12－Bit 600kHz Sampling CMOS ANALOG－to－DIGITAL CONVERTER

FEATURES

－600kHz THROUGHPUT RATE
－STANDARD $\pm 2.5 \mathrm{~V}$ INPUT RANGE
－69dB min SINAD WITH 250kHz INPUT
－COMPLETE WITH S／H，REF，CLOCK，ETC．
－PARALLEL DATA w／LATCHES
－FULLY SPECIFIED $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
－15MHz－3dB BANDWIDTH
－28－PIN 0．3＂PDIP AND SOIC

DESCRIPTION

The ADS7831 is a complete 12－bit sampling A／D using state－of－the－art CMOS structures．It contains a complete 12－bit capacitor－based SAR A／D with inher－ ent S / H ，reference，clock，interface for microprocessor use，and three－state output drivers．

The ADS7831 is specified at a 600 kHz sampling rate， and guaranteed over the full temperature range．A $\pm 2.5 \mathrm{~V}$ input range and excellent Nyquist performance provide an optimum solution in $\pm 5 \mathrm{~V}$ supply systems．
The 28－pin ADS7831 is available in a plastic 0．3＂DIP and in an SOIC，both fully specified for operation over the industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range．

SPECIFICATIONS

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=600 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\text {ANA }}=+5 \mathrm{~V},-\mathrm{V}_{\text {ANA }}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistor shown in Figure 4 b , unless otherwise specified.

PARAMETER	CONDITIONS	ADS7831P, U			UNITS
		MIN	TYP	MAX	
RESOLUTION				12	Bits
ANALOG INPUT Voltage Range Impedance Capacitance			$\begin{gathered} \pm 2.5 \\ 3.1 \\ 5 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{k} \Omega \\ \mathrm{pF} \end{gathered}$
THROUGHPUT SPEED Conversion Time Complete Cycle Throughput Rate	Acquire \& Convert	600	1.3	1.66	$\begin{gathered} \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{kHz} \end{gathered}$
DC ACCURACY Integral Linearity Error Differential Linearity Error No Missing Codes Total Unadjusted Error ${ }^{(2,3)}$ (Includes Bipolar Zero Error and Full Scale Error) Power Supply Sensitivity $\left(+V_{D I G}=+V_{A N A}=V_{D}\right)$	$\begin{gathered} +4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{D}}<+5.25 \mathrm{~V} \\ -5.25 \mathrm{~V}<-\mathrm{V}_{\text {ANA }}<-4.75 \mathrm{~V} \end{gathered}$		Guaranteed	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 10 \\ & \pm 5 \end{aligned}$	$\begin{gathered} \mathrm{LSB}^{(1)} \\ \text { LSB } \\ \text { LSB } \\ \text { LSB } \end{gathered}$
AC ACCURACY Spurious-Free Dynamic Range Total Harmonic Distortion Signal-to-(Noise+Distortion) Signal-to-Noise Usable Bandwidth ${ }^{(5)}$ Full-Power Bandwidth	$\begin{aligned} & f_{f_{N}}=250 \mathrm{kHz} \\ & f_{\mathrm{f}_{\mathrm{N}}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{N}}=250 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{N}}=250 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 77 \\ & 69 \\ & 69 \end{aligned}$	$\begin{gathered} 87 \\ -85 \\ 71 \\ 72 \\ 1.6 \\ 15 \end{gathered}$	-77	$\mathrm{dB}^{(4)}$ dB dB dB MHz MHz
SAMPLING DYNAMICS Aperture Delay Aperture Jitter Transient Response Overvoltage Recovery ${ }^{(6)}$	FS Step		$\begin{gathered} 20 \\ 10 \\ 200 \\ 250 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{ps} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
REFERENCE Reference Voltage Reference DC Source Current (External load should be static)		2.45	$\begin{aligned} & 2.5 \\ & 100 \end{aligned}$	2.55	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
DIGITAL INPUTS Logic Levels $V_{\text {IL }}$ V_{IH} IL $I_{1 H}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} -0.3 \\ +2.4 \end{array}$		$\begin{gathered} +0.8 \\ \mathrm{~V}_{\mathrm{D}}+0.3 \\ \pm 10 \\ \pm 10 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
DIGITAL OUTPUTS Data Format Data Coding $V_{\text {oL }}$ V_{OH} Leakage Current Output Capacitance	$\begin{gathered} \mathrm{I}_{\text {SIIK }}=1.6 \mathrm{~mA} \\ \mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A} \\ \text { High-Z State, } \\ \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\text {DIG }} \\ \text { High-Z State } \end{gathered}$	+2.8	Parallel 12-bits Two's Comple	$\begin{gathered} +0.4 \\ \pm 5 \\ 15 \end{gathered}$	V V $\mu \mathrm{A}$ pF
DIGITAL TIMING Bus Access Time Bus Relinquish Time				$\begin{aligned} & 62 \\ & 83 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
POWER SUPPLIES Specified Performance $\begin{aligned} & +V_{\text {DIG }}=+V_{\text {ANA }} \\ & -V_{\text {ANA }} \\ & +I_{\text {DIG }} \\ & +I_{\text {ANA }} \\ & -I_{\text {ANA }} \end{aligned}$ Power Dissipation	$\mathrm{f}_{\mathrm{s}}=600 \mathrm{kHz}$	$\begin{aligned} & +4.75 \\ & -5.25 \end{aligned}$	$\begin{gathered} +5 \\ -5 \\ +16 \\ +16 \\ -12 \\ 220 \end{gathered}$	$\begin{aligned} & +5.25 \\ & -4.75 \end{aligned}$ 275	V V mA mA mA mW
TEMPERATURE RANGE Specified Performance Storage Thermal Resistance (θ_{JA}) Plastic DIP SOIC		$\begin{aligned} & -40 \\ & -65 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{gathered} +85 \\ +150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

NOTES: (1) LSB means Least Significant Bit. For the 12 -bit, $\pm 2.5 \mathrm{~V}$ input ADS7831, one LSB is 1.22 mV . (2) Measured with 50Ω in series with analog input. Adjustable to zero with external potentiometers. (3) Total unadjusted error is the worst case of -Full Scale or +Full Scale untrimmed deviation from ideal first and last code transitions and includes the effect of offset error. (4) All specifications in dB are referred to a full-scale $\pm 2.5 \mathrm{~V}$ input. (5) Usable Bandwidth defined as Full-Scale input frequency at which Signal-to-(Noise+Distortion) degrades to 60 dB , or 10 bits of accuracy. 6) Recovers to specified performance after $2 \times$ FS input over voltage.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PACKAGE AND ORDERING INFORMATION ${ }^{(1)}$

MODEL	PACKAGE	PACKAGE DRAWING NUMBER
ADS7831P	28-Pin Plastic DIP	246
ADS7831U	28-Pin SOIC	217

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. BurrBrown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

[^0]PIN ASSIGNMENTS

PIN \#	NAME	$\begin{gathered} \hline \text { DIGITAL } \\ \text { I/O } \end{gathered}$	DESCRIPTION
1	$\mathrm{V}_{\text {IN }}$		Analog Input. Connect via 50Ω to analog input. Full-scale input range is $\pm 2.5 \mathrm{~V}$.
2	AGND1		Analog Ground. Used internally as ground reference point. Minimal current flow.
3	REF		Reference Input/Output. Outputs internal reference of +2.5 V nominal. Can also be driven by external system reference. In both cases, decouple to ground with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
4	CAP		Reference Buffer Output. $10 \mu \mathrm{~F}$ tantalum capacitor to ground. Nominally +2 V .
5	AGND2		Analog Ground.
6	D11 (MSB)	0	Data Bit 11. Most Significant Bit (MSB) of conversion results. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
7	D10	0	Data Bit 10. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R// is LOW, or when a conversion is in progress.
8	D9	0	Data Bit 9. Hi-Z state when $\overline{C S}$ is HIGH, or when R/C్C is LOW, or when a conversion is in progress.
9	D8	0	Data Bit 8. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R// is LOW, or when a conversion is in progress.
10	D7	0	Data Bit 7. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
11	D6	0	Data Bit 6. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C్C is LOW, or when a conversion is in progress.
12	D5	0	Data Bit $5 . \mathrm{Hi}-\mathrm{Z}$ state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C/ is LOW, or when a conversion is in progress.
13	D4	0	Data Bit 4. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/E is LOW, or when a conversion is in progress.
14	DGND		Digital Ground.
15	D3	0	Data Bit 3. Hi-Z state when $\overline{C S}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
16	D2	0	Data Bit 2. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
17	D1	0	Data Bit 1. Hi-Z state when $\overline{C S}$ is HIGH, or when R/C is LOW, or when a conversion is in progress.
18	D0 (LSB)	0	Data Bit 0. Least Significant Bit (LSB) of conversion results. Hi-Z state when $\overline{\mathrm{CS}}$ is HIGH, or when R/ $\overline{\mathrm{C}}$ is LOW, or when a conversion is in progress.
19			Not internally connected.
20	$+\mathrm{V}_{\text {ANA }}$		Analog Positive Supply Input. Nominally +5V. Connect directly to pins 21, 27 and 28.
21	$+\mathrm{V}_{\text {DIG }}$		Digital Supply Input. Nominally +5 V . Connect directly to pins 20, 27 and 28.
22	DGND		Digital ground.
23	R/C	1	Read/Convert Input. With $\overline{C S}$ LOW, a falling edge on R/C puts the internal sample/hold into the hold state and starts a conversion. With $\overline{C S}$ LOW and no conversion in progress, a rising edge on R/C enables the output data bits.
24	$\overline{C S}$	1	Chip Select. With R/C LOW, a falling edge on $\overline{\mathrm{CS}}$ will initiate a conversion. With R/ $\overline{\mathrm{C}}$ HIGH and no conversion in progress, a falling edge on $\overline{\mathrm{CS}}$ will enable the output data bits.
25	$\overline{\text { BUSY }}$	0	Busy Output. Falls when a conversion is started, and remains LOW until the conversion is completed and the data is latched into the output register. With $\overline{\mathrm{CS}}$ LOW and R/C HIGH, output data will be valid when $\overline{\mathrm{BUSY}}$ rises, so that the rising edge can be used to latch the data.
26	$-\mathrm{V}_{\text {ANA }}$		Analog Negative Supply Input. Nominally -5 V . Decouple to ground with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors.
27	$+\mathrm{V}_{\text {DIG }}$		Digital Supply Input. Nominally +5 V . Connect directly to pins 20,21 and 28.
28	$+\mathrm{V}_{\text {ANA }}$		Analog Positive Supply Input. Nominally +5 V . Connect directly to pins 20, 21 and 27, and decouple to ground with $0.1 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors.

PIN CONFIGURATION

					DIP/SOIC
	1	ADS7831	28	$+\mathrm{V}_{\text {ANA }}$	
	2		27	$+\mathrm{V}_{\text {DIG }}$	
	3		26	$-\mathrm{V}_{\text {ANA }}$	
	4		25	$\overline{\text { BUSY }}$	
	5		24	$\overline{\text { CS }}$	
	6		23	R/C	
	7		22	DGND	
	8		21	$+\mathrm{V}_{\text {DIG }}$	
	9		20	$+\mathrm{V}_{\text {ANA }}$	
	10		19	NC ${ }^{(1)}$	
	11		18	D0 (LSB)	
	12		17	D1	
	13		16	D2	
	14		15	D3	
	E:	ot Internally	nne		

TYPICAL PERFORMANCE CURVES

$\mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=600 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=+5 \mathrm{~V},-\mathrm{V}_{\mathrm{ANA}}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistor shown in Figure 4 b , unless otherwise specified.

FREQUENCY SPECTRUM
(4096 Point FFT; $\mathrm{f}_{\text {IN }}=1.002 \mathrm{MHz},-0.5 \mathrm{~dB}$)

FREQUENCY SPECTRUM (4096 Point FFT; $\mathrm{f}_{\mathrm{IN}}=502 \mathrm{kHz},-0.5 \mathrm{~dB}$)

FREQUENCY SPECTRUM (4096 Point FFT; f1 $1_{\text {IN }}=232 \mathrm{kHz},-6.5 \mathrm{~dB}$;
$\left.\mathrm{f}_{\text {IN }}=272 \mathrm{kHz},-6.5 \mathrm{~dB}\right)$

TYPICAL PERFORMANCE CURVES (CONT)

$\mathrm{T}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{S}}=600 \mathrm{kHz},+\mathrm{V}_{\mathrm{DIG}}=+\mathrm{V}_{\mathrm{ANA}}=+5 \mathrm{~V},-\mathrm{V}_{\text {ANA }}=-5 \mathrm{~V}$, using internal reference and the 50Ω input resistor shown in Figure 4 b , unless otherwise specified.

BASIC OPERATION

Figure 1 shows a basic circuit to operate the ADS7831. Taking R/C (pin 23) LOW for 40 ns will initiate a conversion. BUSY (pin 25) will go LOW and stay LOW until the conversion is completed and the output registers are updated. Data will be output in Binary Two's Complement with the MSB on D11 (pin 6). $\overline{\text { BUSY }}$ going HIGH can be used to latch the data. All convert commands will be ignored while $\overline{\text { BUSY }}$ is LOW.
The ADS7831 will begin tracking the input signal at the end of the conversion. Allowing 1.66μ s between convert commands assures accurate acquisition of a new signal.

STARTING A CONVERSION

The combination of $\overline{\mathrm{CS}}$ (pin 24) and $\mathrm{R} / \overline{\mathrm{C}}$ (pin 23) LOW for a minimum of 40ns immediately puts the sample/hold of the ADS7831 in the hold state and starts a conversion. $\overline{\text { BUSY }}$ (pin 25) will go LOW and stay LOW until the conversion is completed and the internal output register has been updated. All new convert commands during $\overline{\text { BUSY }}$ LOW will be ignored.
The ADS7831 will begin tracking the input signal at the end of the conversion. Allowing 1.66μ s between convert commands assures accurate acquisition of a new signal. Refer to Table I for a summary of $\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{C}}$, and $\overline{\text { BUSY }}$ states and Figures 2 and 3 for timing parameters.
$\overline{\mathrm{CS}}$ and $\mathrm{R} / \overline{\mathrm{C}}$ are internally OR'd and level triggered. There is not a requirement which input goes LOW first when initiating a conversion. If it is critical that $\overline{\mathrm{CS}}$ or $\mathrm{R} / \overline{\mathrm{C}}$ initiate the conversion, be sure the less critical input is LOW at least 10ns prior to the initiating input.
To reduce the number of control pins, $\overline{\mathrm{CS}}$ can be tied LOW using $\mathrm{R} / \overline{\mathrm{C}}$ to control the read and convert modes. Note that the parallel output will be active whenever R/C is HIGH and
no conversion is in progress. See the Reading Data section and refer to Table I for control line functions for 'read' and 'convert' modes.

$\overline{\mathrm{CS}}$	R/ $\overline{\mathbf{C}}$	$\overline{\text { BUSY }}$	OPERATION
1	X	X	None. Databus in Hi-Z state.
\downarrow	0	1	Initiates conversion. Databus remains in Hi-Z state.
0	\downarrow	1	Initiates conversion. Databus enters $\mathrm{Hi}-\mathrm{Z}$ state.
0	1	\uparrow	Conversion completed. Valid data from the most recent conversion on the databus.
\downarrow	1	1	Enables databus with valid data from the most recent conversion.
\downarrow	1	0	Conversion in progress. Databus in $\mathrm{Hi}-\mathrm{Z}$ state, enabled when the conversion is completed.
0	\uparrow	0	Conversion in progress. Databus in Hi-Z state, enabled when the conversion is completed.
0	0	\uparrow	Conversion completed. Valid data from the most recent conversion in the output register, but the output pins D11-D0 remain tri-stated.
X	X	0	New convert commands ignored. Conversion in progress.

Table I. Control Line Functions for 'read' and 'convert'.

DESCRIPTION	ANALOG INPUT	DIGITAL INPUT			
Full Scale Range	$\pm 2.5 \mathrm{~V}$	BINARY TWO'S COMPLEMENT			
Least Significant	1.22 mV		BINARY CODE		HEX CODE
		011111111111	$7 F F$		
Bit (LSB)	2.499 V				
+Full Scale	0 V	000000000000	000		
(2.5V - 1LSB)	-1.22 mV	11111111111	FFF		
Midscale	-2.5 V	100000000000	800		
One LSB below					
Midscale					
-Full Scale					

TABLE II. Ideal Input Voltages and Output Codes.

FIGURE 2. Conversion Timing with Outputs Enabled After Conversion ($\overline{\mathrm{CS}}$ Tied Low).

READING DATA

The ADS7831 outputs full parallel data in Binary Two's Complement data output format. The parallel output will be active when $\mathrm{R} / \overline{\mathrm{C}}$ (pin 23) is HIGH, $\overline{\mathrm{CS}}$ (pin 24) is LOW, and no conversion is in progress. Any other combination will tristate the parallel output. Valid conversion data can be read in a full parallel, 12-bit word on D11-D0 (pins 6-13 and 15-18). Refer to Table II for ideal output codes.
After the conversion is completed and the output registers have been updated, $\overline{\text { BUSY (}}$ pin 25) will go HIGH. Valid data from the most recent conversion will be available on D11-D0 (pins 6-13 and 15-18). BUSY going HIGH can be used to latch the data. Refer to Table III and Figures 2 and 3.
Note: For best performance, the external data bus connected to D11-D0 should not be active during a conversion. The switching noise of the external asynchronous data signals can cause digital feed through degrading the converter's performance.
The number of control lines can be reduced by tieing $\overline{\mathrm{CS}}$ LOW while using $\mathrm{R} / \overline{\mathrm{C}}$ to initiate conversions and activate the output mode of the converter. See Figure 2.

ANALOG INPUT

The ADS7831 has a $\pm 2.5 \mathrm{~V}$ input range. Figures 4 a and 4 b show the necessary circuit connections for the ADS7831 with and without external trim. Offset and full scale error ${ }^{(1)}$ specifications are tested and guaranteed with the 50Ω resistor shown in Figure 4b. This external resistor makes it possible to trim the offset $\pm 12 \mathrm{mV}$ using R_{1} and P_{1} as shown in Figure 4a. This resistor may be left out if the offset and gain errors will be corrected in software or if they are negligible in regards to the particular application. See the Calibration section of the data sheet for details.

The nominal input impedance of $3.125 \mathrm{k} \Omega$ results from the combination of the internal resistor network shown on page 3 of this data sheet and the external 50Ω resistor. The input resistor divider network provides inherent over-voltage protection guaranteed to at least $\pm 25 \mathrm{~V}$. The $50 \Omega, 1 \%$ resistor does not compromise the accuracy or drift of the converter. It has little influence relative to the internal resistors, and tighter tolerances are not required.

Note: The values shown for the internal resistors are for reference only. The exact values can vary by $\pm 30 \%$. This is true of all resistors internal to the ADS7831. Each resistive divider is trimmed so that the proper division is achieved.

NOTE: (1) Full scale error includes offset and gain errors measured at both $+F S$ and -FS.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t_{1}	Convert Pulse Width	40			ns
t_{2}	Data Valid Delay After Start of Conversion		1310	1460	ns
t_{3}	BUSY Delay From Start of Conversion		75	125	ns
t_{4}	$\overline{\text { BUSY LOW }}$		1300	1440	ns
t_{5}	$\overline{\text { BUSY Delay After }}$ End of Conversion		90		ns
t_{6}	Aperture Delay		20		ns
t_{7}	Conversion Time		1285	1400	ns
t_{8}	Acquisition Time		200	250	ns
$\mathrm{t}_{7} \& \mathrm{t}_{8}$	Throughput Time		1485	1650	ns
t_{9}	Bus Relinquish Time	10	55	83	ns
t_{10}	$\overline{B U S Y}$ Delay After Data Valid	20	65	100	ns
t_{11}	$\mathrm{R} / \overline{\mathrm{C}}$ to $\overline{\mathrm{CS}}$ Setup Time	10			ns
t_{12}	Time Between Conversions	1660			ns
t_{13}	Bus Access Time	10	30	62	ns

TABLE III. Timing Specifications ($\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$).

CALIBRATION

The ADS7831 can be trimmed in hardware or software. The offset should be trimmed before the gain since the offset directly affects the gain.

Hardware Calibration

To calibrate the offset and gain of the ADS7831, install the proper resistors and potentiometers as shown in Figure 4a. The calibration range is $\pm 12 \mathrm{mV}$ for the offset and $\pm 30 \mathrm{mV}$ for full scale.

Potentiometer P_{1} and resistor R_{1} form the offset adjust circuit and P_{2} and R_{2} the gain adjust circuit. The exact values are not critical. R_{1} and R_{2} should not be made any larger than the value shown. They can easily be made smaller to provide increased adjustment range. Reducing these below 15% of the indicated values could begin to adversely affect the operation of the converter.
P_{1} and P_{2} can also be made larger to reduce power dissipation. However, larger resistances will push the useful adjustment range to the edges of the potentiometer. P_{1} should probably not exceed $20 \mathrm{k} \Omega$ and $\mathrm{P} 2100 \mathrm{k} \Omega$ in order to maintain reasonable sensitivity.

Software Calibration or No Calibration

The ADS7831 does not require external resistors for its basic operation. However, the component is designed to be used with an external 50Ω resistor on the input, and the specifications apply to this condition. If this resistor is not used, the only specification that will be affected is total unadjusted error.
With the 50Ω resistor, the nominal input voltage range is $\pm 2.5 \mathrm{~V}$ and the total unadjusted error is $\pm 10 \mathrm{LSB}$ guaranteed. Without the 50Ω resistor, the nominal input voltage range will be $\pm 2.46 \mathrm{~V}$ and the total unadjusted error is not guaranteed. While it will typically be much less, the total unadjusted error could be as high as ± 20 LSBs.

FIGURE 3. Using $\overline{\mathrm{CS}}$ to Control Conversion and Read Timing.

REFERENCE

REF

REF (pin 3) is the output for the internal 2.5 V reference. A $0.1 \mu \mathrm{~F}$ capacitor should be connected as close to the REF pin as possible. The capacitor and the output resistance of REF create a low pass filter to band limit noise on the reference. Using a smaller value capacitor will introduce more noise to the reference degrading the SNR and SINAD. The REF pin should not be used to drive external AC or DC loads.

CAP

CAP (pin 4) is the output of the internal reference buffer. A $10 \mu \mathrm{~F}$ capacitor should be placed as close to the CAP as possible to provide optimum switching currents for the CDAC throughout the conversion cycle and compensation for the output of the buffer. Using a capacitor any smaller than $2.2 \mu \mathrm{~F}$ can cause the output buffer to oscillate and may not have sufficient charge for the CDAC. Capacitor values larger than $10 \mu \mathrm{~F}$ will have little effect on improving performance. The voltage on the CAP pin is approximately 2 V when using the internal reference, or 80% of an externally supplied reference.

LAYOUT

POWER

The ADS7831 uses the majority of its power for analog and static circuitry and it should be considered as an analog component. For optimum performance, tie the analog and digital +5 V power pins to the same +5 V power supply and tie the analog and digital grounds together.

For best performance, the $\pm 5 \mathrm{~V}$ supplies can be produced from whatever analog supply is used for the rest of the analog signal conditioning. If $\pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies are present, simple regulators can be used. The +5 V power for the A / D should be separate from the +5 V used for the system's digital logic. Connecting $\mathrm{V}_{\mathrm{DIG}}$ (pin 27) directly to a digital supply can reduce converter performance due to switching noise from the digital logic.

Although it is not suggested, if the digital supply must be used to power the converter, be sure to properly filter the supply. Either using a filtered digital supply or a regulated analog supply, both $\mathrm{V}_{\text {DIG }}$ and $\mathrm{V}_{\text {ANA }}$ should be tied to the same +5 V source.

GROUNDING

Three ground pins are present on the ADS7831. DGND (pin 22) is the digital supply ground. AGND2 (pin 5) is the analog supply ground. AGND1 (pin 2) is the ground which all analog signals internal to the A / D are referenced. AGND1 is more susceptible to current induced voltage drops and must have the path of least resistance back to the power supply.
All the ground pins of the ADS should be tied to the analog ground plane, separated from the system's digital logic ground, to achieve optimum performance. Both analog and digital ground planes should be tied to the "system" ground as near to the power supplies as possible. This helps to prevent dynamic digital ground currents from modulating the analog ground through a common impedance to power ground.

SIGNAL CONDITIONING

The FET switches used for the sample hold on many CMOS A/D converters release a significant amount of charge injection which can cause the driving op amp to oscillate. The FET switch on the ADS7831, compared to FET switches on other CMOS A/D converters, releases $5 \%-10 \%$ of the charge. There is also a resistive front end which attenuates any charge which is released. The end result is a minimal requirement for the op amp on the front end. Any op amp sufficient for the signal in an application will be sufficient to the drive the ADS7831.

The resistive front end of the ADS7831 also provides a guaranteed $\pm 25 \mathrm{~V}$ over voltage protection. In most cases, this eliminates the need for external input protection circuitry.

INTERMEDIATE LATCHES

The ADS7831 does have tri-state outputs for the parallel port, but intermediate latches should be used if the bus will be active during conversions. If the bus is not active during conversions, the tri-state outputs can be used to isolate the A/D from other peripherals on the same bus.

Intermediate latches are beneficial on any monolithic A/D converter. The ADS7831 has an internal LSB size of $610 \mu \mathrm{~V}$. Transients from fast switching signals on the parallel port, even when the A/D is tri-stated, can be coupled through the substrate to the analog circuitry causing degradation of converter performance.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

