

The Communications Edge

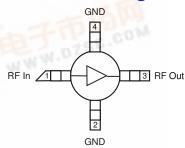
Product Information

Product Features

- DC 6000 MHz
- +19.5 dBm P1dB at 900 MHz
- +33 dBm OIP3 at 900 MHz
- 20.5 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless


Product Description

The AG604-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG604-86 typically provides 20.5 dB gain, +33 dBm OIP3, and +19.5 dBm PldB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-86 (micro-X) industry-standard SMT lead-free/green/RoHScompliant package.

The AG604-86 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the AG604-86 will work for other various applications within the DC to 6 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2.4

Specifications (1)

Units	Min	Тур	_Max_
MHz	DC		6000
MHz		900	
dB		20.5	
dB		21	
dB		15	
dBm		+33.1	1919
dBm	74-1	+44	20 M
dBm	T. Tal. C	+19.4	
dB	W 77	3.5	
MHz		1900	
dB	16.1	17.1	18.1
dBm		+33.1	
dBm		+19.2	
V		5.16	
mA		75	
	MHz MHz dB dB dB dBm dBm dBm dB MHz dB dBm dBm	MHz DC MHz dB dB dB dBm dBm dBm dBm dB MHz dB 16.1 dBm dBm	MHz DC MHz 900 dB 20.5 dB 21 dB 15 dBm +33.1 dBm +44 dBm 3.5 MHz 1900 dB 16.1 17.1 dBm +33.1 dBm +19.2 V 5.16

1. Test conditions: T = 25° C, Supply Voltage = +6 V, R_{bias} = 11.2 Ω , 50 Ω System. 2. 3OIP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The

- suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.
- 3. The junction temperature ensures a minimum MTTF rating of 1 million hours of usage.

Typical Performance (1)

Parameter	Units	Typical						
Frequency	MHz	500	900	1900	2140			
S21	dB	21.8	20.5	17.1	16.4			
S11	dB	-19	-21	-20	-18			
S22	dB	-19	-15	-12	-12			
Output P1dB	dBm	+19.4	+19.4	+19.2	+19.2			
Output IP3	dBm	+33.4	+33.1	+33.1	+32.8			
Noise Figure	dB	3.5	3.5	3.7	3.7			

Absolute Maximum Rating

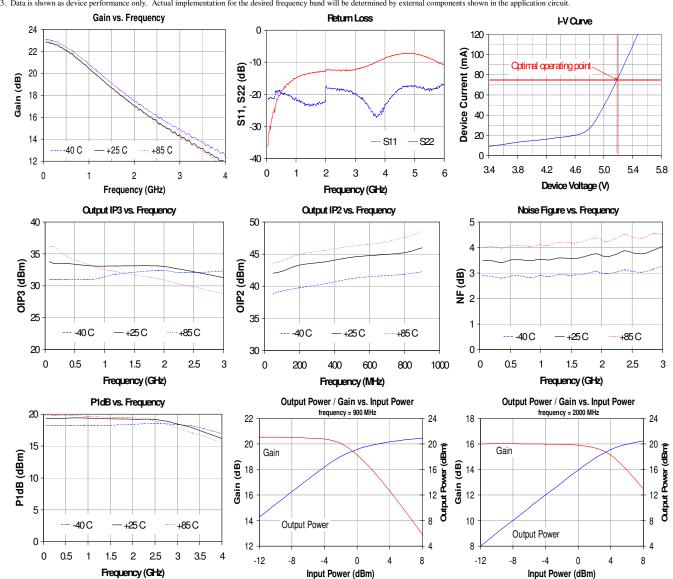
Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +125 °C
DC Voltage	+7 V
RF Input Power (continuous)	+10 dBm
Junction Temperature	+250° C

ration of this device above any of these parameters may cause permanent damage.

Ordering Information

Part No.	Description
AG604-86*	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG604-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)
AG604-86PCB	700 – 2400 MHz Fully Assembled Eval. Board

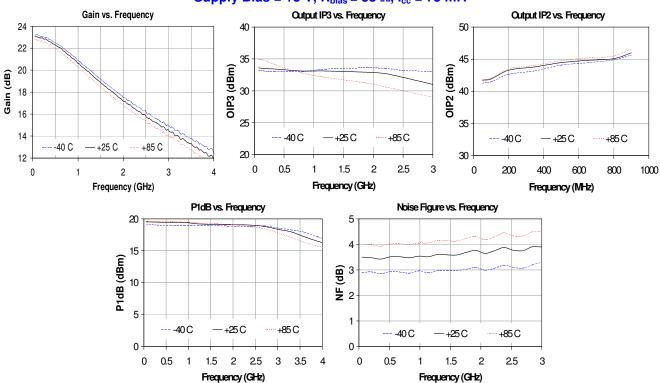
^{*} This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

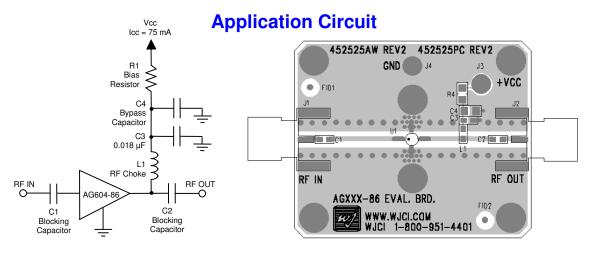


Typical Device RF Performance Supply Bias = 6 V, R_{bias} = 11.2 Ω , I_{cc} = 75 mA

Frequency	MHz	100	500	900	1900	2140	2400	3500	5800
S21	dB	22.5	21.8	20.5	17.1	16.4	15.7	13.3	9.6
S11	dB	-21	-19	-21	-20	-18	-18	-24	-17
S22	dB	-31	-19	-15	-12	-12	-12	-11	-10
Output P1dB	dBm	+19.4	+19.4	+19.4	+19.2	+19.2	+19.2	+17.3	
Output IP3	dBm	+33.6	+33.4	+33.1	+33.1	+32.8	+32.4		
Noise Figure	dB	3.5	3.5	3.5	3.7	3.7	3.8		

- 1. Test conditions: T = 25° C, Supply Voltage = +6 V, Device Voltage = 5.16 V, Rbias = $11.2~\Omega$, Icc = 75 mA typical, $50~\Omega$ System.
- 2. 30IP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 30IP using a 2:1 rule.


 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.



Typical Device RF Performance (cont'd)

Supply Bias = +8 V, R_{bias} = 38 Ω , I_{cc} = 75 mA

Recommended Component Values

Reference	Frequency (MHz)								
Designator	50	500	900	1900	2200	2500	3500		
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH		
C1, C2, C4	.018 µF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF		

- 1. The proper values for the components are dependent upon the intended frequency of operation.
- 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 μF chip capacitor	0603
C4	Do Not Place	
R1	10.0 Ω 1% tolerance	0805

Recommended Bias Resistor Values

Supply Voltage	R1 value	Size
6 V	11.2 ohms	0805
7 V	24.5 ohms	1210
8 V	38 ohms	1210
9 V	51 ohms	2010
10 V	65 ohms	2010
12 V	91 ohms	2512

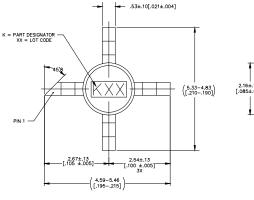
The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

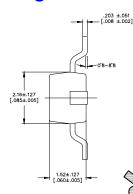
Typical Device Data

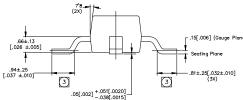
S-Parameters ($V_{device} = +5.16 \text{ V}$, $I_{CC} = 75 \text{ mA}$, $T = 25^{\circ} \text{ C}$, calibrated to device leads)

B Turumeters (device 13.10	*, I((= 75 III I,	1 = 25 °C, cun	orated to device	reads)			
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-21.36	171.20	23.29	176.64	-25.29	0.98	-36.23	-30.61
250	-21.24	148.71	23.04	162.42	-25.48	0.92	-25.51	-88.92
500	-19.07	129.69	22.51	145.85	-25.39	4.17	-19.25	-129.52
750	-20.42	107.13	21.75	130.99	-25.28	3.21	-16.75	-139.14
1000	-21.14	85.39	20.90	117.72	-24.89	6.01	-15.00	-145.66
1250	-22.78	59.67	20.06	106.07	-24.67	5.75	-13.88	-152.90
1500	-23.41	27.80	19.15	95.25	-24.25	9.11	-13.34	-160.21
1750	-23.06	1.57	18.33	85.37	-23.93	8.17	-13.00	-166.01
2000	-21.07	-15.63	17.53	76.36	-23.21	8.09	-12.63	-171.09
2250	-18.31	-16.89	16.80	68.71	-22.71	7.73	-12.42	-163.03
2500	-18.42	-25.44	16.34	62.31	-22.45	6.73	-12.52	-170.99
2750	-18.90	-33.07	15.67	54.43	-21.88	5.42	-12.59	178.15
3000	-19.91	-33.93	15.09	46.60	-21.52	1.63	-12.16	163.69
3250	-21.37	-32.65	14.53	39.03	-21.20	0.79	-11.57	149.64
3500	-24.23	-20.20	14.00	31.64	-20.71	-2.20	-10.77	136.73
3750	-26.79	21.70	13.41	23.85	-20.46	-4.37	-9.78	124.54
4000	-23.27	63.55	12.87	16.37	-19.89	-8.20	-8.73	114.71
4250	-20.46	83.10	12.39	9.36	-19.43	-11.52	-7.89	106.47
4500	-18.44	95.89	11.90	2.23	-19.26	-13.73	-7.44	100.69
4750	-17.55	102.99	11.41	-4.43	-19.02	-17.90	-7.25	96.80
5000	-17.39	114.74	11.10	-10.67	-18.60	-21.88	-7.36	93.88
5250	-17.93	129.37	10.78	-16.71	-18.16	-24.66	-7.83	92.46
5500	-18.84	152.45	10.58	-22.45	-17.83	-27.05	-8.87	92.92
5750	-18.01	175.36	10.37	-28.59	-17.44	-30.81	-9.79	92.81
6000	-16.84	-168.81	10.12	-34.75	-16.90	-32.65	-10.88	93.05

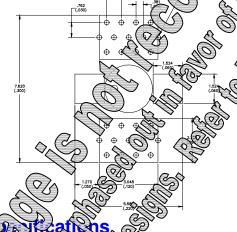
Device S-parameters are available for download off of the website at: http://www.wj.com




Product Information


AG604-86 (SOT-86 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is Snl


Outline Drawing

Land Patter

is refere from the hottest part pin 2 or 4).

Thermal

Operating Therma

> al biasing condition of case temperature. A willion hours is achieved for

this part are 'Application

D Rating

ion! ESD sensitive device.

Class 0 Passes at 150 V

Human Body Model (HBM) JEDEC Standard JESD22-A114

ESD Rating: Class II Value: Passes at 250 V

Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101

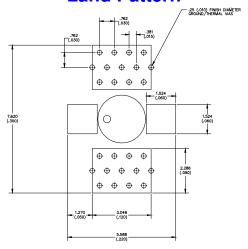
MSL Rating: Level 1

JEDEC Standard J-STD-020A

Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm
- Add as much copper as possible to inner and outer layers near
- the part to ensure optimal thermal performance.

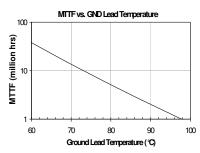
 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in



AG604-86G (Green / Lead-free Sot-86 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed matte tin over copper.

Outline Drawing V= PART DESIGNATOR XX= LOT CODE XX= LOT COD


Land Pattern

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Thermal Resistance, Rth (1)	206 °C/W
Junction Temperature, Tjc (2)	165 °C

- 1. The thermal resistance is referenced from the hottest part of the junction to the ground lead (pin 2 or 4).
- This corresponds to the typical biasing condition of +5.16V, 75 mA at an 85 °C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 177 °C.

Product Marking

The component will be marked with an "V" designator followed by a two-digit numeric lot code on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

MSL / ESD Rating

Caution! ESD sensitive device.

ESD Rating: Class 1C

Value: Passes at 1000 V min.
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min.
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010")
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.
- Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.