



# AG302-63

## InGaP HBT Gain Block

### Product Information

### Product Features

- DC – 4000 MHz
- +13.5 dBm P1dB at 900 MHz
- +26.5 dBm OIP3 at 900 MHz
- 15.5 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-363 SMT Pkg.
- Internally matched to 50 Ω

### Applications

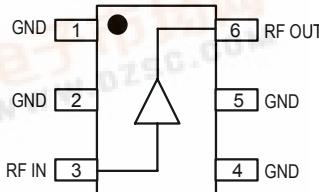
- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

### Specifications <sup>(1)</sup>

| Parameter                 | Units | Min  | Typ   | Max  |
|---------------------------|-------|------|-------|------|
| Operational Bandwidth     | MHz   | DC   |       | 6000 |
| Test Frequency            | MHz   |      | 900   |      |
| Gain                      | dB    |      | 15.6  |      |
| Input Return Loss         | dB    |      | 18    |      |
| Output Return Loss        | dB    |      | 18    |      |
| Output IP3 <sup>(2)</sup> | dBm   |      | +26.4 |      |
| Output IP2                | dBm   |      | +37   |      |
| Output P1dB               | dBm   |      | +13.4 |      |
| Noise Figure              | dB    |      | 3.4   |      |
| Test Frequency            | MHz   |      | 1900  |      |
| Gain                      | dB    | 13.5 | 14.5  | 15.5 |
| Output IP3 <sup>(2)</sup> | dBm   |      | +24.8 |      |
| Output P1dB               | dBm   |      | +12.2 |      |
| Device Voltage            | V     |      | 4.23  |      |
| Device Current            | mA    |      | 35    |      |

1. Test conditions: . T = 25° C, Supply Voltage = +5 V, R<sub>bias</sub> = 22.1 Ω, 50 Ω System.

2. 3OIP measured with two tones at an output power of -2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.


### Product Description

The AG302-63 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG302-63 typically provides 15.5 dB gain, +26.5 dBm OIP3, and +13.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85° C and is housed in a lead-free/green/RoHS-compliant SOT-363 industry standard SMT package.

The AG302-63 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the AG302-63 will work for other various applications within the DC to 4 GHz frequency range such as CATV and fixed wireless.

### Functional Diagram



| Function    | Pin No.    |
|-------------|------------|
| Input       | 3          |
| Output/Bias | 6          |
| Ground      | 1, 2, 4, 5 |

### Typical Performance <sup>(1)</sup>

| Parameter    | Units | Typical |       |       |       |
|--------------|-------|---------|-------|-------|-------|
|              |       | 500     | 900   | 1900  | 2140  |
| Frequency    | MHz   | 15.9    | 15.6  | 14.5  | 14.2  |
| S21          | dB    | -18     | -18   | -18   | -18   |
| S11          | dB    | -20     | -18   | -18   | -15   |
| S22          | dB    |         |       |       |       |
| Output P1dB  | dBm   | +13.2   | +13.4 | +12.2 | +11.7 |
| Output IP3   | dBm   | +26.6   | +26.4 | +24.8 | +24.3 |
| Noise Figure | dB    | 3.3     | 3.4   | 3.6   | 3.6   |

### Absolute Maximum Rating

| Parameter                   | Rating         |
|-----------------------------|----------------|
| Operating Case Temperature  | -40 to +85 °C  |
| Storage Temperature         | -55 to +125 °C |
| DC Voltage                  | +4.5 V         |
| RF Input Power (continuous) | +10 dBm        |
| Junction Temperature        | +250 °C        |

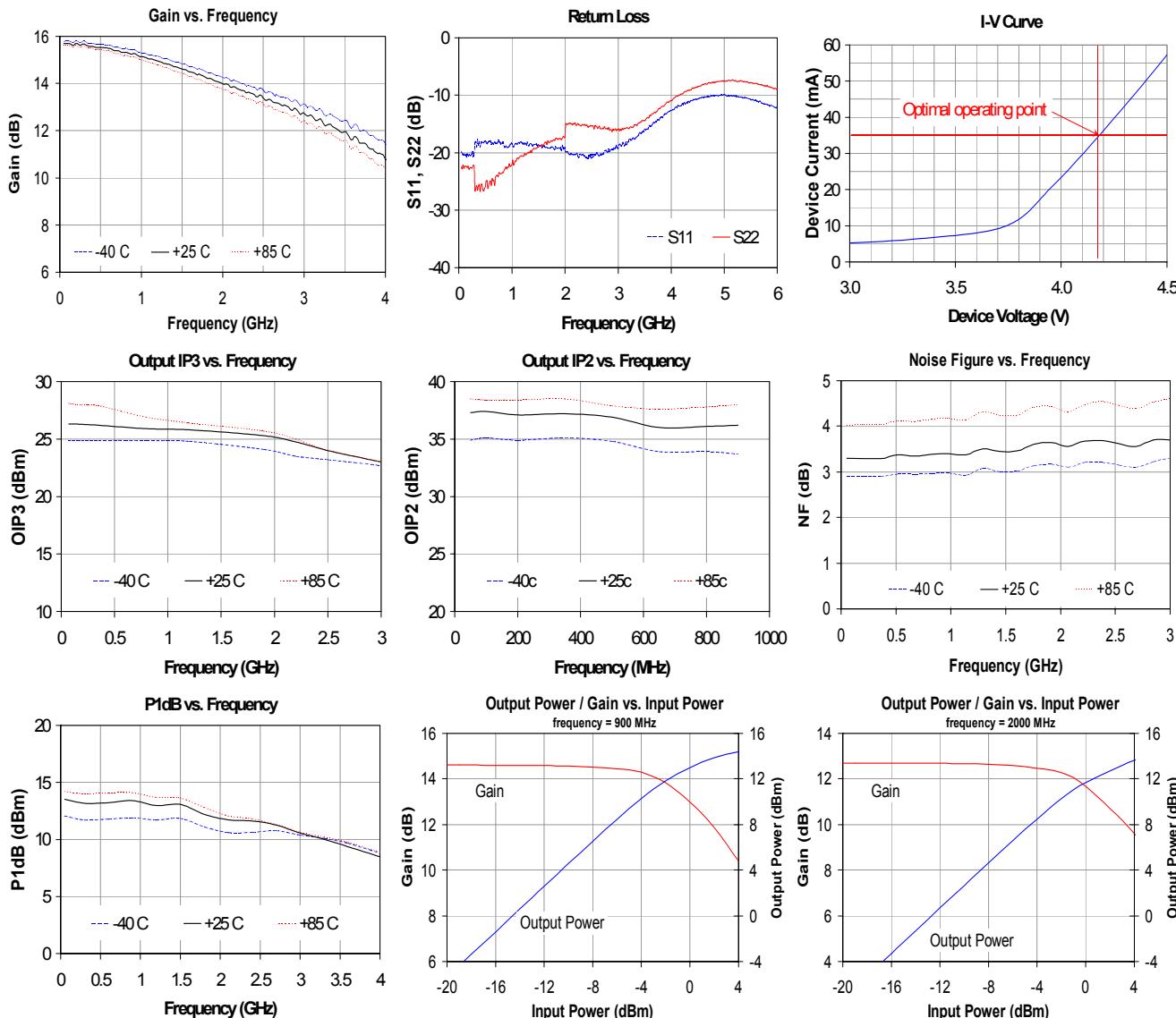
### Ordering Information

| Part No.    | Description                                                          |
|-------------|----------------------------------------------------------------------|
| AG302-63*   | InGaP HBT Gain Block<br>(lead-tin SOT-363 Pkg)                       |
| AG302-63G   | InGaP HBT Gain Block<br>(lead-free/green/RoHS-compliant SOT-363 Pkg) |
| AG302-63PCB | 700 – 2400 MHz Fully Assembled Eval. Board                           |

\* This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

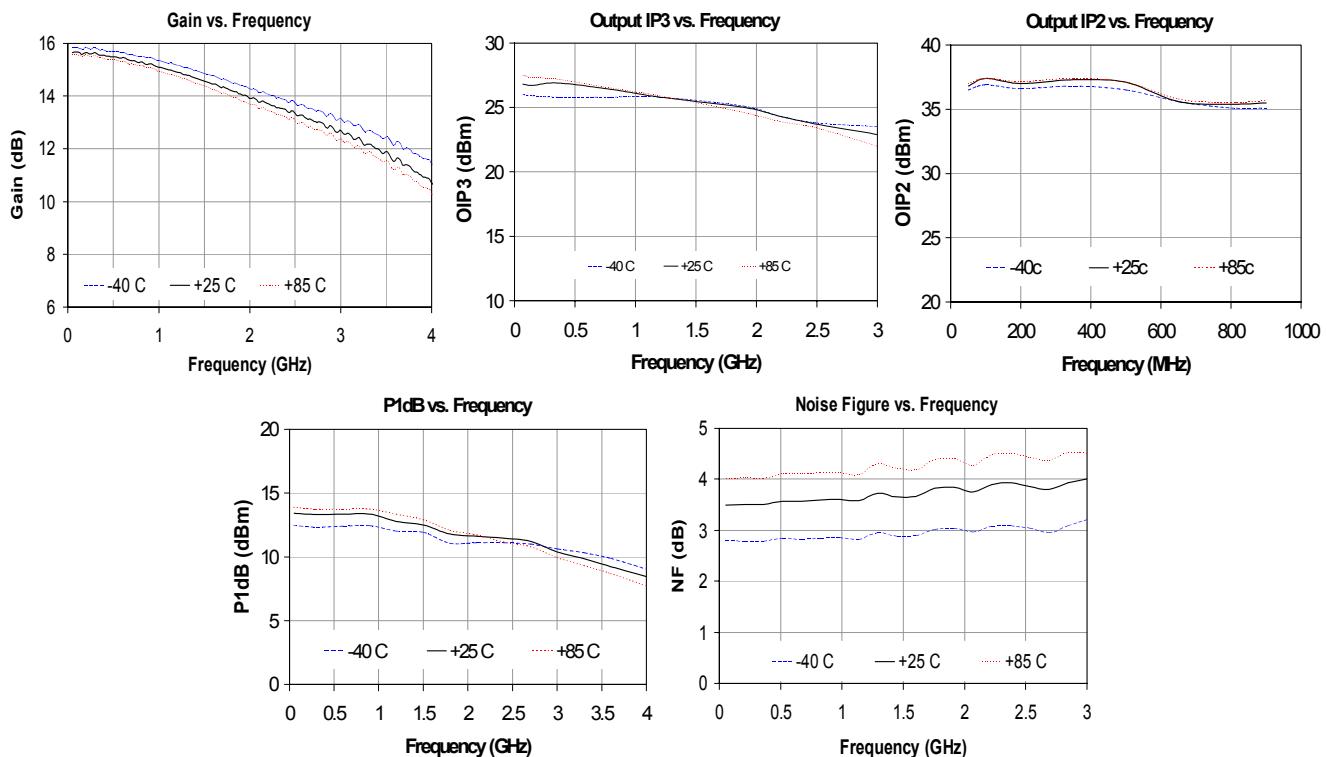
Operation of this device above any of these parameters may cause permanent damage.

## Typical Device RF Performance


Supply Bias = +5 V,  $R_{bias}$  = 22.1  $\Omega$ ,  $I_{cc}$  = 35 mA

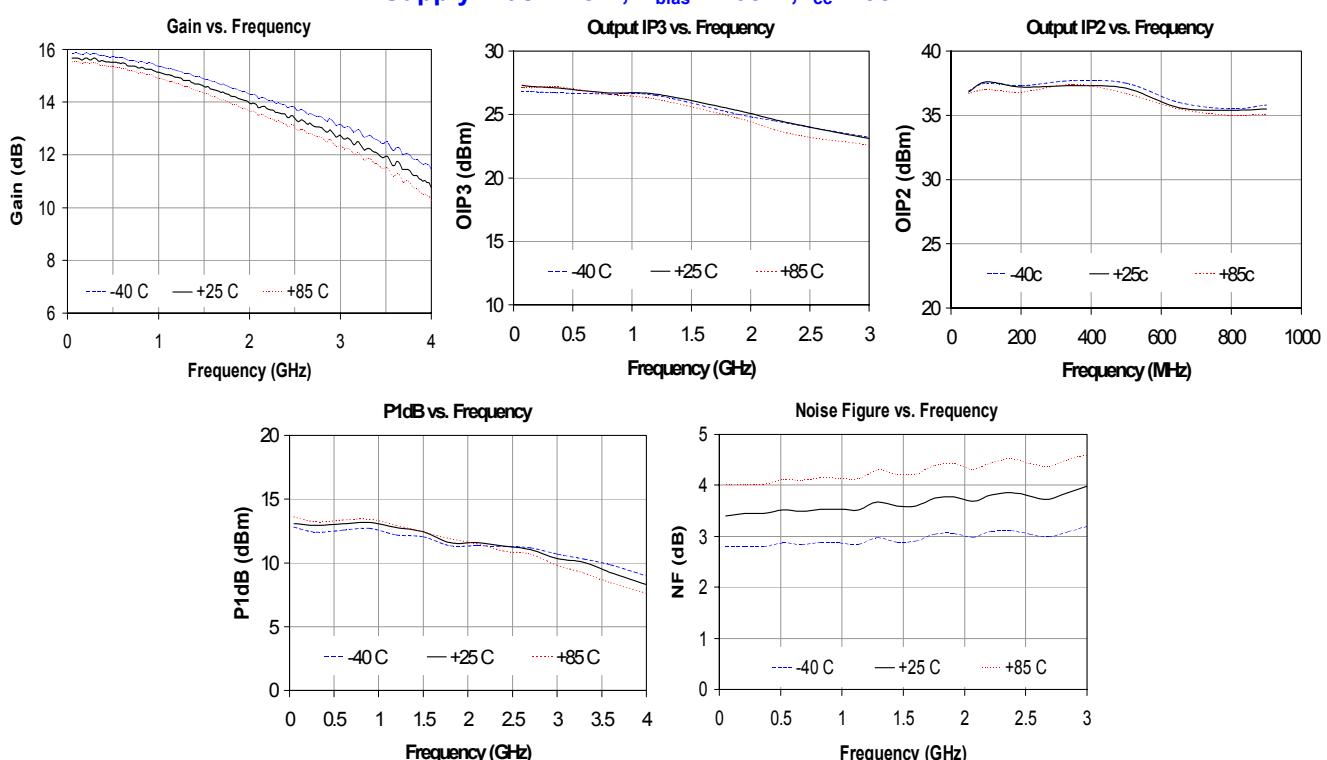
| Frequency    | MHz | 100   | 500   | 900   | 1900  | 2140  | 2400  | 3500 | 5800 |
|--------------|-----|-------|-------|-------|-------|-------|-------|------|------|
| S21          | dB  | 16.0  | 15.9  | 15.6  | 14.5  | 14.2  | 13.9  | 12.5 | 9.2  |
| S11          | dB  | -18   | -18   | -18   | -18   | -18   | -18   | -15  | -11  |
| S22          | dB  | -20   | -20   | -18   | -18   | -15   | -15   | -14  | -8   |
| Output P1dB  | dBm | +13.5 | +13.2 | +13.4 | +12.2 | +11.7 | +11.6 | +9.5 |      |
| Output IP3   | dBm | +26.6 | +26.6 | +26.4 | +24.8 | +24.3 | +23.9 |      |      |
| Noise Figure | dB  | 3.3   | 3.3   | 3.4   | 3.6   | 3.6   | 3.7   |      |      |

1. Test conditions:  $T = 25^\circ C$ , Supply Voltage = +5 V, Device Voltage = 4.23 V,  $R_{bias} = 22.1 \Omega$ ,  $I_{cc} = 35$  mA typical, 50  $\Omega$  System.


2. 3OIP measured with two tones at an output power of -2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.




## Typical Device RF Performance (cont'd)

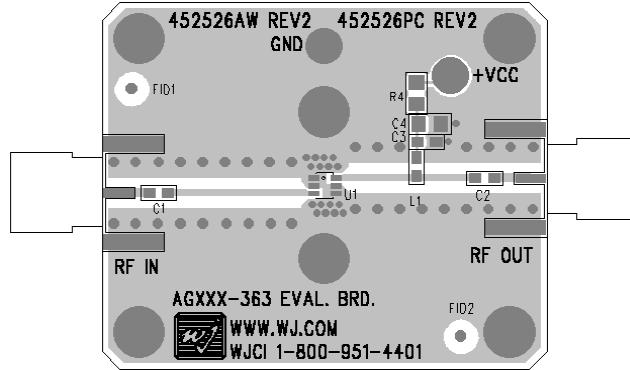
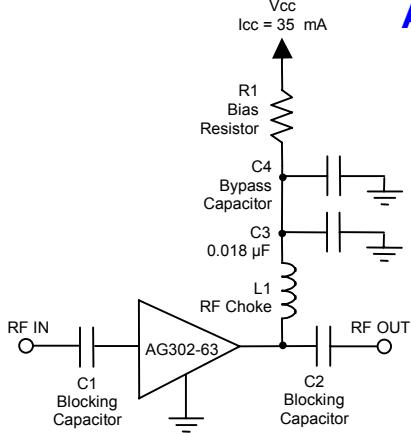
Supply Bias = +6 V,  $R_{bias}$  = 51  $\Omega$ ,  $I_{cc}$  = 35 mA



## Typical Device RF Performance

Supply Bias = +8 V,  $R_{bias}$  = 108  $\Omega$ ,  $I_{cc}$  = 35 mA





# AG302-63

## InGaP HBT Gain Block

### Product Information



### Application Circuit



#### Recommended Component Values

| Reference Designator | Frequency (MHz) |         |        |       |       |       |       |
|----------------------|-----------------|---------|--------|-------|-------|-------|-------|
|                      | 50              | 500     | 900    | 1900  | 2200  | 2500  | 3500  |
| L1                   | 820 nH          | 220 nH  | 68 nH  | 27 nH | 22 nH | 18 nH | 15 nH |
| C1, C2, C4           | .018 μF         | 1000 pF | 100 pF | 68 pF | 68 pF | 56 pF | 39 pF |

1. The proper values for the components are dependent upon the intended frequency of operation.

2. The following values are contained on the evaluation board to achieve optimal broadband performance:

| Ref. Desig. | Value / Type             | Size |
|-------------|--------------------------|------|
| L1          | 39 nH wirewound inductor | 0603 |
| C1, C2      | 56 pF chip capacitor     | 0603 |
| C3          | 0.018 μF chip capacitor  | 0603 |
| C4          | Do Not Place             |      |
| R1          | 22.1 Ω 1% tolerance      | 0805 |

#### Recommended Bias Resistor Values

| Supply Voltage | R1 value  | Size |
|----------------|-----------|------|
| 5 V            | 22.1 ohms | 0603 |
| 6 V            | 51 ohms   | 0805 |
| 7 V            | 80 ohms   | 1206 |
| 8 V            | 108 ohms  | 1210 |
| 9 V            | 137 ohms  | 1210 |
| 10 V           | 166 ohms  | 1210 |
| 12 V           | 223 ohms  | 2010 |

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

### Typical Device Data

S-Parameters ( $V_{device} = +4.23$  V,  $I_{CC} = 35$  mA,  $T = 25^\circ\text{C}$ , calibrated to device leads)

| Freq (MHz) | S11 (dB) | S11 (ang) | S21 (dB) | S21 (ang) | S12 (dB) | S12 (ang) | S22 (dB) | S22 (ang) |
|------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| 50         | -19.85   | -177.05   | 15.79    | 177.89    | -19.50   | 1.85      | -22.57   | -9.39     |
| 250        | -19.98   | 175.72    | 15.72    | 170.42    | -19.97   | 1.77      | -22.62   | -20.70    |
| 500        | -18.01   | 168.09    | 15.61    | 160.75    | -19.89   | -1.49     | -25.70   | -57.42    |
| 750        | -18.03   | 161.31    | 15.46    | 151.46    | -19.75   | -0.83     | -23.67   | -81.31    |
| 1000       | -18.40   | 155.28    | 15.23    | 142.64    | -20.03   | -5.40     | -21.92   | -97.33    |
| 1250       | -18.41   | 151.47    | 15.04    | 133.43    | -19.57   | -3.15     | -20.29   | -113.22   |
| 1500       | -18.66   | 151.02    | 14.72    | 124.92    | -19.70   | -3.55     | -19.00   | -123.83   |
| 1750       | -19.00   | 148.77    | 14.42    | 116.42    | -19.61   | -2.45     | -17.99   | -133.36   |
| 2000       | -19.53   | 143.58    | 14.09    | 108.45    | -19.21   | -4.88     | -17.12   | -142.08   |
| 2250       | -20.76   | 113.17    | 13.77    | 100.67    | -19.05   | -5.29     | -15.05   | -130.60   |
| 2500       | -20.87   | 111.03    | 13.52    | 95.18     | -19.25   | -9.57     | -15.35   | -142.08   |
| 2750       | -19.68   | 123.77    | 13.23    | 87.31     | -18.88   | -8.74     | -15.64   | -156.85   |
| 3000       | -19.28   | 129.86    | 12.90    | 79.66     | -18.52   | -7.78     | -15.96   | -175.61   |
| 3250       | -17.79   | 131.49    | 12.55    | 72.44     | -18.46   | -10.45    | -15.54   | 163.89    |
| 3500       | -15.90   | 129.32    | 12.20    | 64.86     | -18.38   | -12.94    | -14.38   | 142.50    |
| 3750       | -14.24   | 123.22    | 11.76    | 57.50     | -18.15   | -16.94    | -12.52   | 126.50    |
| 4000       | -12.67   | 119.37    | 11.34    | 49.91     | -17.95   | -17.17    | -10.93   | 117.72    |
| 4250       | -11.41   | 115.92    | 10.89    | 43.03     | -17.83   | -21.16    | -9.42    | 109.93    |
| 4500       | -10.59   | 112.56    | 10.41    | 36.71     | -17.67   | -22.91    | -8.57    | 104.82    |
| 4750       | -10.10   | 109.83    | 9.99     | 30.18     | -17.43   | -25.99    | -7.86    | 102.35    |
| 5000       | -9.85    | 106.48    | 9.64     | 24.37     | -17.45   | -26.81    | -7.45    | 102.33    |
| 5250       | -10.24   | 105.44    | 9.33     | 19.39     | -17.45   | -29.65    | -7.63    | 102.18    |
| 5500       | -10.79   | 104.94    | 9.06     | 14.78     | -16.94   | -30.74    | -7.77    | 103.04    |
| 5750       | -11.50   | 106.52    | 8.93     | 9.92      | -16.70   | -31.15    | -8.37    | 104.38    |
| 6000       | -12.41   | 105.88    | 8.77     | 4.74      | -16.46   | -33.40    | -9.03    | 103.86    |

Device S-parameters are available for download on the website at: <http://www.wj.com>

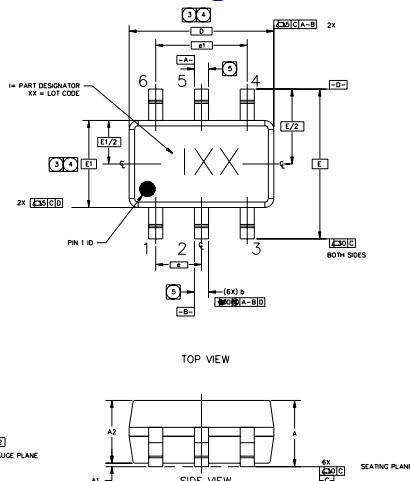
Specifications and information are subject to change without notice.





# AG302-63

## InGaP HBT Gain Block


### Product Information

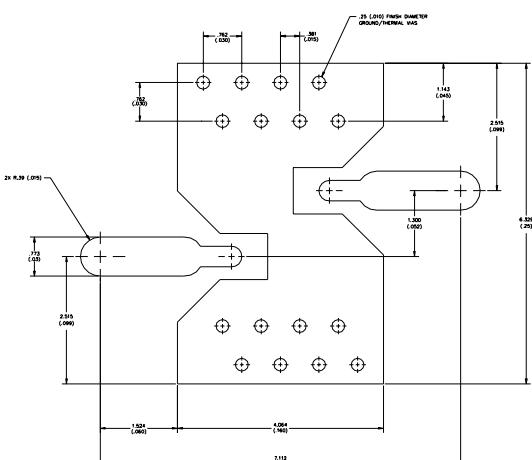
## AG302-63G (Green / Lead-free SOT-363 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is annealed matte tin over copper.

### Outline Drawing

| SYMBOL | MN          | MAX         |
|--------|-------------|-------------|
| A      | -           | .10 (.045)  |
| A1     | 0           | .10 (.045)  |
| A2     | .70 (.028)  | .100 (.038) |
| D      | 2.00        | BASIC       |
| E      | .73 (.033)  | BASIC       |
| E1     | .12 (.009)  | BASIC       |
| L      | .05 (.010)  | .46 (.118)  |
| L1     | .42 REF     |             |
| L2     | .15 (.006)  | BASIC       |
| g      | .08         | .88         |
| g1     | .48         | 1.28        |
| b      | .15 (.006)  | .30 (.012)  |
| c      | .06 (.003)  | .09 (.009)  |
| *      | .65 BASIC   |             |
| e1     | 1.30 (.051) | BASIC       |

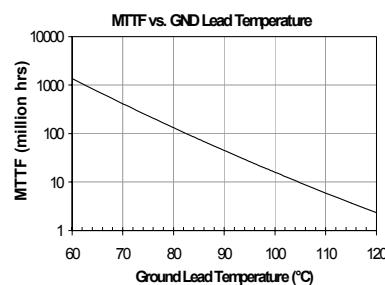



NOTES:

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994. PACKAGE CONFORMS TO JEDEC STANDARD SOT-363.
2. DIMENSIONS ARE IN MILLIMETERS (INCHES).
3. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE (0.006 INCHES). IT DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H.
4. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS A1, A2, E, L, L1, L2, g, g1, b, c, e1, e, and e1 ARE THE OUTERMOST DIMENSIONS OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE PLASTIC BODY AND THE METAL LEAD FRAME. THE PLASTIC BODY, D AND E1 DIMENSIONS ARE DETERMINED AT DATUM H.

5. DATUM A & B TO BE DETERMINED AT DATUM H.

6. DIMENSION b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.07 mm TOTAL IN EXCESS OF b'. DIMENSION b' IS THE MAXIMUM ALLOWABLE PROTRUSION. THE DAMBAR IS NOT LOCATED ON THE LOWER RADIUS OF THE LEAD. DIMENSION b' DOES NOT INCLUDE PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.


### Land Pattern



### Thermal Specifications

| Parameter                            | Rating       |
|--------------------------------------|--------------|
| Operating Case Temperature           | -40 to +85°C |
| Thermal Resistance, $R_{th}^{(1)}$   | 325°C/W      |
| Junction Temperature, $T_{jc}^{(2)}$ | 133°C        |

1. The thermal resistance is referenced from the hottest part of the junction to the ground pin (pin 4).
2. This corresponds to the typical biasing condition of +4.23V, 35 mA at an 85°C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 177 °C.



### Product Marking

The component will be marked with an "I" designator followed by a two-digit numeric lot code on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

### MSL / ESD Rating



**Caution!** ESD sensitive device.

ESD Rating: Class 1C  
 Value: Passes at 1000 V min.  
 Test: Human Body Model (HBM)  
 Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV  
 Value: Passes at 1000 V min.  
 Test: Charged Device Model (CDM)  
 Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3  
 Standard: JEDEC Standard J-STD-020

### Mounting Config. Notes

1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
5. RF trace width depends upon the PC board material and construction.
6. Use 1 oz. Copper minimum.
7. All dimensions are in millimeters (inches). Angles are in degrees.