查询AMC1112供应商

DESCRIPTION

The AMC1112 of positive fixed regulators is designed to provide 1A for applications requiring high efficiency. All internal circuitry is designed to operated down to 800mV input to output differential and the dropout voltage is fully specified as a function of load current.

The AMC1112 offers current limiting and thermal protection. The on chip trimming adjusts the reference voltage accuracy to 1%.

AMC1112

1A LOW DROPOUT POSITIVE REGULATOR

FEATURES

- Output current of 1A typical
- Three-terminal fixed 1.2V outputs
- Low dropout of typical 800mV
- Thermal protection built in
- Typical 0.015% line regulation
- Typical 0.01% load regulation
- Fast transient response
- Available in SOT-223 and TO-252 packages
- Pin assignment identical to earlier FAN1112.

APPLICATIONS

- 2.85V Model for SCSI-2 Active Termination DISC
- Battery Charger
- High Efficiency Linear Regulators
- **Battery** Powered Instrumentation
- Post Regulator for Switching DC/DC Converter

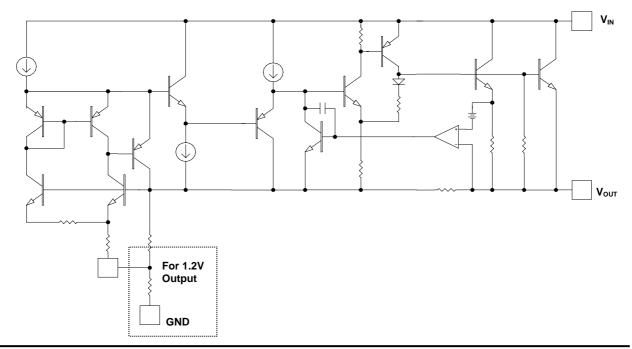
PACKAGE PIN OUT

(Top View)

ORDER INFORMATION SOT223 TO-252 SK SJ T_A (°C) 3-pin 3-pin AMC1112SK (SnPb) AMC1112SJ (SnPb) 0 to 70 AMC1112KF (Lead Free) AMC1112SJF (Lead Free) Note: 1.All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. AMC1112SJT). 2. The letter "F" is marked for Lead Free process.

AMC1112

ABSOLUTE MAXIMUM RATINGS (Note 1)	
Input Voltage	13V
Operating Junction Temperature Range, T _J	0° C to 150° C
Storage Temperature Range	-65 °C to 150 °C
Lead Temperature (soldiering, 10 seconds)	260 °C
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Groun- negative out of the specified terminal.	d. Currents are positive into,


	POWER DISSIPATION TABLE								
Package	θ_{JA}	Derating factor ($mW/^{\circ}C$)	$T_A \le 25^{\circ}C$	$T_A = 70^{\circ}C$	$T_A = 85^{\circ}C$				
	(°C /W)	$T_A \ge 25 ^{\circ}C$	Power rating(mW)	Power rating(mW)	Power rating (mW)				
SK	136	7.35	919	588	478				
SKF	136	7.35	919	588	478				
SJ	80	12.5	1562	1000	812				
SJF	80	12.5	1562	1000	812				

Note :

1. θ_{J_A} : Thermal Resistance-Junction to Ambient, D_F : Derating factor, Po: Power consumption. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{J_A})$, $Po = D_F \times (T_J - T_A)$ The θ_{J_A} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no ambient airflow.

2. $\theta_{JT:}$ Thermal Resistance-Junction to Tab, $T_C:$ case(Tab) temperature, $T_J = T_C + (P_D \times \theta_{JT})$ For SK package, $\theta_{JT} = 15.0 \text{ }^{\circ}\text{C} / \text{W}$. For SJ package, $\theta_{JT} = 7.0 \text{ }^{\circ}\text{C} / \text{W}$.

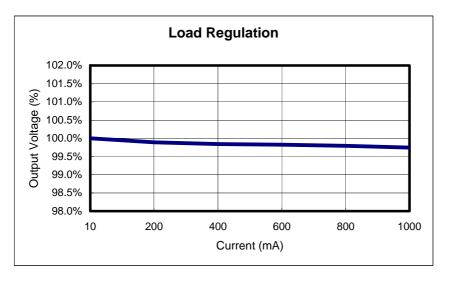
BLOCK DIAGRAM

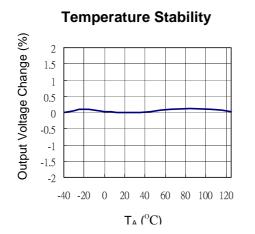
AMC1112

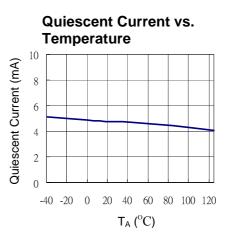
RECOMMENDED OPERATING CONDITIONS						
Parameter	G 1 1	Recommended Operating Conditions			TT '4	
	Symbol	Min.	Тур.	Max.	Units	
Input Voltage	V _{IN}	2.4		12	V	
Load Current (with adequate heatsinking)	Io	10			mA	
Input Capacitor (V _{IN} to GND)		1.0			μF	
Output Capacitor with ESR of 10Ω max., (V _{OUT} to GND)		4.7			μF	
Junction temperature	T _J			125	°C	

		EI	LECTRICAL CHARACTERISTICS					
Unless otherv	wise specified, V_{IN}	= V _{OUT} +2	$2V$, $I_0 = 10mA$, and $T_J = 25^{\circ}C$.					
Da	Parameter Symbol Test Conditions AMC1112 Uni							
Fa	rameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Output	AMC1112	Vout	$I_0 = 10 \text{mA}, V_{IN} - V_{OUT} = 2 \text{V}$	1.18	1.20	1.26	v	
Voltage	AMCTIL	vout	$10mA \leq I_O \leq 1A, \ V_{OUT} + 1.5V \leq V_{IN} \leq 12V$	1.17	1.20	1.27	v	
Line	AMC1112		I_{O} = 10mA, V_{OUT} +1.5V $\leq V_{IN} \leq 12V$		0.04	0.20	%	
Regulation	AMC1112	ΔV_{OI}	$\begin{split} I_{O} &= 10 m A, \\ V_{OUT} + 1.5 V \leq V_{IN} \leq 12 V \end{split}$		1.0	6.0	mV	
Load AMC1112 Regulation AMC1112		ΔV_{OL}	$10\text{mA} \le I_0 \le 1\text{A}, V_{\text{IN}} - V_{\text{OUT}} = 3\text{V}$		0.10	0.40	%	
			$10mA \le I_O \le 1A, V_{IN} = V_{OUT} + 1.5V$		1.0	10.0	mV	
Dropout Voltage		ΛV	$I_0 = 10 \text{mA}$		0.8	1.15		
			$I_0 = 500 \text{mA}$ 0.		0.8	1.20	V	
			$I_0 = 1A$ 1.0 1					
Minimum L (Note 1)	oad Current		$3.0V \le Vin \le 12V$	10			mA	
Quiescent CurrentAMC1112 I_Q $V_{IN} \le 12V$			6	10	mA			
Current Lim	it	I _{CL}	$V_{IN} - V_{OUT} = 3V$	1	1.2		Α	
Adjust Pin C	Current		$I_0 = 10 mA$, $V_{IN} - V_{OUT} = 2V$		50	120	μΑ	
Thermal Regulation (Note 2)			$T_A = 25 ^{\circ}C$, 30 ms pulse		0.01	0.1	%/W	
Ripple rejec	ction (Note 2)	R _R	$f_0 = 120Hz, 1V_{RMS}, I_0 = 400mA,$ $V_{IN} - V_{OUT} = 3V$	60	75		dB	

ELECTRICAL CHARACTERISTICS

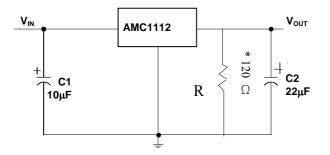

Note 1: For the adjustable device, the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.


Note 2: These parameters, although guaranteed, are not tested in production.


AMC1112

CHARACTERIZATION CURVES

Unless otherwise specified, $V_{IN}{=}~V_{OUT}{+}2V$, $C_{IN}{=}1\mu F$, $C_{OUT}{=}4.7\mu F$, $T_A{=}25\,^oC$



AMC1112

APPLICATION INFORMATION

Note: $1. *120\Omega$ for warrant work on 10mA.

2. R doesn't need to use if load more than 120 Ω .

Fixed Voltage Regulator

AMC1112

Application Note:

Maximum Power Calculation:

 $P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$

 $T_{J}(^{\circ}C)$: Maximum recommended junction temperature

 $T_A(^{\circ}C)$: Ambient temperature of the application

 $\theta_{JA}(^{\circ}C/W)$: Junction-to-junction temperature thermal resistance of the package, and other heat dissipating materials.

The maximum power dissipation of a single-output regulator :

 $P_{D(MAX)} = [(V_{IN(MAX)} - V_{OUT(NOM)})] \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_Q$

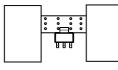
Where: $V_{OUT(NOM)}$ = the nominal output voltage $I_{OUT(NOM)}$ = the nominal output current, and I_Q = the quiescent current the regulator consumes at $I_{OUT(MAX)}$ $V_{IN(MAX)}$ = the maximum input voltage Then θ_{JA} = (150 °C - T_A)/ P_D

Thermal consideration:

When power consumption is over about 404 mW (for SOT-223 package, 687mW for TO-252 package, at $T_A=70$ °C), additional heat sink is required to control the junction temperature below 125 °C.

The junction temperature is: $T_J = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$

P_D:Dissipated power.

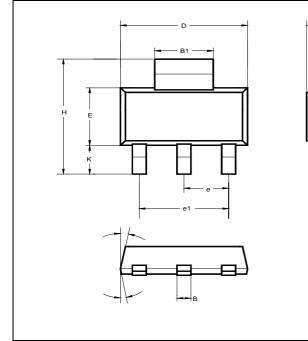

- θ_{JT} : Thermal resistance from the junction to the mounting tab of the package.
- θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{CS} < 1.0^{\circ}$ C/W)
- θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through hole vias.

PCB θ_{SA} (°C /W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000

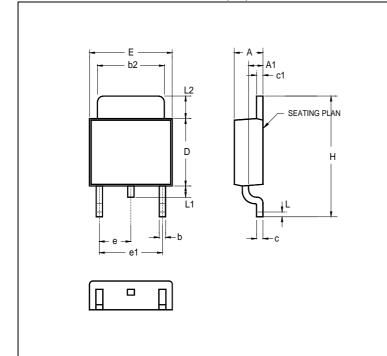
through hole vias

Recommended figure of PCB area used as a heat sink.


(Top View)

(Bottom View)

AMC1112


PACKAGE

3-Pin Surface Mount SOT-223 (SK)

	MILLIMETERS				
	MIN	TYP	MAX		
А	1.50	1.65	1.80		
A1	0.02	0.05	0.08		
В	0.60	0.70	0.80		
B1	2.90	-	3.15		
с	0.28	0.30	0.32		
D	6.30	6.50	6.70		
Е	3.30	3.50	3.70		
е	2.3 BSC				
e1		4.6 BSC			
Н	6.70	7.00	7.30		
L	0.91	1.00	1.10		
K	1.50	1.75	2.00		
α	0°	5°	10°		
β		3°			

3-Pin Surface Mount TO-252 (SJ)

		-	-			
	INCHES			MIL	LIMETE	ERS
	MIN	TYP	MAX	MIN	TYP	MAX
А	0.086	-	0.094	2.18	-	2.39
A1	0.040	-	0.050	1.02	-	1.27
b	-	0.024	-	-	0.61	-
b2	0.205	-	0.215	5.21	-	5.46
С	0.018	-	0.023	0.46	-	0.58
c1	0.018	-	0.023	0.46	-	0.58
D	0.210	-	0.220	5.33	-	5.59
Е	0.250	-	0.265	6.35	-	6.73
е	0.	.090 BS	C	2	.29 BS0	0
e1	0.	.180 BS	C	4	.58 BS0	0
Н	0.370	-	0.410	9.40	-	10.41
L	0.020	-	-	0.51	-	-
L1	0.025	-	0.040	0.64	-	1.02
L2	0.060		0.080	1.52		2.03

AMC1112

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp. 9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105 TEL: 2-25700299 FAX: 2-25700196