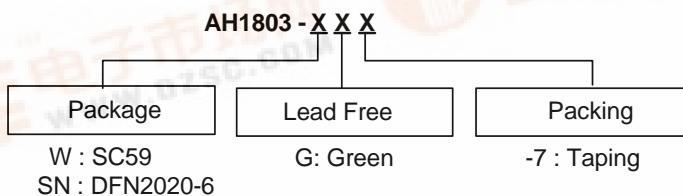


AH1803

MICROPOWER, ULTRA-SENSITIVE HALL EFFECT SWITCH

Features

- Micropower operation
- Operation with North or South Pole
- 2.4 to 5.5V battery operation
- Chopper stabilized
 - Superior temperature stability
 - Extremely low switch-point drift
 - Insensitive to physical stress
- Good RF noise immunity
- -40°C to 85°C operating temperature
- Low profile 3 pin SC59 (commonly known as SOT23 in Asia) and DFN2020-6 package
- ESD (HBM) > 4KV for DFN2020-6
- Lead Free Finish / RoHS Compliant (Note 1)
- Green Packages: SC59 and DFN2020-6


General Description

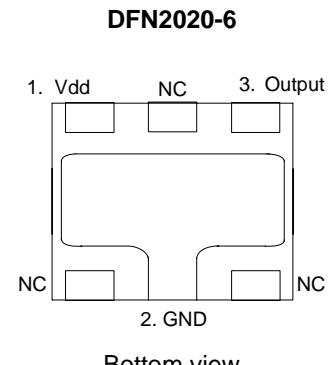
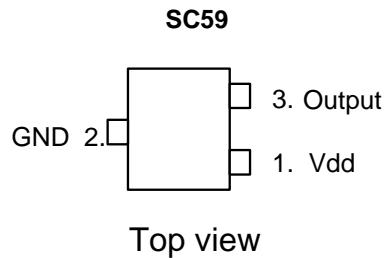
AH1803 is with two Hall effect plates and a CMOS output driver, mainly designed for battery-operation, hand-held equipment (such as Cellular and Cordless Phone, PDA). The total operation power is down to 24uW in the 3V supply. Either north or south pole of sufficient strength will turn the output on. The output will be turned off under no magnetic field. While the magnetic flux density (**B**) is larger than operate point (**B_{op}**), the output will be turned on (low), the output is held until **B** is lower than release point (**B_{rp}**), then turned off (High).

Applications

- Cellular phone
- PDA
- Cordless phone

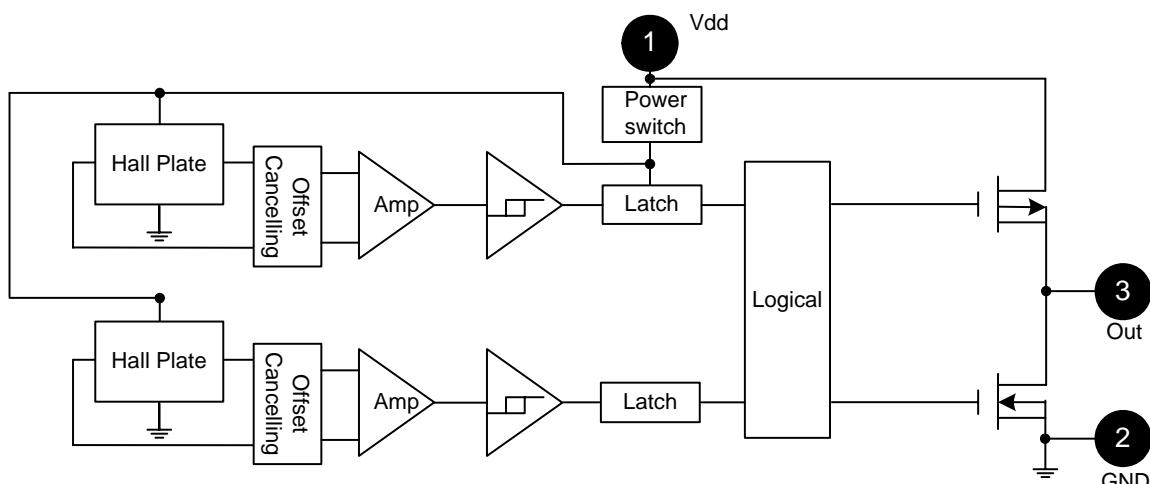
Ordering Information

Note: 1. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see *EU Directive Annex Notes 5 and 7*.



Device	Package Code	Packaging (Note 2)	7" Tape and Reel	
			Quantity	Part Number Suffix
AH1803-W	W	SC59	3000/Tape & Reel	-7
AH1803-SN	SN	DFN2020-6	3000/Tape & Reel	-7

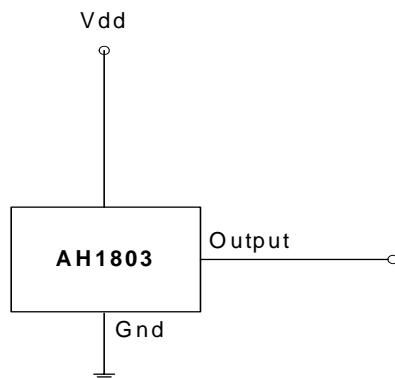
Note: 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at <http://www.diodes.com/datasheets/ap02001.pdf>.

Pin Description


Name	P/I/O	Pin #	Description
Vdd	P/I	1	Power Supply Input
GND	P/I	2	Ground
Output	O	3	Output Pin

Pin Assignment

Note: 3. NC is "No Connection", which is recommended to be tied to ground.


Block Diagram

Typical Circuit

Absolute Maximum Ratings (@ TA = 25°C)

Symbol	Characteristics		Values	Unit
Vdd	Supply voltage		7	V
B	Magnetic flux density		Unlimited	
TA	Operating Temperature Range		-40 to +85	°C
Ts	Storage Temperature Range		-65 to +150	°C
P _D	Package Power Dissipation	SC59	230	mW
		DFN2020-6	230	mW
T _J	Maximum Junction Temperature		150	°C

Recommended Operating Conditions (TA = 25°C)

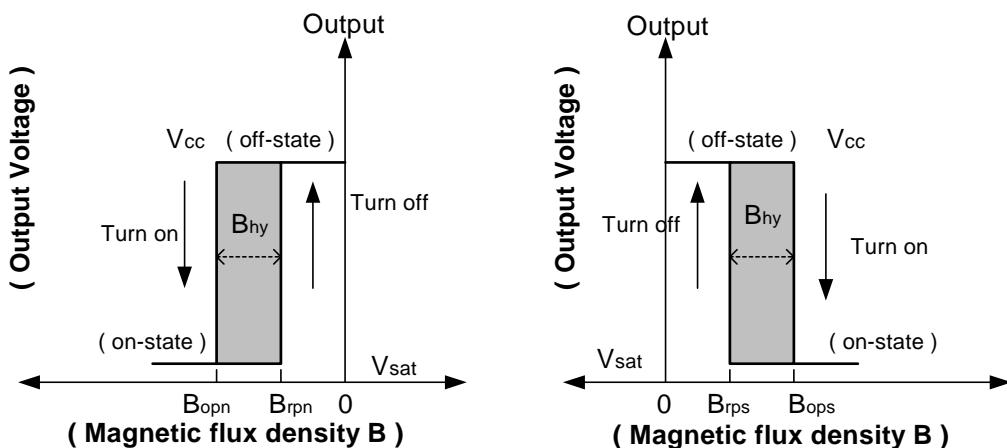
Symbol	Parameter	Conditions	Rating	Unit
Vdd	Supply Voltage	Operating	2.4~5.5	V

Electrical Characteristics

($T_A = +25^\circ\text{C}$, $V_{dd} = 3\text{V}$; unless otherwise specified)

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit
V_{out}	Output On Voltage	$I_{out} = 1\text{mA}$	-	0.1	0.3	V
I_{off}	Output Leakage Current	$V_{out} = 5.5\text{V}$, $B_{opn} < B < B_{rps}$	-	<0.1	1	μA
$I_{dd(en)}$	Supply Current	Chip enable, $T_A = 25^\circ\text{C}$, $V_{dd} = 3\text{V}$	-	3	6	mA
		Chip enable, $T_A = -40\text{--}85^\circ\text{C}$, $V_{dd} = 2.4\text{--}5.5\text{V}$	-	3	9	mA
		Chip disable, $T_A = 25^\circ\text{C}$, $V_{dd} = 3\text{V}$	-	5	10	μA
		Chip disable, $T_A = -40\text{--}85^\circ\text{C}$, $V_{dd} = 2.4\text{--}5.5\text{V}$	-	5	14	μA
$I_{dd(dis)}$		Average supply current, $T_A = 25^\circ\text{C}$, $V_{dd} = 3\text{V}$	-	8	16	μA
		Average supply current, $T_A = -40\text{--}85^\circ\text{C}$, $V_{dd} = 2.4\text{--}5.5\text{V}$	-	8	23	μA
T_{awake}	Awake Time		-	75	150	μs
T_{period}	Period		-	75	150	ms
D.C.	Duty Cycle		-	0.1	-	%

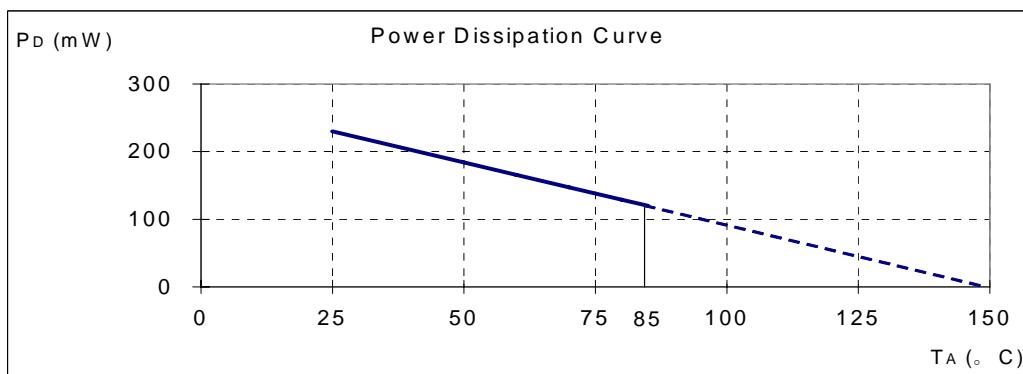
Magnetic Characteristics


($T_A = 25^\circ\text{C}$, $V_{dd} = 3\text{V}$)

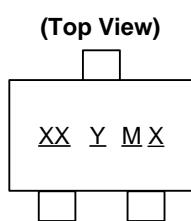
(1mT=10 Gauss)

Symbol	Characteristic	Min	Typ	Max	Unit
B_{ops} (south pole to brand side)	Operate Point	2	3	4	mT
B_{opn} (north pole to brand side)		-4	-3	-2	
B_{rps} (south pole to brand side)	Release Point	1	2	-	mT
B_{rpn} (north pole to brand side)		-	-2	-1	
$B_{hy}(B_{opx} - B_{rpx})$	Hysteresis	0.5	1	-	

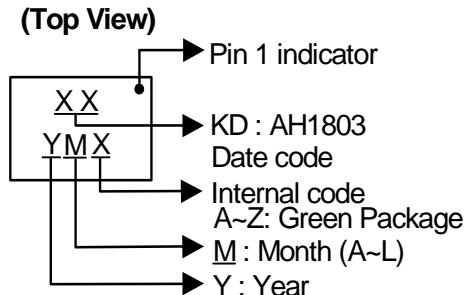
Note: 4. Typical data is at $T_A = 25^\circ\text{C}$, $V_{dd} = 3\text{V}$, and for design information only.


5. Operate point and release point will vary with supply voltage and operating temperature.

Performance Characteristics


(1) SC59 and DFN2020-6

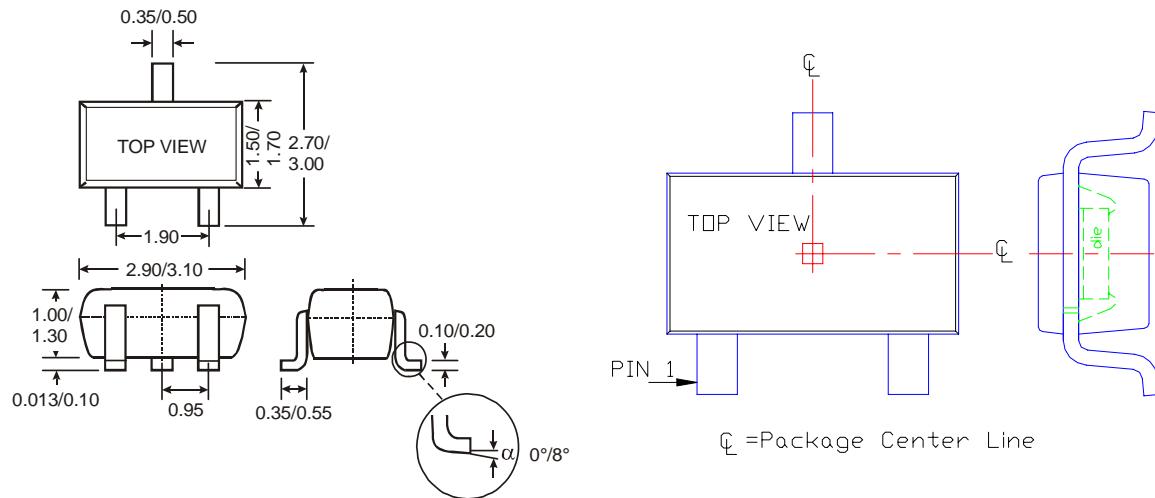
TA (°C)	25	50	60	70	80	85	90	100	110	120	130	140	150
PD (mW)	230	184	166	147	129	120	110	92	74	55	37	18	0


Marking Information

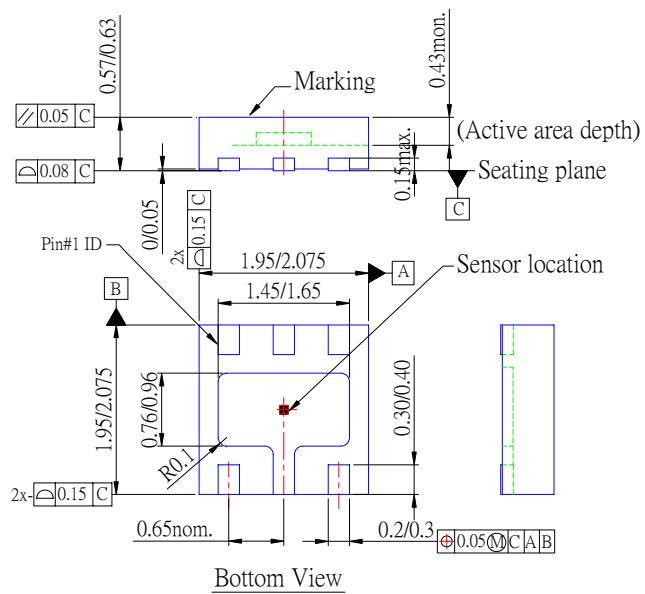
(1) SC59

XX : KD: AH1803
Y : Year 0~9
M : Month A~L
X : Internal code
 A~Z: Green

(2) DFN2020-6



Part Number	Package	Identification Code
AH1803	SC59	KD


Part Number	Package	Identification Code
AH1803	DFN2020-6	KD

Package Information (unit: mm)

(1) Package Type: SC59 (commonly known as SOT23 in Asia)

(2) Package Type: DFN2020-6

AH1803

**MICROPOWER, ULTRA-SENSITIVE HALL EFFECT
SWITCH**

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.