_{FLAT(ON)}$ (1 Ω maximum).
- 4. -3 dB bandwidth > 200 MHz.
- 5. Low power dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t_{ON}/t_{OFF} .

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com

TABLE OF CONTENTS

Features
Applications1
General Description 1
Functional Block Diagrams1
Product Highlights 1
Revision History
Specifications
Absolute Maximum Ratings 5
ESD Caution
Pin Configurations and Function Descriptions

Typical Performance Characteristics7
Fest Circuits8
Ferminology9
Applications Information10
Supply Voltages
Bandwidth 10
Off Isolation 10
Dutline Dimensions 11
Ordering Guide

REVISION HISTORY

11/06—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V ± 10%, GND = 0 V. Temperature range for the B version is -40°C to +85°C, unless otherwise noted.

Table 1.

	B Version			
Parameter	+25°C	–40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH	+23 C	+05 C	Onic	
Analog Signal Range		0 V to V _{DD}	v	
On Resistance (R_{ON})	2		ν Ω typ	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$; see Figure 12
on nesistance (nony	3	4	Ωmax	$v_{\rm S} = 0$ v to $v_{\rm DD}$, is = -10 mA, see Figure 12
On Resistance Flatness (R _{FLAT(ON)})	0.5	4	Ω typ	
OII RESISTANCE FIATHESS (RFLAT(ON))	0.5	1.0		$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		1.0	Ωmax	
LEAKAGE CURRENTS	10.01		. .	$V_{DD} = 5.5 V$
Source Off Leakage, I_S (OFF)	±0.01		nA typ	$V_{s} = 4.5 \text{ V}/1 \text{ V}, V_{D} = 1 \text{ V}/4.5 \text{ V};$ see Figure 13
	±0.25	±0.35	nA max	
Drain Off Leakage, I _D (OFF)	±0.01		nA typ	$V_{S} = 4.5 \text{ V}/1 \text{ V}, V_{D} = 1 \text{ V}/4.5 \text{ V};$ see Figure 13
	±0.25	±0.35	nA max	
Channel On Leakage, I _D , I _S (ON)	±0.01		nA typ	$V_{s} = V_{D} = 1 V$, or 4.5 V; see Figure 14
	±0.25	±0.35	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current	0.005		. .	
I _{INL} or I _{INH}	0.005	. 0.1	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
DYNAMIC CHARACTERISTICS ¹	10			
ton	12		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		18	ns max	$V_s = 3 V$; see Figure 15
toff	8		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		12	ns max	$V_s = 3 V$; see Figure 15
Charge Injection	5		pC typ	$V_s = 2 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 16
Off Isolation	-55		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-75		dB typ	R_L = 50 Ω,C_L = 5 pF, f = 1 MHz; see Figure 17
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 18
Cs (OFF)	17		pF typ	
C _D (OFF)	17		pF typ	
C _D , C _S (ON)	38		pF typ	
POWER REQUIREMENTS				$V_{DD} = 5.5 V$
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 5 V
		1.0	μA max	

¹ Guaranteed by design, not subject to production test.

 V_{DD} = 3 V ± 10%, GND = 0 V. Temperature range for the B version is -40°C to +85°C, unless otherwise noted.

Table 2.

	B Version				
Parameter	+25°C	–40°C to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH		100 4			
Analog Signal Range		0 V to V _{DD}	v		
On Resistance (R _{ON})	3.5		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$; see Figure 12	
	5	6	Ωmax	, , , , , , ,	
On Resistance Flatness (R _{FLAT(ON)})	1.5		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$	
LEAKAGE CURRENTS				V _{DD} = 3.3 V	
Source Off Leakage Is (OFF)	±0.01		nA typ	$V_{s} = 3 V/1 V, V_{D} = 1 V/3 V$; see Figure 13	
-	±0.25	±0.35	nA max		
Drain Off Leakage I _D (OFF)	±0.01		nA typ	$V_s = 3 V/1 V$, $V_D = 1 V/3 V$; see Figure 13	
	±0.25	±0.35	nA max		
Channel On Leakage I _D , I _S (ON)	±0.01		nA typ	$V_s = V_D = 1 V$, or 3 V; see Figure 14	
	±0.25	±0.35	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, VINL		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.005		μA typ	$V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$	
		±0.1	μA max		
DYNAMIC CHARACTERISTICS ¹					
ton	14		ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$	
		20	ns max	$V_s = 2 V$, see Figure 15	
t _{OFF}	8		ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$	
		13	ns max	$V_s = 2 V$, see Figure 15	
Charge Injection	4		pC typ	V_s = 1.5 V, R_s = 0 Ω , C_L = 1 nF; see Figure 16	
Off Isolation	-55		dB typ	$R_L = 50 \ \Omega$, $C_L = 5 \ pF$, $f = 10 \ MHz$	
	-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17	
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \ \Omega$, $C_L = 5 \ pF$; see Figure 18	
Cs (OFF)	17		pF typ		
C _D (OFF)	17		pF typ		
C _D , C _S (ON)	38		pF typ		
POWER REQUIREMENTS				$V_{DD} = 3.3 V$	
l _{DD}	0.001		μA typ	Digital Inputs = 0 V or 3 V	
		1.0	μA max		

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

ParameterRating V_{DD} to GND -0.3 V to $+7$ VAnalog, Digital Inputs1 -0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs firstContinuous Current, S or D30 mAPeak Current, S or D100 mA, pulsed at 1 ms, 10% duty cycle maximumOperating Temperature Range Industrial (B Version) -40° C to $+85^{\circ}$ CStorage Temperature Range Industrial (B Version) -40° C to $+85^{\circ}$ CJunction Temperature 150° CMSOP Package, Power Dissipation θ_{JA} Thermal Impedance 206° C/W θ_{JC} Thermal Impedance 229.6° C/W θ_{JC} Thermal Impedance 215° CInfrared (15 sec) 220° CLead -free Reflow Soldering Peak Temperature 260 ($+0/-5)^{\circ}$ CTime at Peak Temperature 260 ($+0/-5)^{\circ}$ CTime at Peak Temperature 260 ($+0/-5)^{\circ}$ CTime at Peak Temperature 260 ($+0/-5)^{\circ}$ CESD $2kV$		
Analog, Digital Inputs1 $-0.3 V to V_{DD} + 0.3 V or 30 mA$, whichever occurs firstContinuous Current, S or D $30 mA$ Peak Current, S or D $100 mA$, pulsed at 1 ms, $10\% duty cycle maximum$ Operating Temperature Range Industrial (B Version) $-40^{\circ}C$ to $+85^{\circ}C$ Storage Temperature Range $-65^{\circ}C$ to $+150^{\circ}C$ Junction Temperature $150^{\circ}C$ MSOP Package, Power Dissipation 9_{JA} Thermal Impedance θ_{JA} Thermal Impedance $206^{\circ}C/W$ θ_{JA} Thermal Impedance $229.6^{\circ}C/W$ θ_{JC} Thermal Impedance $91.99^{\circ}C/W$ Lead Temperature, Soldering Vapor Phase (60 sec) $215^{\circ}C$ Infrared (15 sec) $220^{\circ}C$ Lead-free Reflow Soldering Peak Temperature $260 (+0/-5)^{\circ}C$ Time at Peak Temperature 100 sec to 40 sec	Parameter	Rating
whichever occurs firstContinuous Current, S or D30 mAPeak Current, S or D100 mA, pulsed at 1 ms, 10% duty cycle maximumOperating Temperature Range-40°C to +85°CIndustrial (B Version)-40°C to +85°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package, Power Dissipation315 mW $θ_{JA}$ Thermal Impedance206°C/W $θ_{JC}$ Thermal Impedance229.6°C/W $θ_{JA}$ Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature10 sec to 40 sec	V _{DD} to GND	–0.3 V to +7 V
Peak Current, S or D100 mA, pulsed at 1 ms, 10% duty cycle maximumOperating Temperature Range Industrial (B Version)-40°C to +85°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package, Power Dissipation θJA Thermal Impedance315 mWØJC Thermal Impedance206°C/WØJC Thermal Impedance229.6°C/WØJC Thermal Impedance91.99°C/WLead Temperature, Soldering Vapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering Peak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Analog, Digital Inputs ¹	
Operating Temperature Range Industrial (B Version)-40°C to +85°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package, Power Dissipation315 mWθ _{JA} Thermal Impedance206°C/Wθ _{JC} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance229.6°C/WUnction Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature10 sec to 40 sec	Continuous Current, S or D	30 mA
Industrial (B Version)-40°C to +85°CStorage Temperature Range-65°C to +150°CJunction Temperature150°CMSOP Package, Power Dissipation315 mW $θ_{JA}$ Thermal Impedance206°C/W $θ_{JC}$ Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mW $θ_{JA}$ Thermal Impedance229.6°C/W $θ_{JC}$ Thermal Impedance91.99°C/WLead Temperature, Soldering220°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature10 sec to 40 sec	Peak Current, S or D	
Storage Temperature Range -65° C to $+150^{\circ}$ CJunction Temperature 150° CMSOP Package, Power Dissipation 315 mW θ_{JA} Thermal Impedance 206° C/W θ_{JC} Thermal Impedance 44° C/WSOT-23 Package, Power Dissipation 282 mW θ_{JA} Thermal Impedance 229.6° C/W θ_{JC} Thermal Impedance 91.99° C/WLead Temperature, Soldering 215° CVapor Phase (60 sec) 215° CInfrared (15 sec) 220° CLead-free Reflow Soldering $260 (+0/-5)^{\circ}$ CPeak Temperature $260 (+0/-5)^{\circ}$ CTime at Peak Temperature $10 \sec to 40 \sec$	Operating Temperature Range	
Junction Temperature $150^{\circ}C$ MSOP Package, Power Dissipation 315 mW θ_{JA} Thermal Impedance $206^{\circ}C/W$ θ_{JC} Thermal Impedance $44^{\circ}C/W$ SOT-23 Package, Power Dissipation 282 mW θ_{JA} Thermal Impedance $229.6^{\circ}C/W$ θ_{JC} Thermal Impedance $91.99^{\circ}C/W$ Lead Temperature, Soldering $215^{\circ}C$ Vapor Phase (60 sec) $215^{\circ}C$ Infrared (15 sec) $220^{\circ}C$ Lead-free Reflow Soldering $260 (+0/-5)^{\circ}C$ Peak Temperature $260 (+0/-5)^{\circ}C$ Time at Peak Temperature $10 \sec to 40 \sec$	Industrial (B Version)	–40°C to +85°C
MSOP Package, Power Dissipation315 mWθ _{JA} Thermal Impedance206°C/Wθ _{JC} Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWθ _{JA} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Storage Temperature Range	–65°C to +150°C
θ _{JA} Thermal Impedance206°C/Wθ _{JC} Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWθ _{JA} Thermal Impedance229.6°C/Wθ _{JC} Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Junction Temperature	150°C
θJc Thermal Impedance44°C/WSOT-23 Package, Power Dissipation282 mWθJA Thermal Impedance229.6°C/WθJc Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature10 sec to 40 sec	MSOP Package, Power Dissipation	315 mW
SOT-23 Package, Power Dissipation282 mWθJA Thermal Impedance229.6°C/WθJc Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	θ_{JA} Thermal Impedance	206°C/W
θJA Thermal Impedance229.6°C/WθJC Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	θ_{JC} Thermal Impedance	44°C/W
θ _{JC} Thermal Impedance91.99°C/WLead Temperature, Soldering215°CVapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CPeak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	SOT-23 Package, Power Dissipation	282 mW
Lead Temperature, Soldering Vapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering Peak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	θ_{JA} Thermal Impedance	229.6°C/W
Vapor Phase (60 sec)215°CInfrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	θ_{JC} Thermal Impedance	91.99°C/W
Infrared (15 sec)220°CLead-free Reflow Soldering260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Lead Temperature, Soldering	
Lead-free Reflow SolderingPeak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Vapor Phase (60 sec)	215°C
Peak Temperature260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Infrared (15 sec)	220°C
Time at Peak Temperature 10 sec to 40 sec	Lead-free Reflow Soldering	
	Peak Temperature	260 (+0/–5)°C
ESD 2 kV	Time at Peak Temperature	10 sec to 40 sec
	ESD	2 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

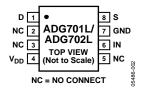


Figure 3. 8-Lead MSOP Pin Configuration

Figure 4. 6-Lead SOT-23 Pin Configuration

Figure 5. 5-Lead SOT-23 Pin Configuration

Table 4. Pin Function Descriptions

	Pin Number			
8-Lead MSOP	6-lead SOT-23	5-lead SOT-23	Mnemonic	Description
1	1	1	D	Drain Terminal. May be an input or output.
2, 3, 5	5	N/A	NC	No Connect.
4	6	5	V _{DD}	Most Positive Power Supply Potential.
6	4	4	IN	Logic Control Input.
7	3	3	GND	Ground (0 V) Reference.
8	2	2	S	Source Terminal. May be an input or output.

Table 5. Truth Table

ADG701L In	ADG702L In	Switch Condition
0	1	Off
1	0	On

TYPICAL PERFORMANCE CHARACTERISTICS

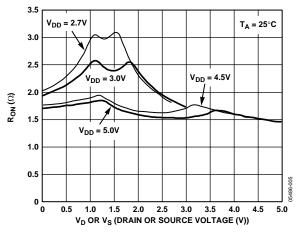


Figure 6. On Resistance as a Function of V_D (V_S) Single Supplies

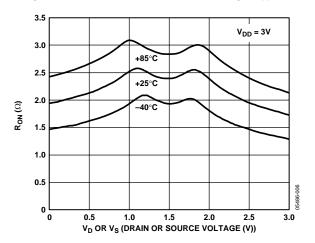


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 V$

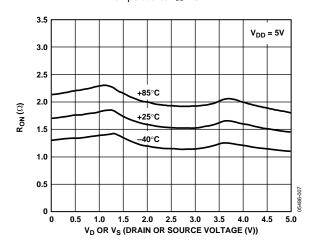


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$

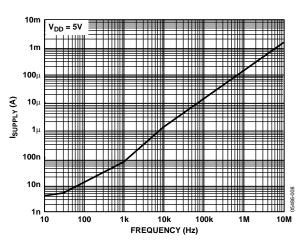


Figure 9. Supply Current vs. Input Switching Frequency

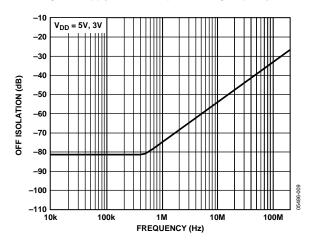


Figure 10. Off Isolation vs. Frequency

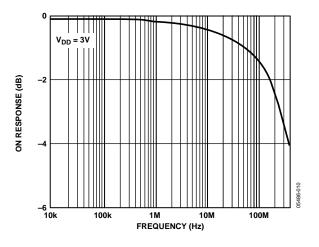


Figure 11. Bandwidth

TEST CIRCUITS

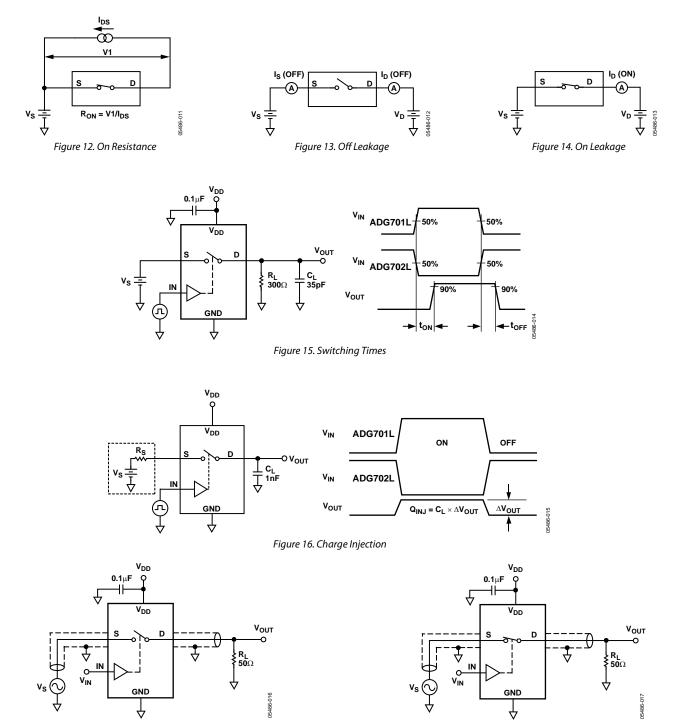


Figure 17. Off Isolation

Figure 18. Bandwidth

TERMINOLOGY

Ron

Ohmic resistance between D and S.

R_{FLAT (ON)} Flatness is defined as the dif

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (OFF) Source leakage current with the switch off.

I_D **(OFF)** Drain leakage current with the switch off.

I_D, I_S (ON) Channel leakage current with the switch on.

 $\mathbf{V}_{D}\left(\mathbf{V}_{S}\right)$ Analog voltage on Terminal D and Terminal S.

Cs (OFF) Off switch source capacitance.

C_D (OFF) Off switch drain capacitance.

C_D, C_s (ON) On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 15.

toff

Delay between applying the digital control input and the output switching off.

Off Isolation A measure of unwanted signal coupling through an off switch. Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth The frequency at which the output is attenuated by -3 dB.

On Response The frequency response of the on switch.

On Loss

The voltage drop across the on switch, seen in Figure 11 as the number of decibels the signal is away from 0 dB at very low frequencies.

APPLICATIONS INFORMATION

The ADG701L/ADG702L belong to the Analog Devices new family of CMOS switches. This series of general-purpose switches have improved switching times, lower on resistance, higher bandwidth, low power consumption, and low leakage currents.

SUPPLY VOLTAGES

Functionality of the ADG701L/ADG702L extends from 1.8 V to 5.5 V single supply, making the parts ideal for battery-powered instruments where power, efficiency, and performance are important design parameters.

It is important to note that the supply voltage affects the input signal range, the on resistance, and the switching times of the part. The effects of the power supplies can be clearly seen in the Typical Performance Characteristics and the Specifications sections.

For V_{DD} = 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.

BANDWIDTH

Figure 19 illustrates the parasitic components that affect the ac performance of CMOS switches (a box surrounds the switch). Additional external capacitances further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

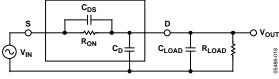


Figure 19. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (see Figure 19) is of the form A(s), as shown in the following equation:

$$A(s) = R_T \left[\frac{s(R_{ON}C_{DS}) + 1}{s(R_{ON}C_TR_T) + 1} \right]$$

where $C_T = C_{LOAD} + C_D + C_{DS}$.

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS} . This capacitance creates a frequency zero in the numerator of the transfer function, A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. In order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The on response versus frequency for the ADG701L/ADG702L is shown in Figure 11.

OFF ISOLATION

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS} , couples the input signal to the output load when the switch is off (see Figure 20).

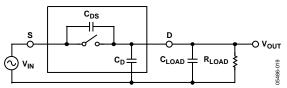
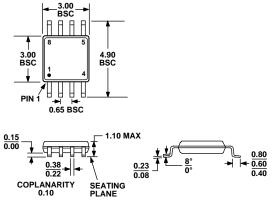
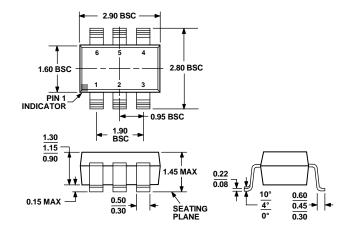
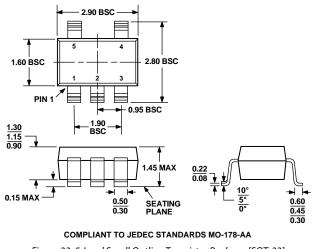



Figure 20. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS} , the larger the values of feedthrough produced. Figure 10 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz, the switch shows better than -75 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than -55 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest C_{DS} possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.


$$A(s) = R_T \left[\frac{s(R_{LOAD}C_{DS}) + 1}{s(R_{LOAD})(C_T) + 1} \right]$$

OUTLINE DIMENSIONS



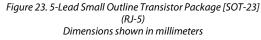

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 21. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-AB Figure 22. 6-Lead Small Outline Transistor Package [SOT-23] (RT-6) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG701LBRJ-500RL7	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S15
ADG701LBRJ-REEL	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S15
ADG701LBRJ-REEL7	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S15
ADG701LBRJZ-500RL7 ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S10
ADG701LBRJZ-REEL ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S10
ADG701LBRJZ-REEL7 ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S10
ADG701LBRM	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S15
ADG701LBRM-REEL	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S15
ADG701LBRM-REEL7	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S15
ADG701LBRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S10
ADG701LBRMZ-REEL ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S10
ADG701LBRMZ-REEL7 ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S10
ADG701LBRT-REEL	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S15
ADG701LBRT-REEL7	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S15
ADG701LBRTZ-REEL ²	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S10
ADG701LBRTZ-REEL7 ²	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S10
ADG702LBRJ-REEL	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S16
ADG702LBRJ-REEL7	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S16
ADG702LBRJZ-500RL7 ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S11
ADG702LBRJZ-REEL ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S11
ADG702LBRJZ-REEL7 ²	-40°C to +85°C	5-Lead Small Outline Transistor Package [SOT-23]	RJ-5	S11
ADG702LBRM	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S16
ADG702LBRM-REEL	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S16
ADG702LBRM-REEL7	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S16
ADG702LBRMZ ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S11
ADG702LBRMZ-REEL ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S11
ADG702LBRMZ-REEL7 ²	-40°C to +85°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S11
ADG702LBRT-REEL	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S16
ADG702LBRT-REEL7	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S16
ADG702LBRTZ-REEL ²	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S11
ADG702LBRTZ-REEL7 ²	-40°C to +85°C	6-Lead Small Outline Transistor Package [SOT-23]	RT-6	S11

 1 Due to package size limitations, these three characters represent the part number. 2 Z = Pb-free part.

