AME，Inc．

AME5106

■ General Description

AME5106 provides low－ripple power，high efficiency，and excellent transient characteristics．The PWM control cir－ cuit is able to vary the duty ratio linearly from 0 up to 100% ．This converter also contains an error amplifier cir－ cuit as well as a soft－start circuit that prevents overshoot at startup．An enable function，an over current protect func－ tion and a short circuit protect function are built inside， and when OCP or SCP happens，the operation frequency will be reduced from 350 KHz to 30 KHz ．Also，an internal compensation block is built in to minimum external com－ ponent count．

With the addition of an internal P－channel Power MOS， a coil，capacitors，and a diode connected externally，these ICs can function as step－down switching regulators．They serve as ideal power supply units for portable devices when coupled with the SOP－8L mini－package，providing such outstanding features as low current consumption．Since this converter can accommodate an input voltage up to 18 V ，it is also suitable for the operation via an AC adapter．

Applications

－PC Motherboard
－LCD Monitor
－Graphic Card
－DVD－Video Player
－Telecom Equipment
－ADSL Modem
－Printer and other Peripheral Equipment
－Microprocessor core supply
－Networking power supply
.

■ Features

－Input voltage： 3.6 V to 18 V ．
－Output voltage： 0.8 V to VCC．
－Duty ratio： 0% to 100% PWM control
－Oscillation frequency：350KHz typ．
－Soft－start，Current limit，Enable function
－Thermal Shutdown function
－Built－in internal SW P－channel MOS
－SOP－8 Package
－All AME＇s Lead Free Products Meet RoHS Standards

- Typical Application

Note: $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{FB}} \times\left(1+\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}\right)$
$\mathrm{R}_{\mathrm{B}}=0.7 \mathrm{~K} \sim 5 \mathrm{~K} \Omega$

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {MAX }}=2 \mathrm{~A}$			
$\mathrm{~V}_{\text {OUT }}$	2.5 V	3.3 V	5 V
L1 Value	22 uH	27 uH	33 uH

Function Block Diagram

Pin Configuration

SOP-8
Top View

AME5106

1. FB
2. EN
3. OCSET
4. IN
5. SW
6. SW
7. GND
8. GND

* Die Attach:

Conductive Epoxy

Pin Description

Pin Number	Pin Name	Pin Description
1	FB	Output voltage Feedback input. Set the output voltage by selecting values for Ra and Rb using: $V_{\text {out }}=0.8 V\left(\frac{R a+R b}{R b}\right)$ Connect the ground of the feedback network to an AGND (Analog Ground) plane which should be tied directly to the GND pin.
2	EN	Enable Control Input, active high. The enable pin is an active high control. Tie this pin above 2V to enable the device. Tie this pin below 0.8V to shut down the device. In shutdown, all function are disabled. Do not leave EN pin floating.
3	OCSET	Add an external resistor to set max output current.
4	SN	Input Supply Voltage Pin. Bypass this pin with a capacitor. The capacitor shall be placed as close to the device as possible.
5,6	GND	Switch Node Connection to Inductor.
7,8	Ground. Tie directly to ground plane.	

■ Ordering Information

Pin Configuration	Operating Ambient Temperature Range	Package Type	Number of Pins	Output Voltage	Special Feature
A 1. FB (sop-8) 2. EN 3. OCSET 4. IN 5. SW 6. SW 7. GND 8. GND	I: $\quad-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	H: SOP	A: 8	ADJ: Adjustable	Z: Lead free

Ordering Information

Part Number	Marking *	Output Voltage	Package	Operating Ambient Temperature Range
AME5106AIHAADJZ	5106 AADJ yyww	ADJ	SOP-8	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Note: ww represents the date code.

* A line on top of the first letter represents lead free plating such as $\overline{5} 106$ AADJ yyww.

Please consult AME sales office or authorized Rep./Distributor for the availability of package type.

■ Absolute Maximum Ratings

Parameter	Symbol	Maximum	Unit
Input Supply Voltage	IN	-0.3 V to 22 V	
EN,SW Pin Voltages	$\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{SW}}$	-0.3 V to 0.3 V	V
FB Pin Voltage	V_{FB}	-0.3 V to V_{IN}	
ESD Classification	TBD^{*}		

Caution: Stree above the listed absolute maximum rating may cause permanent damage to the device.
*HBM B: 2000~3999V

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Ambient Temperature Range	T_{A}	-20 to 85	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-20 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to 150	${ }^{\circ} \mathrm{C}$

■ Thermal Information

Parameter	Package	Die Attach	Symbol	Maximum	Unit
Thermal Resistance* (Junction to Case)	SOP-8	Conductive Epoxy	$\theta_{\text {Jc }}$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (Junction to Ambient)	SOP-8		$\theta_{\text {JA }}$	150	
Internal Power Dissipation	SOP-8		P_{D}	810	mW
Solder Iron (10 Sec)**				350	${ }^{\circ} \mathrm{C}$

[^0]
Electrical Specifications

$V_{I N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified.

Parameter	Symbol	Test Condition		Min	Typ	Max	Units
Input Voltage	$\mathrm{V}_{\text {IN }}$			3.6		18	V
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	lout $=0.1 \mathrm{~A}$		0.782	0.8	0.818	V
FB Pin Bias Current	$\mathrm{I}_{\text {FB }}$	lout $=0.1 \mathrm{~A}$			0.1	0.5	$\mu \mathrm{A}$
Switch Current	Isw			2.5			A
Current Consumption During Power Off	Isss	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			10		$\mu \mathrm{A}$
Output Voltage Line Regulation	REGGIINE	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to 18 V			2	4	\%
Output Voltage Load Regulation	REGLOAD	lout $=0.1 \mathrm{~A}$ to 2 A			0.2	0.5	\%
Oscillator Frequency	fosc	Measure wave form at SW pin		300	350	400	KHz
Frequency of Current Limit or Short Circuit Protect	fosc1	Measure wave form at SW pin		10			KHz
Enable High (enabled)	$\mathrm{V}_{\mathrm{H}-\mathrm{EN}}$	Evaluate oscillation at SW pin		2.0			V
Enable Low (shutdown)	$\mathrm{V}_{\text {IL_EN }}$	Evaluate oscillation stop at SW pin				0.8	
EN High Input Current	$\mathrm{l}_{\mathrm{H} \text { _eN }}$				20		$\mu \mathrm{A}$
EN Low Input Current	IL_EN				-10		$\mu \mathrm{A}$
OCSET Pin Bias Current	locset			75	90	105	$\mu \mathrm{A}$
Soft Start Time	$\mathrm{t}_{\text {ss }}$			0.3	2	5	mS
Internal MOSFET R ${ }_{\text {DSon }}$	$\mathrm{R}_{\text {DSon }}$	$\mathrm{V}_{\mathrm{Fb}}=0 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		110	150	$\mathrm{m} \Omega$
			$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$		70	100	
Efficiency	η	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=2 \mathrm{~A}$			92		\%

■ Detailed Description

PWM Control

The AME5106 consists of DC/DC converters that employ a pulse-width modulation (PWM) system. In converters of the AME5106, the pulse width varies in a range from 0 to 100%, according to the load current. The ripple voltage produced by the switching can easily be removed through a filter because the switching frequency remains constant. Therefore, these converters provide a low-ripple power over broad ranges of input voltage and load current.

Under Voltage Lockout

The under voltage lockout circuit of the AME5106 assures that the high-side MOSFET driver outputs remain in the off state whenever the supply voltage drops below 3.3 V . Normal operation resumes once VCC rises above 3.5 V .

RDS(ON) Current Limiting

The current limit threshold is setting by the external resistor connecting from VCC supply to OCSET. The internal 100uA sink current crossing the resistor sets the voltage at the pin of OCSET. When the PWM voltage is less than the voltage at OCSET, an over-current condition is triggered.

$$
I_{\text {LOAD }} \times R_{\text {DS(ON) }}=I_{\text {OCSET }} \times R_{\text {OCSET }}
$$

See above formula for setting the current limit value.

Characterization Curve(For reference only)

Vin vs. FB

Load Regulation

Efficiency

Line Regulation

$V_{\text {IN }}$ v.s Frequency

Vout Ripple

Characterization Curve(For reference only)

Vout Ripple

Soft start time

- Tape and Reel Dimension

SOP-8

Carrier Tape, Number of Components Per Reel and Reel Size

Package	Carrier Width (W)	Pitch (P)	Part Per Full Reel	Reel Size
SOP-8	$12.0 \pm 0.1 \mathrm{~mm}$	$4.0 \pm 0.1 \mathrm{~mm}$	2500 pcs	$330 \pm 1 \mathrm{~mm}$

Package Dimension

SOP-8

www.ame.com.tw
 E-Mail: sales@ame.com.tw

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.
AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.
© AME, Inc. , December 2007
Document: ORT6513-DS5106-A. 01

Corporate Headquarter
AME, Inc.
2F, 302 Rui-Guang Road, Nei-Hu District
Taipei 114, Taiwan.
Tel: 8862 2627-8687
Fax: 8862 2659-2989

U.S.A. (Subsidiary)

Analog Microelectronics, Inc.
3100 De La Cruz Blvd., Suite 201
Santa Clara, CA. 95054-2438
Tel : (408) 988-2388
Fax: (408) 988-2489

[^0]: * Measure θ_{JC} on center of molding compound if IC has no tab.
 ** MIL-STD-202G-210F

