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ANALOG 12-Bit, 20 MSPS/40 MSPS/65 MSPS
DEVICES 3V Low Power A/D Converter

AD92317
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APPLICATIONS

Ultrasound and medical imaging Figure 1.
Battery-powered instruments

Hand-held scope meters

Low cost digital oscilloscopes

Low power digital still cameras and copiers

Low power communications

GENERAL DESCRIPTION PRODUCT HIGHLIGHTS

The AD9237 is a family of monolithic, single 3 V supply, 12-bit, 1. Evaluation boards available for all speed grades.

20 MSPS/40 MSPS/65 MSPS analog-to-digital converters 2. Operating at 65 MSPS, the AD9237 consumes a low 190 mW
(ADC). This family features a high performance sample-and- at6s MSPS.’ 135 mW at 40 MSPS_’ and 85 mW at 20 MSPS.
hold amplifier (SHA) and voltage reference. The AD9237 uses a 3. Power scaling reduces the operating power further when
multistage differential pipelined architecture with output error running at lower speeds.

correction logic to provide 12-bit accuracy at 20 MSPS/ 4. The AD9237 operates from a single 3 V power supply and

40 MSPS/65 MSPS data rates and guarantees no missing codes features a separate digital output qriver s.u‘pply to
over the full operating temperature range. accommodate 2.5 V and 3.3 V logic families.
5. The patented SHA input maintains excellent performance

With significant power savings over previously available ADCs, for input frequencies beyond Nyquist and can be configured
the AD9237 is suitable for applications in imaging and medical for single-ended or differential operation.
ultrasound. 6. The AD9237 is optimized for selectable and flexible input

ranges from 1 V p-p to 4 V p-p.

Fab-ricatefi on an advanced CMOS process, the AD923_7 is _ 7. An output enable pin allows for multiplexing of the outputs.
available in a 32-lead LFOCSP and (1)5 specified over the industrial 8. Two-step power-down supports a standby mode in addition
temperature range (—40°C to +85°C). to a power-down mode.

9. The OTR output bit indicates when the signal is beyond the
selected input range.
10. The clock duty cycle stabilizer (DCS) maintains converter
a0 performance over a wide range of clock pulse widths.

V. 0

', nation fumishied by Analog Devices is believed to be accurate and reliable. However, no
(~=- " responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
é,./ ) 4 ights of third parties that may result from its use. Specifications subject to change without notice. No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ) 7 W‘ﬁ’w-?naIOQ-com
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AD9237

SPECIFICATIONS
DC SPECIFICATIONS

AVDD =3V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, —0.5 dBFS input, 1.0 V internal reference, Tmin to Tmax,
unless otherwise noted.

Table 1.
AD9237BCP-20 AD9237BCP-40 AD9237BCP-65
Parameter Min  Typ Max Min  Typ Max Min Typ Max Unit
RESOLUTION 12 12 12 Bits
ACCURACY
No Missing Codes Guaranteed 12 12 12 Bits
Offset Error +1.30 +1.95 +1.30 +1.95 +1.30 +1.95 % FSR
Gain Error’ +0.70 +2.10 +0.75 +2.10 +1.05 +2.25 % FSR
Differential Nonlinearity (DNL)? +0.70  +0.95 +0.70  +0.95 -1.00 +0.70 +1.25 LSB
Integral Nonlinearity (INL)? +0.90 +1.35 +0.90 +1.35 +0.90 +2.00 LSB
TEMPERATURE DRIFT
Offset Error +2 +2 +2 ppm/°C
Gain Error! +12 +12 +12 ppm/°C
INTERNAL VOLTAGE REFERENCE
Output Voltage Error (1V Mode) +5 +25 +5 +25 +5 +25 mV
Load Regulation @ 1.0 mA 0.8 0.8 0.8 mV
Output Voltage Error (0.5V Mode) +2.5 +2.5 +2.5 mV
Load Regulation @ 0.5 mA 0.1 0.1 0.1 mV
Reference Input Resistance 7 7 7 kQ
INPUT REFERRED NOISE
VREF=0.5V 1.35 1.35 1.35 LSB rms
VREF=1.0V 0.70 0.70 0.70 LSB rms
ANALOG INPUT
Input Span
VREF = 0.5V; MODE2 =0V 1 1 1 Vp-p
VREF =1.0V; MODE2 =0V 2 2 2 Vp-p
VREF =0.5V; MODE2 = AVDD 2 2 2 Vp-p
VREF = 1.0 V; MODE2 = AVDD 4 4 4 Vp-p
Input Capacitance? 7 7 7 pF
POWER SUPPLIES
Supply Voltages
AVDD 2.7 3.0 3.6 2.7 3.0 3.6 2.7 3.0 3.6 \Y
DRVDD 2.25 2.5 3.6 2.25 2.5 3.6 2.25 2.5 3.6 Vv
Supply Current
IAVDD? 30.5 455 64.5 mA
IDRVDD? 3.0 45 5.5 mA
PSRR +0.01 +0.01 +0.01 % FSR
POWER CONSUMPTION
DC Input* 85 135 190 mW
Sine Wave Input? 100 120 150 180 210 270 mWwW
Power-Down Mode 1 1 1 mW
Standby Power 20 20 20 mwW

' Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).

2 Measured at maximum clock rate, fix = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.

3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.
4Measured with dc input at maximum clock rate.
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DIGITAL SPECIFICATIONS

Table 2.
AD9237BCP-20 AD9237BCP-40 AD9237BCP-65
Parameter Min Typ Max Min Typ Max Min Typ Max Unit
LOGIC INPUTS
High Level Input Voltage 20 2.0 2.0 Vv
Low Level Input Voltage 0.8 0.8 0.8 \Y
High Level Input Current -10 +10 -10 +10 -10 +10 MA
Low Level Input Current -10 +10 -10 +10 -10 +10 A
Input Capacitance 2 2 2 pF
LOGIC OUTPUTS!
DRVDD =3.3V
High-Level Output Voltage (IOH = 50 pA) 3.29 3.29 3.29 \Y
High-Level Output Voltage (IOH = 0.5 mA) 3.25 3.25 3.25 \Y
Low-Level Output Voltage (IOL = 1.6 mA) 0.2 0.2 0.2 \Y
Low-Level Output Voltage (IOL = 50 pA) 0.05 0.05 0.05 Vv
DRVDD =2.5V
High-Level Output Voltage (IOH = 50 pA) 249 249 2.49 Vv
High-Level Output Voltage (IOH = 0.5 mA) 2.45 2.45 245 \Y
Low-Level Output Voltage (IOL = 1.6 mA) 0.2 0.2 0.2 Vv
Low-Level Output Voltage (IOL = 50 pA) 0.05 0.05 0.05 \

" OQutput voltage levels measured with 5 pF load on each output.

AC SPECIFICATIONS

AVDD =3 V,DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, A = -0.5 dBFS, 1.0 V internal reference, Tmin to Tmax,

unless otherwise noted.

Table 3.
AD9237BCP-20 AD9237BCP-40 AD9237BCP-65
Parameter Min Typ Max | Min Typ Max | Min Typ Max | Unit
SIGNAL-TO-NOISE RATIO (SNR)
fineur = 2.4 MHz 66.8 66.5 66.5 dBc
fineur = 9.7 MHZz 65.6 66.6 dBc
fineur = 19.6 MHz 65.3 66.6 dBc
fineur = 34.2 MHz 64.0 66.1 dBc
fineur = 70 MHz 66.0 66.3 65.9 dBc
SIGNAL-TO-NOISE RATIO AND DISTORTION (SINAD)
fineur = 2.4 MHz 66.7 66.4 66.3 dBc
fineur = 9.7 MHz 65.1 66.5 dBc
fineur = 19.6 MHz 64.4 66.4 dBc
fineur = 34.2 MHz 63.5 65.8 dBc
fineur = 70 MHz 65.6 65.8 65.2 dBc
EFFECTIVE NUMBER OF BITS (ENOB)
fineur = 9.7 MHz 10.8 Bits
fineur = 19.6 MHz 10.7 Bits
fineur = 34.2 MHz 10.6 Bits
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AD9237

AD9237BCP-20 AD9237BCP-40 AD9237BCP-65
Parameter Min Typ Max | Min Typ Max | Min Typ Max | Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fineur = 2.4 MHz 88.0 83.5 85.5 dBc
fineur = 9.7 MHZz 724 875 dBc
fineur = 19.6 MHz 72.2 82.4 dBc
fineur = 34.2 MHz 69.4 80.1 dBc
fineur = 70 MHz 80.5 77.9 74.9 dBc
WORST HARMONIC (SECOND OR THIRD)
fineur = 2.4 MHz -88.0 -83.5 -85.5 dBc
fineur = 9.7 MHz -724 -875 dBc
fineur = 19.6 MHz 722 824 dBc
fineur = 34.2 MHz -69.4 -80.1 dBc
fineur = 70 MHz -80.5 -77.9 -74.9 dBc
WORST OTHER SPUR
fineur = 2.4 MHz -90 -90 -90 dBc
fineur = 9.7 MHZz -734 90 dBc
fineur = 19.6 MHz -73.1 =90 dBc
fineur = 34.2 MHz -720 -90 dBc
fineur = 70 MHz -90 -90 -90 dBc
SWITCHING SPECIFICATIONS
Table 4.
AD9237BCP-20 AD9237BCP-40 AD9237BCP-65
Parameter Min Typ Max Min Typ Max Min Typ Max Unit
CLK INPUT PARAMETERS
Maximum Conversion Rate 20 40 65 MSPS
Minimum Conversion Rate 1 1 1 MSPS
CLK Period 50.0 25.0 15.4 ns
CLK Pulse Width High' 15.0 8.8 6.2 ns
CLK Pulse Width Low’ 15.0 8.8 6.2 ns
DATA OUTPUT PARAMETERS
Output Delay (tp)? 3.5 35 35 ns
Pipeline Delay (Latency) 8 8 8 Cycles
Output Enable Time 6 6 6 ns
Output Disable Time 3 3 3 ns
Aperture Delay (ta) 1.0 1.0 1.0 ns
Aperture Uncertainty (Jitter, t)) 0.5 0.5 0.5 ps rms
Wake-Up Time (Sleep Mode)? 3.0 3.0 3.0 ms
Wake-Up Time (Standby Mode)? 3.0 3.0 3.0 Ms
OUT-OF-RANGE RECOVERY TIME 1 1 2 Cycles

' With duty cycle stabilizer enabled.

2 Qutput delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load on each output.
3 Wake-up time is dependent on value of decoupling capacitors; typical values shown with 0.1 pF and 10 uF capacitors on REFT and REFB.
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TIMING DIAGRAM

N+1

ANALOG
INPUT
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pATA :XN—lOX N9 X N8 Y N7 X N6 X N5 X N4 X N-3 X N-2 X N—1:X N X:
Figure 2. Timing Diagram
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AD9237

ABSOLUTE MAXIMUM RATINGS

Table 5.
With
Pin Name Respectto | Min | Max Unit
ELECTRICAL
AVDD AGND -03 | +3.9 \Y
DRVDD DGND -03 | +3.9 v
AGND DGND -0.3 | +0.3 \Y
AVDD DRVDD -39 | +3.9 \Y
Digital DGND -0.3 | DRVDD+0.3 |V
Outputs, OE
CLK, MODE, AGND -0.3 | AVDD +0.3 \Y
MODE2
VIN+, VIN- AGND -0.3 | AVYDD +0.3 \Y
VREF AGND -0.3 | AVDD +0.3 \Y
SENSE AGND -0.3 | AVDD +0.3 \Y
REFB, REFT AGND -0.3 | AVDD +0.3 \Y
PDWN AGND -0.3 | AVDD +0.3 \Y
ENVIRONMENTAL'
Operating Temperature -40 +85 °C
Junction Temperature 150 °C
Lead Temperature (10 sec) 300 °C
Storage Temperature -65 +150 °C

' Typical thermal impedances (32-lead LFCSP), 6,4 = 32.5°C/W, 6;c = 32.71°C/W.
These measurements were taken on a 4-layer board in still air, in accordance
with EIA/JESD51-1.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

Absolute maximum ratings are limiting values to be applied
individually and beyond which the serviceability of the circuit
may be impaired. Functional operability is not necessarily
implied. Exposure to absolute maximum rating conditions for
an extended period may affect device reliability.

WARNING! @
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy gﬁ“

electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

degradation or loss of functionality.

ESD SENSITIVE DEVICE
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
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DNC = DO NOT CONNECT

Figure 3. Pin Configuration

Table 6. Pin Function Descriptions

Pin Number Mnemonic Description

1 MODE2 SHA Gain Select and Power Scaling Control (see Table 8).

2 CLK Clock Input Pin.

3 OE Output Enable Pin (Active Low).

4 PDWN Power-Down Function Selection (see Table 9).

5 GC Gray Code Control (Active High).

6 DNC Do Not Connect.

7to014,17t020 | DO (LSB)to D11 (MSB) | Data Output Bits.

15 DGND Digital Output Ground.

16 DRVDD Digital Output Driver Supply. Must be decoupled to DGND with a minimum 0.1 uF capacitor.
Recommended decoupling is 0.1 yF in parallel with 10 pF.

21 OTR Out-of-Range Indicator.

22 MODE Data Format and Clock Duty Cycle Stabilizer (DCS) Mode Selection (see Table 10).

23 SENSE Reference Mode Selection (see Table 7).

24 VREF Voltage Reference Input/Output (see Table 7).

25 REFB Differential Reference (—). Must be decoupled to REFT with a minimum 10 puF capacitor.

26 REFT Differential Reference (+).

27,32 AVDD Analog Power Supply. Must be decoupled to AGND with a minimum 0.1 uF capacitor.
Recommended decoupling is 0.1 uF in parallel with 10 yF.

28,31 AGND Analog Ground.

29 VIN+ Analog Input Pin (+).

30 VIN— Analog Input Pin (-).
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TERMINOLOGY

Analog Bandwidth (Full Power Bandwidth)

The analog input frequency at which the spectral power of the
fundamental frequency (as determined by the FFT analysis) is
reduced by 3 dB.

Aperture Delay (ta)
The delay between the 50% point of the rising edge of the clock
and the instant at which the analog input is sampled.

Aperture Jitter (ty)
The sample-to-sample variation in aperture delay.

Integral Nonlinearity (INL)

The deviation of each individual code from a line drawn from
negative full scale through positive full scale. The point used

as negative full scale occurs %2 LSB before the first code
transition. Positive full scale is defined as a level 1% LSBs
beyond the last code transition. The deviation is measured
from the middle of each particular code to the true straight line.

Differential Nonlinearity (DNL, No Missing Codes)

An ideal ADC exhibits code transitions that are exactly 1 LSB
apart. DNL is the deviation from this ideal value. Guaranteed
no missing codes to 12-bit resolution indicates that all 4096
codes must be present over all operating ranges.

Offset Error

The major carry transition should occur for an analog value
Y3 LSB below VIN+ = VIN-. Offset error is defined as the
deviation of the actual transition from that point.

Gain Error

The first code transition should occur at an analog value

2 LSB above negative full scale. The last transition should occur
at an analog value 1% LSB below the positive full scale. Gain
error is the deviation of the actual difference between first and
last code transitions and the ideal difference between first and
last code transitions.

Temperature Drift

The temperature drift for offset error and gain error specifies
the maximum change from the initial (25°C) value to the value
at Tmix or Tuax.

Power Supply Rejection Ratio

The change in full scale from the value with the supply at the
minimum limit to the value with the supply at its maximum
limit.

Total Harmonic Distortion (THD)'
The ratio of the rms sum of the first six harmonic components
to the rms value of the measured input signal.

Signal-To-Noise and Distortion (SINAD)'

The ratio of the rms signal amplitude to the rms value of the
sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc.

Effective Number of Bits (ENOB)

The effective number of bits for a device for sine wave inputs
at a given input frequency can be calculated directly from its
measured SINAD using the following formula:

ENOB = (SINADqsss — 1.76)/6.02

Signal-to-Noise Ratio (SNR)'

The ratio of the rms signal to the rms value of the sum of all
other spectral components below the Nyquist frequency,
excluding the first six harmonics and dc.

Spurious-Free Dynamic Range (SFDR)'

SEDR is the difference in dB between the rms amplitude of the
input signal and the rms value of the peak spurious signal. The
peak spurious signal may not be an harmonic.

Two-Tone SFDR'

The ratio of the rms value of either input tone to the rms value
of the peak spurious component. The peak spurious component
may or may not be an IMD product.

Clock Pulse Width and Duty Cycle

Pulse width high is the minimum amount of time that the clock
pulse should be left in the Logic 1 state to achieve rated
performance. Pulse width low is the minimum time the clock
pulse should be left in the low state. At a given clock rate, these
specifications define an acceptable clock duty cycle.

Minimum Conversion Rate

The clock rate at which the SNR of the lowest analog signal
frequency drops by no more than 3 dB below the guaranteed
limit.

Maximum Conversion Rate
The clock rate at which parametric testing is performed.

Output Propagation Delay (tep)
The delay between the clock logic threshold and the time when
all bits are within valid logic levels.

Out-of-Range Recovery Time

The time it takes the ADC to reacquire the analog input after a
transition from 10% above positive full scale to 10% above
negative full scale, or from 10% below negative full scale to 10%
below positive full scale.

' AC specifications may be reported in dBc (degrades as signal levels are
lowered) or in dBFS (always related back to converter full scale).
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EQUIVALENT CIRCUITS
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Figure 4. Equivalent Analog Input Circuit
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Figure 5. Equivalent MODE, MODE2, GC, OE Input Circuit
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Figure 6. Equivalent Digital Output Circuit
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Figure 7. Equivalent CLK, PDWN Input Circuit
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TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate with DCS disabled, Ta = 25°C, 2 V p-p differential input, Aiv = -0.5 dBFS,
VREF = 1.0 V internal, FFT length 16 K, unless otherwise noted.
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SNR = 65.6dBc
SFDR = 67.1dBc
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Figure 15. AD9237-65 SNR/SFDR vs. Input Amplitude with fiy = 35 MHz
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SNR = 67.0dBFS
SFDR = 87.8dBFS
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Figure 20. AD9237-65 Two-Tone FFT, fin1 = 45 MHz, finz = 46 MHz
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Figure 22. AD9237-65 Two-Tone FFT, fin1 = 69 MHz, finz = 70 MHz
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APPLYING THE AD9237

THEORY OF OPERATION

The AD9237 uses a calibrated, 11-stage pipeline architecture
with a patented input SHA implemented. Each stage of the
pipeline, excluding the last, consists of a low resolution flash
ADC connected to a switched capacitor digital-to-analog
converter (DAC) and an interstage residue amplifier (MDAC).
The MDAC magnifies the difference between the reconstructed
DAC output and the flash input for the next stage in the
pipeline. One bit of redundancy is used in each stage to facilitate
digital correction of flash errors. The last stage consists of a
flash ADC.

The pipelined architecture permits the first stage to operate on a
new input sample, while the remaining stages operate on preceding
samples. While the converter captures a new input sample every
clock cycle, it takes eight clock cycles for the conversion to be
fully processed and to appear at the output, as shown in Figure 2.

The input stage contains a differential SHA that can be ac- or
dc-coupled in differential or single-ended modes. The output-
staging block aligns the data, carries out the error correction,
and passes the data to the output buffers. The output buffers
are powered from a separate supply, allowing adjustment of
the output voltage swing. During power-down and stand-by
operation, the output buffers go into a high impedance state.

The ADC samples the analog input on the rising edge of

the clock. System disturbances just prior to, or immediately
following, the rising edge of the clock and/or excessive clock
jitter can cause the SHA to acquire the wrong input value and
should be minimized.

ANALOG INPUT AND REFERENCE OVERVIEW

The analog input to the AD9237 is a differential switched
capacitor SHA that has been designed for optimum
performance while processing a differential input signal.

The SHA input can support a wide common-mode range
and maintain excellent performance, as shown in Figure 34.
An input common-mode voltage of midsupply minimizes
signal-dependant errors and provides optimum performance.

Figure 35 shows the clock signal alternately switching the

SHA between sample mode and hold mode. When the SHA is
switched into sample mode, the signal source must be capable
of charging the sample capacitors and settling within one-half
of a clock cycle. A small resistor in series with each input can
help reduce the peak transient current required from the output
stage of the driving source.

90
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80 sl

// 34.2MHz SFDR \
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o 60—
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INPUT COMMON-MODE LEVEL (V)
Figure 34. AD9237-65 SNR/SFDR vs. Input Common-Mode Level

In addition, a small shunt capacitor placed across the inputs
provides dynamic charging currents. This passive network
creates a low-pass filter at the ADC’s input; therefore, the
precise values are dependant on the application. In IF under-
sampling applications, the shunt capacitor(s) should be reduced
or removed depending on the input frequency. In combination
with the driving source impedance, the capacitors limit the
input bandwidth.
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Figure 35. Switched-Capacitor SHA Input

For best dynamic performance, the source impedances driving
VIN+ and VIN- should be matched so that common-mode
settling errors are symmetrical. These errors are reduced by the
common-mode rejection of the ADC.

An internal differential reference buffer creates positive and
negative reference voltages, REFT and REFB, that define the
span of the ADC core.
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The output common mode of the reference buffer is set to mid-
supply, and the REFT and REFB voltages and input span are
defined as:

REFT = %(AVDD + VREF)
REFB = %(AVDD - VREF)

4x (REFT - REFB ) 4 x VREF
Span _ Factor

Span =
Span _ Factor

The previous equations show that the REFT and REFB voltages
are symmetrical about the midsupply voltage, and the input

span is proportional to the value of the VREF voltage, see Table 7
for more details.

The internal voltage reference can be pin strapped to fixed
values of 0.5 V or 1.0 V; or adjusted within this range as
discussed in the Internal Reference Connection section.
Maximum SNR performance is achieved with the AD9237
set to an input span of 2 V p-p or greater. The relative SNR
degradation is 3 dB when changing from 2 V p-p mode to
1V p-p mode.

The SHA must be driven from a source that keeps the signal
peaks within the allowable range for the selected reference
voltage. The minimum and maximum common-mode input
levels are defined as:

VCMuin = VREF/2
VCMuax = (AVDD + VREF)/2

The minimum common-mode input level allows the AD9237 to
accommodate ground-referenced inputs.

Although optimum performance is achieved with a differential
input, a single-ended source can be driven into VIN+ or VIN-.
In this configuration, one input accepts the signal while the
opposite input should be set to midscale by connecting it to an
appropriate reference. For example, a 2 V p-p signal can be
applied to VIN+ while a 1 V reference is applied to VIN-. The
AD9237 then accepts an input signal varying between 2 V and
0 V. In the single-ended configuration, distortion performance
may degrade significantly as compared to the differential case.
However, the effect is less noticeable at lower input frequencies and
in the lower speed grade models (AD9237-40 and AD9237-20).

Differential Input Configurations

As previously detailed, optimum performance is achieved while
driving the AD9237 in a differential input configuration. For
baseband applications, the AD8351 differential driver provides
excellent performance and a flexible interface to the ADC. The
output common-mode voltage of the AD8351 is easily set to
AVDD/2, and the driver can be configured in a Sallen-Key filter
topology to provide band limiting of the input signal. Figure 36
details a typical configuration using the AD8351.

VIN-

31kQ
0.14F ? $12k0 0.1uF AVDD
. I . i VIN+
2Vp-p@ 49.90 AD8351 o1 15pF AD9237
| .
2

= I y _4
50 0.1uF
kO

AGND

05455-041

Figure 36. Differential Input Configuration Using the AD8351

At input frequencies in the second Nyquist zone and above, the
performance of most amplifiers is not adequate to achieve the
true performance of the AD9237. This is especially true in IF
undersampling applications where frequencies in the 70 MHz
to 100 MHz range are being sampled. For these applications,
differential transformer coupling is the recommended input
configuration, as shown in Figure 37.

AVDD
VIN+
AD9237
VIN-
AGND

05455-042

Figure 37. Differential Transformer-Coupled Configuration

The signal characteristics must be considered when selecting a
transformer. Most RF transformers saturate at frequencies
below a few MHz, and excessive signal power can cause core
saturation, which leads to distortion.

Single-Ended Input Configuration

A single-ended input can provide adequate performance in
cost-sensitive applications. In this configuration, there is
degradation in SFDR and distortion performance due to the
large input common-mode swing. However, if the source
impedances on each input are matched, there should be little
effect on SNR performance. Figure 38 details a typical single-
ended input configuration.
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Figure 38. Single-Ended Input Configuration
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Table 7. Reference Configuration Summary

Selected Mode SENSE Voltage Resulting VREF (V) Span Factor Resulting Differential Span (V p-p)

External Reference AVDD N/A 2 4 x External Reference

Span _ Factor

Internal Fixed Reference VREF 0.5 1.0V

40V

N —= N =

Programmable Reference 0.2V to VREF 0.5 x (1 + R2/R1)
(See Figure 40)

4xVREF
Span _ Factor

N

Internal Fixed Reference AGND to 0.2V 1.0 20V

1 1.0V

VOLTAGE REFERENCE

A stable and accurate 0.5 V voltage reference is built into

the AD9237. The input range can be adjusted by varying

the reference voltage applied to the AD9237, using either the
internal reference or an externally applied reference voltage.

+
=< 10pF

The input span of the ADC tracks reference voltage changes

i +
linearly. VREF |

\

0.1pF

\

T
10pF

In all reference configurations, REFT and REFB drive the 0.5v

A/D conversion core and, in conjunction with the span factor,
establish its input span. The input range of the ADC always
equals four times the voltage at the reference pin divided by
the span factor for either an internal or an external reference.
It is required to decouple REFT to REFB with 0.1 pF and 10 uF
decoupling capacitors, as shown in Figure 39.

<
p:
p:

i

SENSE O—

3 AD9237

05455-043

Figure 39. Internal Reference Configuration
Internal Reference Connection

A comparator within the AD9237 detects the potential at wmi
the SENSE pin and configures the reference into one of four VIN- — REFT
et

O
7

K

ADC

possible states, which are summarized in Table 7. If SENSE is
grounded, the reference amplifier switch is connected to the
internal resistor divider, setting VREF to 1 V (see Figure 39).
Connecting the SENSE pin to VREF switches the reference
amplifier output to the SENSE pin, completing the loop and
providing a 0.5 V reference output. If a resistor divider is
connected, as shown in Figure 40, then the switch is again set to
the SENSE pin. This puts the reference amplifier in a non-
inverting mode with the VREF output defined as

+
< 10pF

o
[N
=
B
|
LAl
3|

R2
VREF =0.5x (1 + H) AD9237

05455-044

Figure 40. Programmable Reference Configuration
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External Reference Operation

The use of an external reference may be necessary to enhance
the gain accuracy of the ADC or to improve thermal drift
characteristics. Figure 41 shows the typical drift characteristics
of the internal reference in both 1 V and 0.5 V modes. When
multiple ADCs track one another, a single reference (internal or
external) reduces gain matching errors.

When the SENSE pin is connected to AVDD, the internal
reference is disabled, allowing the use of an external reference.
An internal reference buffer loads the external reference with
an equivalent 7 k() load. The internal buffer still generates the
positive and negative full-scale references, REFT and REFB, for
the ADC core. The input span is always four times the value of
the reference voltage divided by the span factor; therefore, the
external reference must be limited to a maximum of 1 V.

07
0.6
05 S
g \QEFERENCE
& 04
z o ~
% \
o N —
0.2
0.5V REFERENCE | 1|
01 .
g
0 =]
—40 20 0 20 40 60 8085

TEMPERATURE (°C)

Figure 41. Typical VREF Drift

If the internal reference of the AD9237 is used to drive multiple
converters to improve gain matching, the loading of the refer-
ence by the other converters must be considered. Figure 42
shows how the internal reference voltage is affected by loading.
A 2 mA load is the maximum recommended load.

0.05
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% —0.10 \
g N
4 \
] v ERRO%
-0.15 \\
-0.20 \\
-0.25 2
0 0.5 1.0 15 2.0 25 3.0

LOAD (mA)
Figure 42. VREF Accuracy vs. Load

CLOCK INPUT CONSIDERATIONS

Typical high speed ADCs use both clock edges to generate

a variety of internal timing signals and, as a result, can be
sensitive to clock duty cycle. Commonly a 5% tolerance is
required on the clock duty cycle to maintain dynamic
performance characteristics. The AD9237 contains a clock
duty cycle stabilizer (DCS) that retimes the nonsampling, or
falling edge, providing an internal clock signal with a nominal
50% duty cycle. This allows a wide range of clock input duty
cycles without affecting the performance of the AD9237. As
shown in Figure 17, noise and distortion performance are
nearly flat over a 30% range of duty cycle with the DCS enabled.

The duty cycle stabilizer uses a delay-locked loop (DLL) to
create the nonsampling edge. As a result, any changes to the
sampling frequency require approximately 100 clock cycles to
allow the DLL to acquire and lock to the new rate.

High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR at a given full-scale
input frequency (fixeur) due only to rms aperture jitter (t;) can
be calculated by

SNR Degradation =201log,, {;}
2nf wpurty

In this equation, the rms aperture jitter represents the root-
sum-square of all jitter sources, which include the clock input,
analog input signal, and ADC aperture jitter specification.
Undersampling applications are particularly sensitive to jitter.

The clock input should be treated as an analog signal in

cases where aperture jitter can affect the dynamic range of the
AD9237. Power supplies for clock drivers should be separated
from the ADC output driver supplies to avoid modulating the
clock signal with digital noise. Low jitter, crystal-controlled
oscillators make the best clock sources. If the clock is generated
from another type of source (such as gating, dividing, or other
methods), then it should be retimed by the original clock at the
last step.

The lowest typical conversion rate of the AD9237 is 1 MSPS. At
clock rates below 1 MSPS, dynamic performance may degrade.

POWER DISSIPATION, POWER SCALING, AND
STANDBY MODE

As shown in Figure 43, the power dissipated by the AD9237 is
proportional to its sample rate. The digital power dissipation
does not vary substantially between the three speed grades
because it is determined primarily by the strength of the digital
drivers and the load on each output bit. The maximum DRVDD
current can be calculated as

Inrvop = Vorvop * Croap X fax XN

where N is 12, the number of output bits.
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This maximum current occurs when every output bit switches
on every clock cycle, that is, a full-scale square wave at the
Nyquist frequency, fcix/2. In practice, the DRVDD current is
established by the average number of output bits switching,
which is determined by the encode rate and the characteristics
of the analog input signal.
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Figure 43. Total Power vs. Sample Rate with fiy = 10 MHz

For the AD9237-20 speed grade, the digital power consumption
can represent as much as 10% of the total dissipation. Digital
power consumption can be minimized by reducing the
capacitive load presented to the output drivers. The data in
Figure 43 was taken with a 5 pF load on each output driver.

The AD9237 is designed to provide excellent performance with
minimum power. The analog circuitry is optimally biased so
that each speed grade provides excellent performance while
affording reduced power consumption. Each speed grade
dissipates a baseline power at low sample rates that increases
linearly with the clock frequency, as shown in Figure 43.

The power scaling feature provides an additional power savings
when enabled, as shown in Figure 44. The power scaling mode
cannot be enabled if the clock is varied during operation. This is
because the internal circuitry cannot quickly track a changing
clock, and the part does not have enough power to operate

properly.
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Figure 44. Total Power vs. Sample Rate with Power Scaling Enabled

The MODE?2 pin is a multilevel input that controls the span
factor and power scaling modes. The MODE2 pin is internally
pulled down to AGND by a 70 kQ resistor. The input threshold
and corresponding mode selections are outlined in Table 8.

Table 8. MODE2 Selection

MODE?2 Voltage Span Factor Power Scaling
AVDD 1 Disabled
2/3 AVDD 1 Enabled
1/3 AVDD 2 Enabled
AGND (Default) 2 Disabled

The PDWN pin is a multilevel input that controls the power
states. The input threshold values and corresponding power
states are outlined in Table 9.

Table 9. PDWN Selection

PDWN Voltage | Power State Power (mW)

AVDD Power-Down Mode 1

1/3 AVDD Standby Mode 20

AGND (Default) | Normal Operation Based on speed grade

By asserting the PDWN pin high, the AD9237 is placed in
power-down mode. In this state, the ADC typically dissipates
1 mW. During power-down, the output drivers are placed in a
high impedance state. Low power dissipation in power-down
mode is achieved by shutting down the reference, reference
buffer, biasing networks, clock, and duty cycle stabilizer
circuitry. The decoupling capacitors on REFT and REFB are
discharged when entering power-down mode and then must
be recharged when returning to normal operation.

As a result, the wake-up time is related to the time spent

in power-down mode and shorter standby cycles result in
proportionally shorter wake-up times. With the recommended
0.1 pF and 10 pF decoupling capacitors on REFT and REFB, it
takes approximately 1 sec to fully discharge the reference buffer
decoupling capacitors and 3 ms to restore full operation.
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By asserting the PDWN pin to AVDD/3, the AD9237 is placed
in standby mode. In this state, the ADC typically dissipates

20 mW. The output drivers are placed in a high impedance
state. The reference circuitry is enabled, allowing for a quick
start upon bringing the ADC into normal operating mode.

DIGITAL OUTPUTS

The AD9237 output drivers can be configured to interface with
2.5V or 3.3 V logic families by matching DRVDD to the digital
supply of the interfaced logic. The output drivers are sized to
provide sufficient output current to drive a wide variety of logic
families. However, large drive currents tend to cause current
glitches on the supplies that can affect converter performance.
Applications requiring the ADC to drive large capacitive loads
or large fanouts may require external buffers or latches.

The length of the output data lines and loads placed on them
should be minimized to reduce transients within the AD9237;
these transients can detract from the converter’s dynamic
performance.

As detailed in Table 10, the data format can be selected for
either offset binary, twos complement, or gray code.

Operational Mode Selection

The AD9237 can output data in either offset binary, twos
complement, or gray code format. There is also a provision
for enabling or disabling the duty cycle stabilizer (DCS).

The MODE pin is a multilevel input that controls the data
format (except for gray code) and DCS state. The MODE pin
is internally pulled down to AGND by a 70 kQ resistor. The
input threshold values and corresponding mode selections are
outlined in Table 10.

The gray code output format is obtained by connecting GC to
AVDD. When the part is in gray code mode, the MODE pin
controls the DCS function only. The GC pin is internally pulled
down to AGND by a 70 kQ) resistor.

Table 10. MODE Selection

completed. By logically AND-ing OTR with the MSB and its
complement, overrange high or underrange low conditions can
be detected. Table 11 is a truth table for the overrange/ under-
range circuit in Figure 46, which uses NAND gates. Systems
requiring programmable gain condition of the AD9237 can,
after eight clock cycles, detect an out-of-range condition;
therefore, eliminating gain selection iterations. In addition,
OTR can be used for digital offset and gain calculation.

OTR DATA OUTPUTS

i

111111111111

0| 111111111111
+FS-1LSB

0111111111110

+FS

-FS +1/2LSB

0 | 0000 0000 0001
0 | 0000 0000 0000

0 | 0000 0000 0000

-FS

05455-049

-FS-1/2LSB -FS-1/2LSB

Figure 45. OTR Relation to Input Voltage and Output Data

Table 11. Output Data Format

MODE Voltage | Data Format Duty Cycle Stabilizer
AVDD Twos Complement | Disabled

2/3 AVvDD Twos Complement | Enabled

1/3 AVDD Offset Binary Enabled

AGND (Default) | Offset Binary Disabled

Out of Range (OTR)

An out-of-range condition exists when the analog input voltage
is beyond the input range of the ADC. The OTR pin is a digital
output that is updated along with the data output corresponding
to the particular sampled input voltage. Therefore, the OTR pin
has the same pipeline latency as the digital data. OTR is low
when the analog input voltage is within the analog input range,
and high when the analog input voltage exceeds the input range,
as shown in Figure 45. OTR remains high until the analog input
returns to within the input range and another conversion is

OTR MSB Analog Input s

0 0 Within range

0 1 Within range

1 0 Underrange

1 1 Overrange
MSB OVER =1
OTR

UNDER =1 &

MSB 8

Figure 46. Overrange/Underrange Logic

Digital Output Enable Function (OE)

The AD9237 has three-state ability. The OE pin is internally
pulled down to AGND by a 70 kQ resistor. If the OE pin is low,
the output data drivers are enabled. If the OE pin is high, the
output data drivers are placed in a high impedance state. It is
not intended for rapid access to the data bus. Note that the

OE pin is referenced to the digital supplies (DRVDD) and
should not exceed that voltage.

Timing
The AD9237 provides latched data outputs with a pipeline delay
of eight clock cycles. Data outputs are available one propagation

delay (tep) after the rising edge of the clock signal. Refer to
Figure 2 for a detailed timing diagram.
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LFCSP EVALUATION BOARD An alternative differential analog input path using an
ADS8351 op amp is included in the layout but is not populated
in production. Designers interested in evaluating the op amp
with the ADC should remove C15, R12, and R3 and populate
the op amp circuit. The passive network between the AD8351
outputs and the AD9237 allows the user to optimize the
frequency response of the op amp for the application.

The typical bench setup used to evaluate the ac performance of
the AD9237 is shown in Figure 47. The AD9237 can be driven
single-ended or differentially through a transformer. Separate
power pins are provided to isolate the DUT from the support
circuitry. Each input configuration can be selected by proper
connection of various jumpers (refer to the schematics).

3V 2.5V 2.5V 5V
— + - + — + - +
AVDD GND DRVDD GND VDL VAMP
HP8644,2Vp-p | |BAND-PASS J1
REFIN 5 /GNAL SYNTHESIZER FILTER [P ANALOG DATA
IN AD9237 CAPTURE
EVALUATION BOARD P12 AND
PROCESSING
10MHz HP8644,2vp-p | | cLock _OJz .
REFOUT CLOCK SYNTHESIZER DIVIDER ENCODE g
o

Figure 47. LFCSP Evaluation Board Connections
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Figure 48. LFCSP Evaluation Board Schematic, Analog Inputs, and DUT
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Figure 49. LFCSP Evaluation Board Schematic, Digital Path
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Figure 50. LFCSP Evaluation Board Schematic, Clock Input
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Figure 54. LFCSP Evaluation Board Layout, Power Plane
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Figure 55. LFCSP Evaluation Board Layout, Primary Silkscreen
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Figure 53. LFCSP Evaluation Board Layout, Ground Plane Figure 56. LFCSP Evaluation Board Layout, Secondary Silkscreen
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Table 12. LFCSP Evaluation Board Bill of Materials

Recommended Vendor/ Supplied
Item | Qty. | Omit' | Reference Designator Device Package |Value |Part Number by ADI
1 18 C1,C5,C7,C8,C9,C11,C12, | Chip Capacitors 0603 0.1 uF
C13,C15,C16,C31,C33,C34,
36, C37,C41, C43, C47
9 C6,C17,C18,C27,C28,
(35, C42, C44,C45
2 8 C2, C3,C4,C10, C20, Tantalum Capacitors TAJD 10 pF
C22,C25,C29
2 C24, C46
3 8 C14,C30,C32, Chip Capacitors 0603 0.001 pF
(38, C39, C40, C48,C49
4 1 c19 Chip Capacitor 0603 15 pF
5 1 26 Chip Capacitors 0603 10 pF
2 C21,C23
6 41 E2 to E36, E43, E44,E50to E53 | Headers EHOLE Jumper Blocks
2 E1, E45 S1031-02-ND
4 H1, H2, H3, H4 MTHOLE
7 2 J1,J2 SMA Connectors/50 SMA
8 1 L1 Inductor 0603 10nH | Coilcraft/0603CS-10NXGBU
9 1 P2 Terminal Block TB6 Wieland/25.602.2653.0,
25-530-0625-0
10 1 P12 Header, Dual HEADER40 Digi-Key S2131-20-ND
20-Pin RT Angle
11 5 R3, R12, R23, R28, Rx Chip Resistors 0603 0Q
6 R16,R17,R22,R27,R37,R42
12 |2 R4, R15 Chip Resistors 0603 330
13 19 R5 to R8, R13, R20, R21, Chip Resistors 0603 1kQ
R24 to R26, R30 to R32, R36,
R43 to R47
2 R38, R39
14 2 R10,R11 Chip Resistors 0603 36 Q
15 1 R29 Chip Resistors 0603 500
1 R19
16 2 RP1, RP2 Resistor Pack R_742 2200 Digi-Key
CTS/742C163220JTR
17 1 T1 ADT1-TWT AWT1-1T Mini-Circuits
18 1 U1 74LVTH162374 TSSOP-48
CMOS Register
19 1 U4 AD9237BCP ADC (DUT) |LFCSP-32 Analog Devices, Inc. X
20 1 VE) 74VCX86M SOIC-14 Fairchild
21 1 PCB AD92XXBCP/PCB PCB Analog Devices, Inc. X
22 1 u3 AD8351 Op Amp MSOP-8 Analog Devices, Inc. X
23 1 T2 M/A-COM ETC1-1-13 |1-1TX | M/A-COM/ETC1-1-13
Transformer
24 1 R2 Chip Resistor 0603 SELECT
25 3 R14,R18, R35 Chip Resistors 0603 25Q
26 4 R1, R9, R40, R41 Chip Resistors 0603 10 kQ
27 1 R34 Chip Resistor 1.2kQ
28 1 R33 Chip Resistor 100 Q
Total {118 |40

' These items are included in the PCB design but are omitted at assembly.
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OUTLINE DIMENSIONS
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COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
Figure 57. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5mm x 5 mm Body, Very Thin Quad
(CP-32-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
AD9237BCPZ-20"2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCPZRL7-20"2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCPZ-40'2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCPZRL7-40"2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCPZ-65"2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCPZRL7-65"2 -40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ) CP-32-2
AD9237BCP-20EB Evaluation Board

AD9237BCP-40EB Evaluation Board

AD9237BCP-65EB Evaluation Board

' Z = Pb-free part.
2|t is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints and maximum thermal capability of
the package is achieved with exposed paddle soldered to the customer board.
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