

AMIS-30521 Micro-stepping Motor Driver

Data Sheet

1.0 Introduction

The AMIS-30521 is a micro-stepping stepper motor driver for bipolar stepper motors. The chip is connected through I/O pins and an SPI interface with an external microcontroller. The AMIS-30521 contains a current-translation table and takes the next micro-step depending on the clock signal on the "NXT" input pin and the status of the "DIR" (=direction) register or input pin. The chip provides a so-called "speed and load angle" output. This allows the creation of stall detection algorithms and control loops based on load-angle to adjust torque and speed. It is using a proprietary PWM algorithm for reliable current control.

The AMIS-30521 is implemented in I2T100 technology, enabling both high-voltage analog circuitry and digital functionality on the same chip. The chip is fully compatible with the automotive voltage requirements.

The AMIS-30521 is ideally suited for general-purpose stepper motor applications in the automotive, industrial, medical, and marine environment.

2.0 Key Features

- Dual H-Bridge for 2-phase stepper motors
- Programmable peak-current up to 1.6A using a 5-bit current DAC
- On-chip current translator
- SPI interface
- Speed and load angle output
- Seven step modes from full-step up to 32 micro-steps
- Fully integrated current-sense
- PWM current control with automatic selection of fast and slow decay
- Low EMC PWM with selectable voltage slopes
- Active fly-back diodes
- Full output protection and diagnosis
- Thermal warning and shutdown
- Compatible with 5V and 3.3V microcontrollers

3.0 Ordering information

Table 1: Ordering Information

Part No.	Package	Peak Current	Temp. Range	Ordering Code Tubes	Ordering Code Tapes
AMIS-30521 ANA	NQFP-32 (7 x 7mm)	1600mA	-40°C.....125°C	0C521-001-XTD	0C521-001-XTP

4.0 Block Diagram

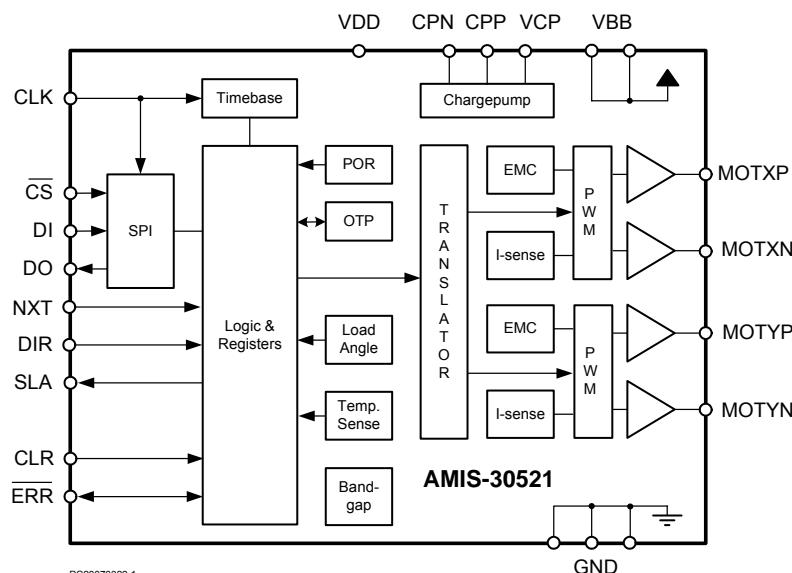


Figure 1: Block Diagram AMIS-30521

5.0 Pin Description

Table 2: Pin List and Description

Name	Pin	Description
DO	31	SPI data output
VDD	32	Logic Supply Input (needs external decoupling capacitor)
GND	1	Ground, heat sink
DI	2	SPI data in
CLK	3	SPI clock input
NXT	4	Next micro-step input
DIR	5	Direction input
ERRB	6	Error Output
SLA	7	Speed Load Angle Output
CPN	9	Negative connection of charge pump capacitor
CPP	10	Positive connection of charge pump capacitor
VCP	11	Charge-pump filter-capacitor
CLR	12	“Clear” = Chip Reset input
CSB	13	SPI chip select input
VBB	14	High Voltage Supply Input
MOTYP	15, 16	Negative end of phase Y coil output
GND	17, 18	Ground, heat sink
MOTYN	19, 20	Positive end of phase Y coil output
MOTXN	21, 22	Positive end of phase X coil output
GND	23, 24	Ground, heat sink
MOTXP	25, 26	Negative end of phase X coil output
VBB	27	High Voltage Supply Input
/	8, 28, 30	No Function (to be left open in normal operation)
TST0	29	Test pin (to be tied to ground in normal operation) input

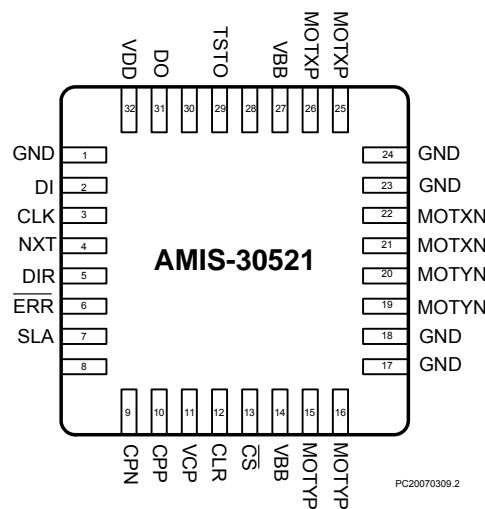


Figure 2: Pin Out AMIS-30521

5.1 Package Thermal Characteristics

The NQFP is designed to provide superior thermal performance, and using an exposed die pad on the bottom surface of the package partly contributes to this. In order to take full advantage of this thermal performance, the PCB must have features to conduct heat away from the package. A thermal grounded pad with thermal vias can achieve this. With a layout as shown in [Figure 3: PCB Ground Plane Layout Condition](#), the thermal resistance junction – to – ambient can be brought down to a level of 30°C/W.

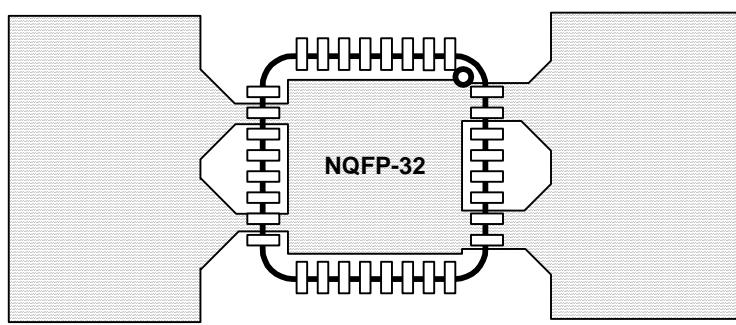


Figure 3: PCB Ground Plane Layout Condition

6.0 Electrical Specification

6.1 Absolute Maximum Ratings

Stresses above those listed in table below may cause immediate and permanent device failure. It is not implied that more than one of these conditions can be applied simultaneously.

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Units
V_{BB}	Analog DC supply voltage ⁽¹⁾	-0.3	+40	V
V_{DD}	Logic supply voltage	-0.3	+7.0	V
T_{strg}	Storage temperature	-55	+160	°C
T_{amb}	Ambient temperature under bias	-50	+150	°C
V_{ESD}	Electrostatic discharges on component level ⁽²⁾	-2	+2	kV

Notes:

- (1) For limited time <0.5s.
- (2) Human body model (100pF via 1.5 kΩ, according to JEDEC EIA-JESD22-A114-B).

6.2 Recommend Operation Conditions

Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the functionality of the chip outside these operating ranges is not guaranteed. Operating outside the recommended operating ranges for extended periods of time may affect device reliability.

Table 4: Operating Ranges

Symbol	Parameter	Min.	Max.	Units
V_{BB}	Analog DC supply	+6	+30	V
V_{DD}	Logic supply voltage	4.75	5.25	V
I_{ddd}	Dynamic current ⁽¹⁾		18	mA
T_a	Ambient temperature $VBAT \leq +18$	-40	+125	°C
T_a	Ambient temperature $VBAT \leq +29$	-40	+85	°C
T_j	Junction temperature		+160	°C

Notes:

- (1) Dynamic current is with oscillator running, all analogue cells active. All outputs unloaded, no floating inputs.

AMIS-30521 Micro-stepping Motor Driver

Data Sheet

6.3 DC Parameters

The DC parameters are given for V_{BB} and temperature in their operating ranges unless otherwise specified. Convention: currents flowing in the circuit are defined as positive.

Table 5: DC Parameters

Symbol	Pin(s)	Parameter	Remark/Test Conditions	Min.	Typ.	Max.	Unit
Supply Inputs							
V_{BB}	VBB	Nominal operating supply range		6		30	V
I_{bat}		Total current consumption	Unloaded outputs			8	mA
V_{dd}	VDD	Logic supply voltage		4.75	5	5.25	V
Power-on-Reset (POR)							
V_{DDH}	VDD	Internal POR comparator threshold	VDD rising	4.0	4.25	4.4	V
V_{DDL}		Internal POR comparator threshold	VDD falling			3.68	V
Motordriver							
$I_{MDmax,Peak}$	MOTXP MOTXN MOTYP MOTYN	Max current through motor coil in normal operation			1600		mA
$I_{MDmax,RMS}$		Max RMS current through coil in normal operation			800		mA
I_{MDabs}		Absolute error on coil current		-10		10	%
I_{MDrel}		Error on current ratio I_{coilx} / I_{coily}		-7		7	%
R_{HS}		On-resistance high-side driver, CUR[4:0] = 0...31	$V_{bb} = 12V, T_j = 27^\circ C$		0.45	0.56	Ω
			$V_{bb} = 12V, T_j = 160^\circ C$		0.94	1.25	Ω
R_{LS3}		On-resistance low-side driver, CUR[4:0] = 23...31	$V_{bb} = 12V, T_j = 27^\circ C$		0.45	0.56	Ω
			$V_{bb} = 12V, T_j = 160^\circ C$		0.94	1.25	Ω
R_{LS2}		On-resistance low-side driver, CUR[4:0] = 16...22	$V_{bb} = 12V, T_j = 27^\circ C$		0.90	1.2	Ω
			$V_{bb} = 12V, T_j = 160^\circ C$		1.9	2.5	Ω
R_{LS1}		On-resistance low-side driver, CUR[4:0] = 9...15	$V_{bb} = 12V, T_j = 27^\circ C$		1.8	2.3	Ω
			$V_{bb} = 12V, T_j = 160^\circ C$		3.8	5.0	Ω
R_{LS0}		On-resistance low-side driver, CUR[4:0] = 0...8	$V_{bb} = 12V, T_j = 27^\circ C$		3.6	4.5	Ω
			$V_{bb} = 12V, T_j = 160^\circ C$		7.5	10	Ω
I_{Mpd}		Pull-down current	HiZ mode		0.5		mA
Logic Inputs							
I_{leak}	DI, CLK	Input leakage ⁽³⁾	$T_j = 160^\circ C$			1	μA
V_{inL}	NXT, DIR	Logic low threshold				1.5	V
V_{inH}	CLR, CSB	Logic high threshold		3.5			V
R_{pd}	CLR TST0	Internal pull-down resistor		120		300	$k\Omega$
Thermal Warning and Shutdown							
T_{tw}		Thermal warning		138	145	152	$^\circ C$
T_{tsd} ^{(1) (2)}		Thermal shutdown				$T_{tw} + 20$	$^\circ C$
Charge Pump							
V_{cp}	VCP	Output voltage	$6V < V_{BB} < 15V$		2 * $V_{BB} - 2.5$		V
			$15V < V_{BB} < 30V$	$V_{BB} + 12.5$	$V_{BB} + 14$	$V_{BB} + 15.5$	V
C_{buffer}		External buffer capacitor		180	220	470	nF
C_{pump}	CPP CPN	External pump capacitor		180	220	470	nF

Notes:

- (1) No more than 100 cumulated hours in life time above T_{tw} .
- (2) Thermal shutdown and low temperature warning are derived from thermal warning.
- (3) Not valid for pins with internal pull-down resistor.

6.4 AC Parameters

The AC parameters are given for V_{BB} and temperature in their operating ranges.

Table 6: AC Parameters

Symbol	Pin(s)	Parameter	Remark/Test Conditions	Min.	Typ.	Max.	Unit
Internal Oscillator							
f_{osc}		Frequency of internal oscillator		3.6	4	4.4	MHz
Motordriver							
f_{PWM}	MOTxx	PWM frequency	Frequency depends only on internal oscillator	20.8	22.8	24.8	kHz
		Double PWM frequency		41.6	45.6	49.6	kHz
f_j	MOTxx	PWM Jitter frequency		tbd			Hz
		PWM Jitter depth		tbd			% f_{PWM}
$T_{b_{rise}}$	MOTxx	turn-on voltage slope, 10% to 90%	EMC[1:0] = 00	150			V/μs
			EMC[1:0] = 01	100			V/μs
			EMC[1:0] = 10	50			V/μs
			EMC[1:0] = 11	25			V/μs
$T_{b_{fall}}$	MOTxx	turn-off voltage slope, 90% to 10%	EMC[1:0] = 00	150			V/μs
			EMC[1:0] = 01	100			V/μs
			EMC[1:0] = 10	50			V/μs
			EMC[1:0] = 11	25			V/μs
Digital Outputs							
T_{H2L}	DO ERRB	Output fall-time from V_{inH} to V_{inL}	Capacitive load 400pF and pull-up resistor of 1.5 kΩ			50	ns
Charge Pump							
f_{CP}	CPN CPP	Charge pump frequency			250		kHz
T_{CPU}	MOTxx	Start-up time of charge pump	Spec external components				
CLR Function							
T_{CLR}	CLR	Hard reset duration time		20		90	μs

6.5 SPI Timing

Table 7: SPI Timing Parameters

Symbol	Parameter	Min.	Typ.	Max.	Unit
t_{CLK}	SPI clock period	1			μs
t_{CLK_HIGH}	SPI clock high time	100			ns
t_{CLK_LOW}	SPI clock low time	100			ns
t_{SET_DI}	DI set up time, valid data before rising edge of CLK	50			ns
t_{HOLD_DI}	DI hold time, hold data after rising edge of CLK	50			ns
t_{CSB_HIGH}	CSB high time	2.5			μs
t_{SET_CSB}	CSB set up time, CSB low before rising edge of CLK	100			ns
t_{SET_CLK}	CLK set up time, CLK low before rising edge of CSB	100			ns

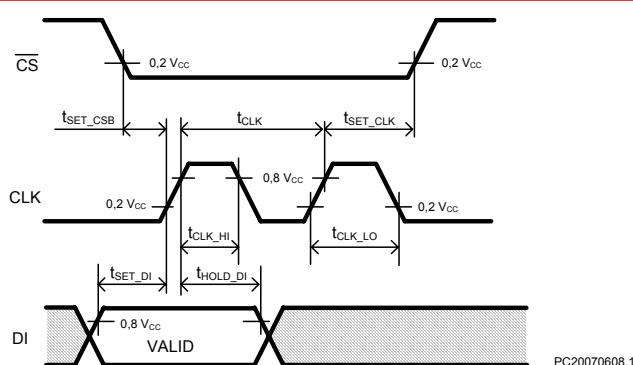


Figure 4: SPI Timing

7.0 Typical Application Schematic

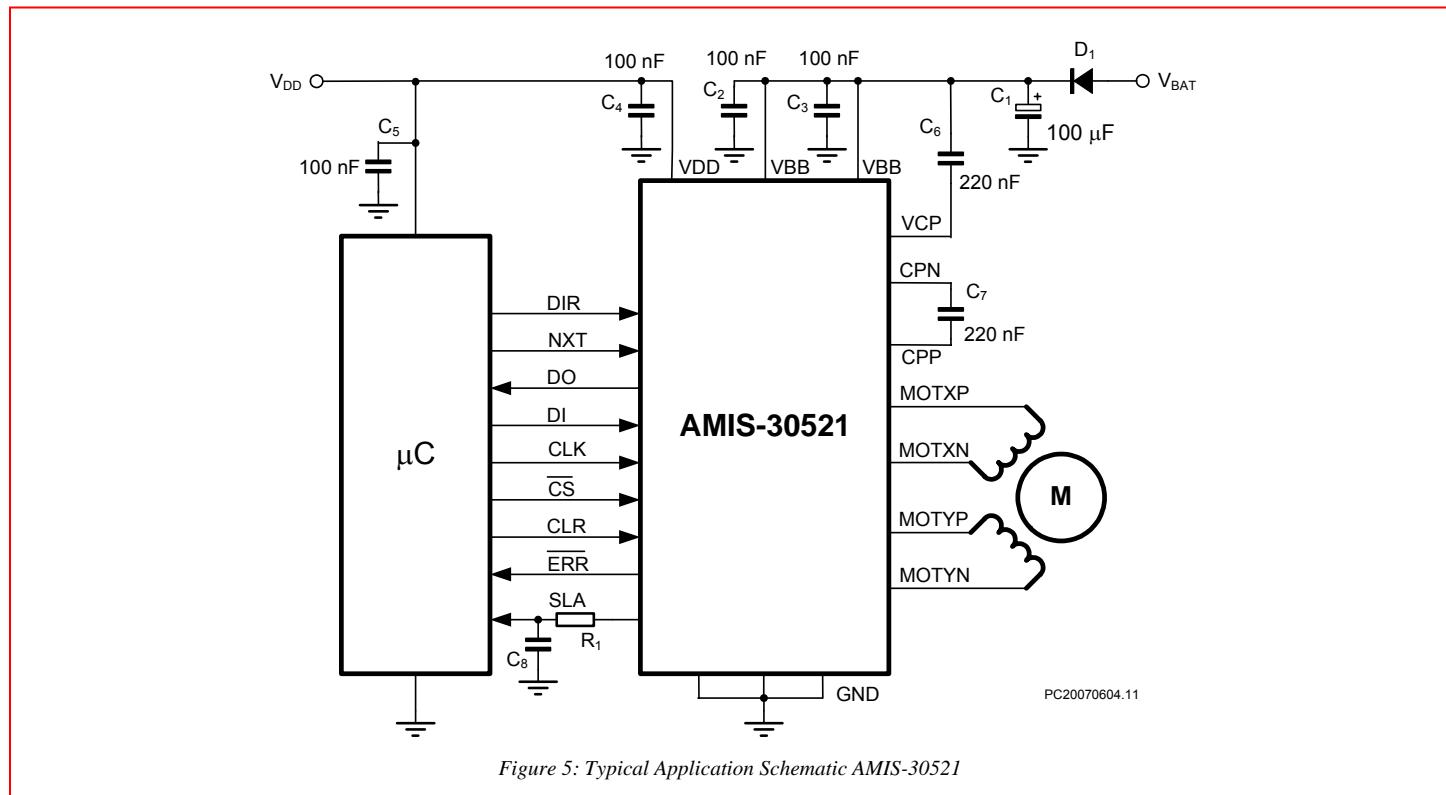


Figure 5: Typical Application Schematic AMIS-30521

Table 8: External Components List and Description

Component	Function	Typ. Value	Tolerance	Unit
C ₁	V _{BB} buffer capacitor ⁽¹⁾	100	-20 +80%	μF
C ₂ , C ₃	V _{BB} decoupling block capacitor	100	-20 +80%	nF
C ₄	V _{DD} buffer capacitor	220	+/- 20 %	nF
C ₅	V _{DD} buffer capacitor	100	+/- 20%	nF
C ₆	Charge pump buffer capacitor	220	+/- 20%	nF
C ₇	Charge pump pumping capacitor	220	+/- 20%	nF
C ₈	Low pass filter SLA	1	+/- 20%	nF
R ₁	Low pass filter SLA	5.6	+/- 1%	kΩ
D ₁	Optional reverse protection diode	e.g. 1N4003		

Notes:

(1) Low ESR < 1Ohm.

8.0 Functional Description

8.1 H-Bridge Drivers

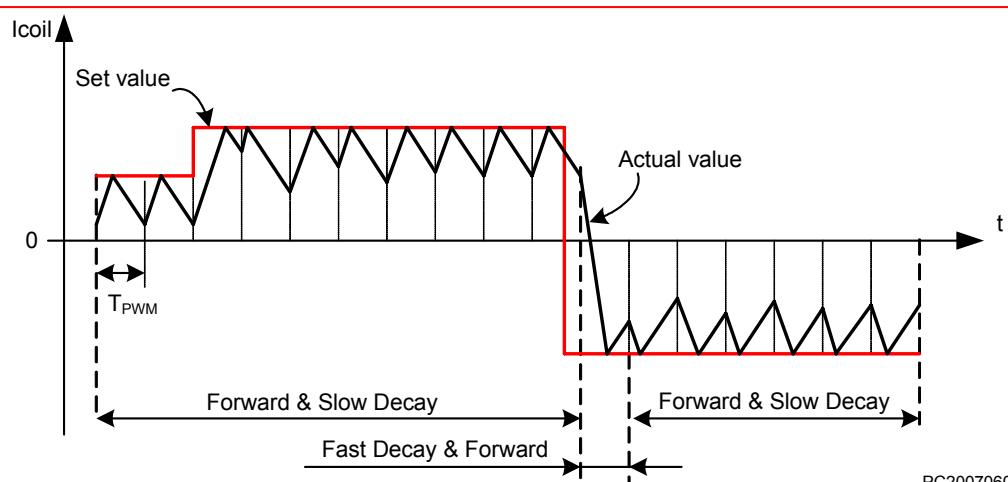
A full H-bridge is integrated for each of the two stator windings. Each H-bridge consists of two low-side and two high-side N-type MOSFET switches. Writing logic '0' in bit <MOTEN> disables all drivers (high-impedance). Writing logic '1' in this bit enables both bridges and current can flow in the motor stator windings.

In order to avoid large currents through the H-bridge switches, it is guaranteed that the top- and bottom-switches of the same half-bridge are never conductive simultaneously (interlock delay).

A two-stage protection against shorts on motor lines is implemented. In a first stage, the current in the driver is limited. Secondly, when excessive voltage is sensed across the transistor, the transistor is switched-off.

In order to reduce the radiated/conducted emission, voltage slope control is implemented in the output switches. The output slope is defined by the gate-drain capacitance of output transistor and the (limited) current that drives the gate. There are two trimming bits for slope control ([Table 25: SPI Control Parameter Overview EMC\[1:0\]](#)).

The power transistors are equipped with so-called "active diodes": when a current is forced through the transistor switch in the reverse direction, i.e. from source to drain, then the transistor is switched on. This ensures that most of the current flows through the channel of the transistor instead of through the inherent parasitic drain-bulk diode of the transistor.


Depending on the desired current range and the micro-step position at hand, the $R_{DS(on)}$ of the low-side transistors will be adapted such that excellent current-sense accuracy is maintained. The $R_{DS(on)}$ of the high-side transistors remain unchanged, see [Table 5: DC Parameters](#) for more details.

8.2 PWM Current Control

A PWM comparator compares continuously the actual winding current with the requested current and feeds back the information to a digital regulation loop. This loop then generates a PWM signal, which turns on/off the H-bridge switches. The switching points of the PWM duty-cycle are synchronized to the on-chip PWM clock. The frequency of the PWM controller can be doubled and an artificial jitter can be added ([Table 14: SPI Control Register 1](#)). The PWM frequency will not vary with changes in the supply voltage. Also variations in motor-speed or load-conditions of the motor have no effect. There are no external components required to adjust the PWM frequency.

8.2.1. Automatic Forward and Slow-Fast Decay

The PWM generation is in steady-state using a combination of forward and slow-decay. The absence of fast-decay in this mode, guarantees the lowest possible current-ripple "by design". For transients to lower current levels, fast-decay is automatically activated to allow high-speed response. The selection of fast or slow decay is completely transparent for the user and no additional parameters are required for operation.

8.2.2. Automatic Duty Cycle Adaptation

In case the supply voltage is lower than $2 \times B_{emf}$, then the duty cycle of the PWM is adapted automatically to $>50\%$ to maintain the requested average current in the coils. This process is completely automatic and requires no additional parameters for operation. The over-all current-ripple is divided by two if PWM frequency is doubled ([Table 14: SPI Control Register 1](#)).

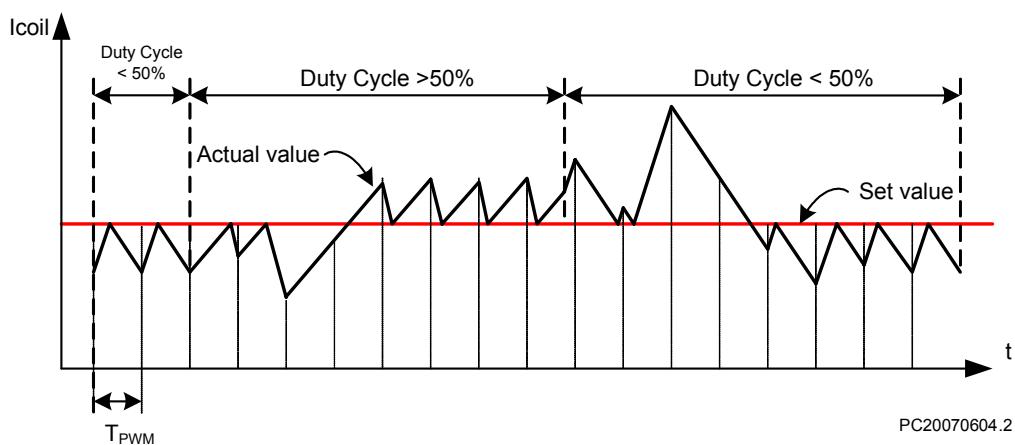


Figure 7: Automatic Duty Cycle Adaptation

8.3 Step Translator

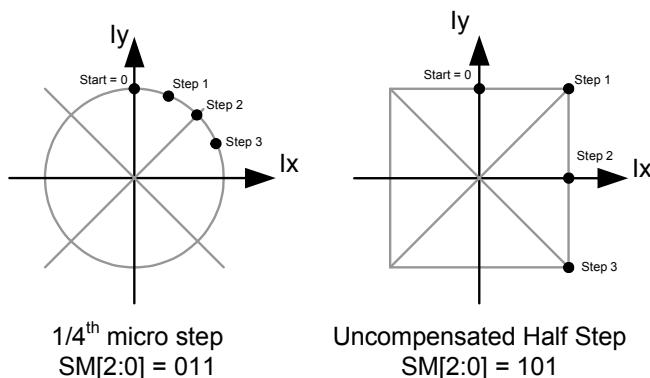
8.3.1. Step Mode

The step translator provides the control of the motor by means of SPI register Stepmode: SM[2:0], SPI register DIRCNTRL, and input pins DIR and NXT. It is translating consecutive steps in corresponding currents in both motor coils for a given step mode.

One out of seven possible stepping modes can be selected through SPI-bits SM[2:0] ([Table 26: SPI Control Parameter Overview SM\[2:0\]](#)) After power-on or hard reset, the coil-current translator is set to the default 1/32 micro-stepping at position '0'. Upon changing the step mode, the translator jumps to position 0^* of the corresponding stepping mode. When remaining in the same step mode, subsequent translator positions are all in the same column and increased or decreased with 1. [Table 10: Circular Translator Table](#) lists the output current versus the translator position.

As shown in [Figure 8](#) the output current-pairs can be projected approximately on a circle in the (I_x, I_y) plane. There is, however, one exception: uncompensated half step. In this step mode the currents are not regulated to a fraction of I_{max} but are in all intermediate steps regulated at 100 percent. In the (I_x, I_y) plane the current-pairs are projected on a square. [Table 9: Square Translator Table for Umcompensated Half Step SM\[2:0\] = 101](#) lists the output current versus the translator position for this case.

Table 9: Square Translator Table for Umcompensated Half Step SM[2:0] = 101


Stepmode (SM[2:0])	% of I_{max}	
	Coil x	Coil y
101		
Uncompensated Half-Step		
0^*	0	100
1	100	100
2	100	0
3	100	-100
4	0	-100
5	-100	-100
6	-100	0
7	-100	100

AMIS-30521 Micro-stepping Motor Driver

Data Sheet

Table 10: Circular Translator Table

Stepmode (SM[2:0])							% of I _{max}		Stepmode (SM[2:0])							% of I _{max}	
000	001	010	011	100	110		Coil x	Coil y	000	001	010	011	100	110		Coil x	Coil y
1/32	1/16	1/8	1/4	1/2	FS		1/32	1/32	1/32	1/16	1/8	1/4	1/2	FS		1/32	1/32
'0'	0*	0*	0*	0*	0*	-	0	100	64	32	16	8	4	-	0	-100	
1	-	-	-	-	-	-	3.5	98.8	65	-	-	-	-	-	-3.5	-98.8	
2	1	-	-	-	-	-	8.1	97.7	66	33	-	-	-	-	-8.1	-97.7	
3	-	-	-	-	-	-	12.7	96.5	67	-	-	-	-	-	-12.7	-96.5	
4	2	1	-	-	-	-	17.4	95.3	68	34	17	-	-	-	-17.4	-95.3	
5	-	-	-	-	-	-	22.1	94.1	69	-	-	-	-	-	-22.1	-94.1	
6	3	-	-	-	-	-	26.7	93	70	35	-	-	-	-	-26.7	-93	
7	-	-	-	-	-	-	31.4	91.8	71	-	-	-	-	-	-31.4	-91.8	
8	4	2	1	-	-	-	34.9	89.5	72	36	18	9	-	-	-34.9	-89.5	
9	-	-	-	-	-	-	38.3	87.2	73	-	-	-	-	-	-38.3	-87.2	
10	5	-	-	-	-	-	43	84.9	74	37	-	-	-	-	-43	-84.9	
11	-	-	-	-	-	-	46.5	82.6	75	-	-	-	-	-	-46.5	-82.6	
12	6	3	-	-	-	-	50	79	76	38	19	-	-	-	-50	-79	
13	-	-	-	-	-	-	54.6	75.5	77	-	-	-	-	-	-54.6	-75.5	
14	7	-	-	-	-	-	58.1	72.1	78	39	-	-	-	-	-58.1	-72.1	
15	-	-	-	-	-	-	61.6	68.6	79	-	-	-	-	-	-61.6	-68.6	
16	8	4	2	1	1	1	65.1	65.1	80	40	20	10	5	3	-65.1	-65.1	
17	-	-	-	-	-	-	68.6	61.6	81	-	-	-	-	-	-68.6	-61.6	
18	9	-	-	-	-	-	72.1	58.1	82	41	-	-	-	-	-72.1	-58.1	
19	-	-	-	-	-	-	75.5	54.6	83	-	-	-	-	-	-75.5	-54.6	
20	10	5	-	-	-	-	79	50	84	42	21	-	-	-	-79	-50	
21	-	-	-	-	-	-	82.6	46.5	85	-	-	-	-	-	-82.6	-46.5	
22	11	-	-	-	-	-	84.9	43	86	43	-	-	-	-	-84.9	-43	
23	-	-	-	-	-	-	87.2	38.3	87	-	-	-	-	-	-87.2	-38.3	
24	12	6	3	-	-	-	89.5	34.9	88	44	22	11	-	-	-89.5	-34.9	
25	-	-	-	-	-	-	91.8	31.4	89	-	-	-	-	-	-91.8	-31.4	
26	13	-	-	-	-	-	93	26.7	90	45	-	-	-	-	-93	-26.7	
27	-	-	-	-	-	-	94.1	22.1	91	-	-	-	-	-	-94.1	-22.1	
28	14	7	-	-	-	-	95.3	17.4	92	46	23	-	-	-	-95.3	-17.4	
29	-	-	-	-	-	-	96.5	12.7	93	-	-	-	-	-	-96.5	-12.7	
30	15	-	-	-	-	-	97.7	8.1	94	47	-	-	-	-	-97.7	-8.1	
31	-	-	-	-	-	-	98.8	3.5	95	-	-	-	-	-	-98.8	-3.5	
32	16	8	4	2	-	-	100	0	96	48	24	12	6	-	-100	0	
33	-	-	-	-	-	-	98.8	-3.5	97	-	-	-	-	-	-98.8	3.5	
34	17	-	-	-	-	-	97.7	-8.1	98	49	-	-	-	-	-97.7	8.1	
35	-	-	-	-	-	-	96.5	-12.7	99	-	-	-	-	-	-96.5	12.7	
36	18	9	-	-	-	-	95.3	-17.4	100	50	25	-	-	-	-95.3	17.4	
37	-	-	-	-	-	-	94.1	-22.1	101	-	-	-	-	-	-94.1	22.1	
38	19	-	-	-	-	-	93	-26.7	102	51	-	-	-	-	-93	26.7	
39	-	-	-	-	-	-	91.8	-31.4	103	-	-	-	-	-	-91.8	31.4	
40	20	10	5	-	-	-	89.5	-34.9	104	52	26	13	-	-	-89.5	34.9	
41	-	-	-	-	-	-	87.2	-38.3	105	-	-	-	-	-	-87.2	38.3	
42	21	-	-	-	-	-	84.9	-43	106	53	-	-	-	-	-84.9	43	
43	-	-	-	-	-	-	82.6	-46.5	107	-	-	-	-	-	-82.6	46.5	
44	22	11	-	-	-	-	79	-50	108	54	27	-	-	-	-79	50	
45	-	-	-	-	-	-	75.5	-54.6	109	-	-	-	-	-	-75.5	54.6	
46	23	-	-	-	-	-	72.1	-58.1	110	55	-	-	-	-	-72.1	58.1	
47	-	-	-	-	-	-	68.6	-61.6	111	-	-	-	-	-	-68.6	61.6	
48	24	12	6	3	2	2	65.1	-65.1	112	56	28	14	7	0*	-65.1	65.1	
49	-	-	-	-	-	-	61.6	-68.6	113	-	-	-	-	-	-61.6	68.6	
50	25	-	-	-	-	-	58.1	-72.1	114	57	-	-	-	-	-58.1	72.1	
51	-	-	-	-	-	-	54.6	-75.5	115	-	-	-	-	-	-54.6	75.5	
52	26	13	-	-	-	-	50	-79	116	58	29	-	-	-	-50	79	
53	-	-	-	-	-	-	46.5	-82.6	117	-	-	-	-	-	-46.5	82.6	
54	27	-	-	-	-	-	43	-84.9	118	59	-	-	-	-	-43	84.9	
55	-	-	-	-	-	-	38.3	-87.2	119	-	-	-	-	-	-38.3	87.2	
56	28	14	7	-	-	-	34.9	-89.5	120	60	30	15	-	-	-34.9	89.5	
57	-	-	-	-	-	-	31.4	-91.8	121	-	-	-	-	-	-31.4	91.8	
58	29	-	-	-	-	-	26.7	-93	122	61	-	-	-	-	-26.7	93	
59	-	-	-	-	-	-	22.1	-94.1	123	-	-	-	-	-	-22.1	94.1	
60	30	15	-	-	-	-	17.4	-95.3	124	62	31	-	-	-	-17.4	95.3	
61	-	-	-	-	-	-	12.7	-96.5	125	-	-	-	-	-	-12.7	96.5	
62	31	-	-	-	-	-	8.1	-97.7	126	63	-	-	-	-	-8.1	97.7	
63	-	-	-	-	-	-	3.5	-98.8	127	-	-	-	-	-	-3.5	98.8	

PC20070604.5

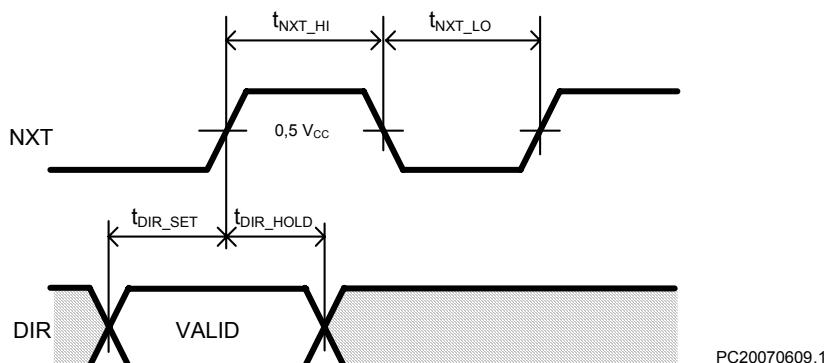
Figure 8: Translator Table: Circular and Square

8.3.2. Direction

The direction of rotation is selected by means of following combination of the DIR input pin and the SPI-controlled direction bit <DIRCTRL>. ([Table 14: SPI Control Register 1](#))

8.3.3. NXT Input

Changes on the NXT input will move the motor current one step up/down in the translator table. Depending on the NXT-polarity bit <NXTP> ([Table 14: SPI Control Register 1](#)), the next step is initiated either on the rising edge or the falling edge of the NXT input.



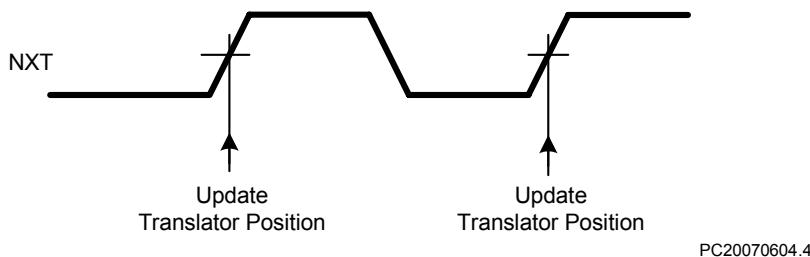

Figure 9: NXT-input Timing Diagram

Table 11: Timing Table NXT Pin

Symbol	Parameter	Min.	Typ.	Max.	Unit
t_{NXT_HI}	NXT minimum, high pulse width	2			μs
t_{NXT_LO}	NXT minimum, low pulse width	2			μs
t_{DIR_SET}	NXT hold time, following change of DIR	500			μs
t_{DIR_HOLD}	NXT hold time, before change of DIR	500			μs

8.3.4. Translator Position

The translator position can be read in [Table 30: SPI Status Register 3](#). This is a 7-bit number equivalent to the 1/32th micro-step from [Table 10: Circular Translator Table](#). The translator position is updated immediately following a NXT trigger.

8.3.5. Synchronization of Step Mode and NXT Input

When step mode is re-programmed to another resolution ([Table 13: SPI Control Register 0](#)), then this is put in effect immediately upon the first arriving "NXT" input. If the micro-stepping resolution is increased (see [Figure 11](#)) then the coil currents will be regulated to the nearest micro-step, according to the fixed grid of the increased resolution. If however the micro-stepping resolution is decreased, then it is possible to introduce an offset (or phase shift) in the micro-step translator table.

If the step resolution is decreased at a translator table position that is shared both by the old and new resolution setting, then the offset is zero and micro-stepping is proceeds according to the translator table.

If the translator position is **not** shared both by the old and new resolution setting, then the micro-stepping proceeds with an offset relative to the translator table (See Figure 10 right hand side).

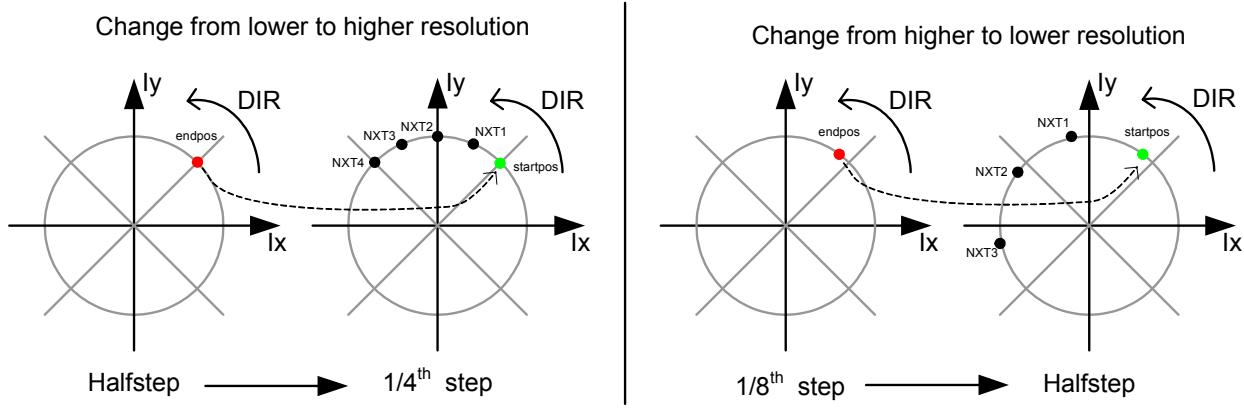
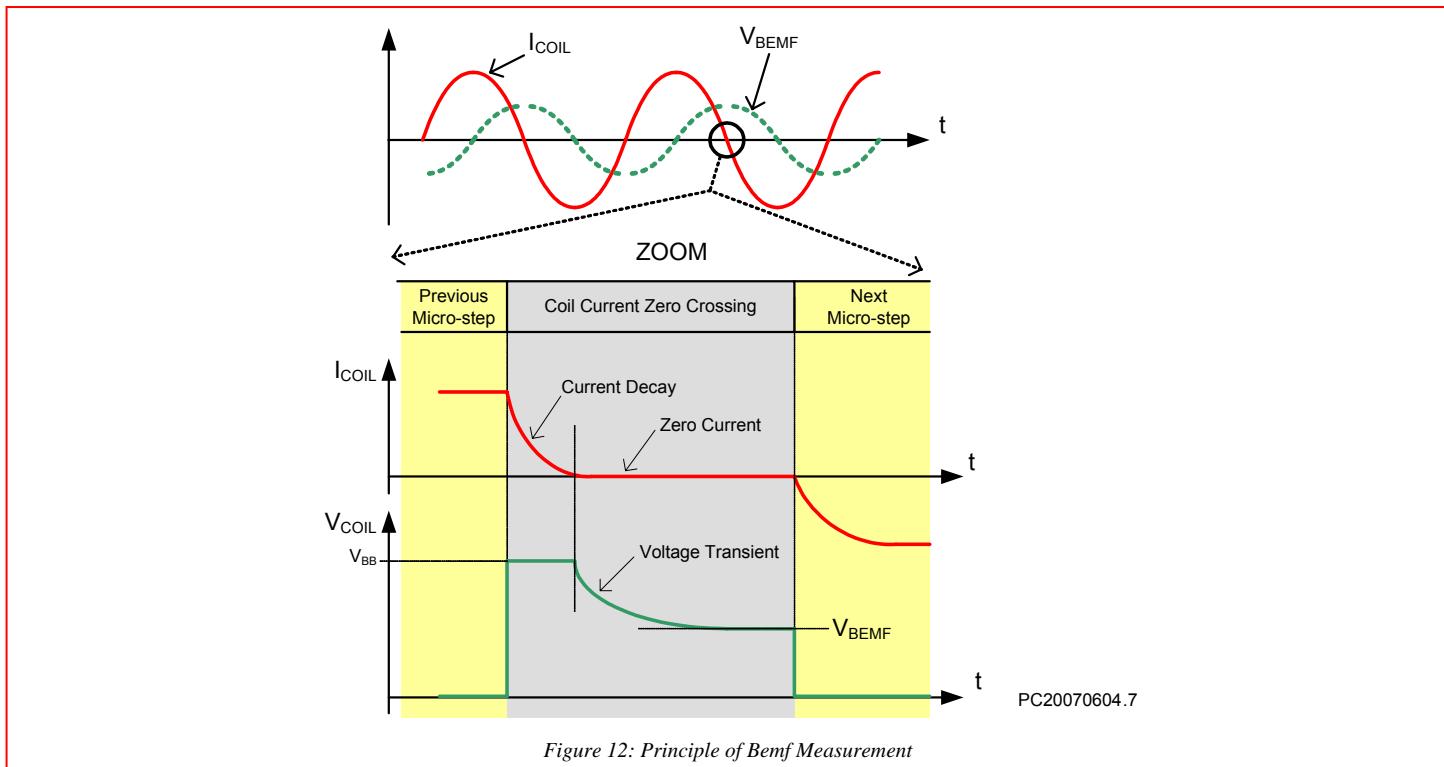


Figure 11: NXT-Step Mode Synchronization

Left: Change from lower to higher resolution. The left-hand side depicts the ending half-step position during which a new step mode resolution was programmed. The right-hand side diagram shows the effect of subsequent NXT commands on the micro-step position.

Right: Change from higher to lower resolution. The left-hand side depicts the ending micro-step position during which a new step mode resolution was programmed. The right-hand side diagram shows the effect of subsequent NXT commands on the half-step position.

Note:


It is advised to reduce the micro-stepping resolution only at micro-step positions that overlap with desired micro-step positions of the new resolution.

8.4 Programmable Peak-Current

The amplitude of the current waveform in the motor coils (coil peak current = I_{max}) is adjusted by means of an SPI parameter "CUR[4:0]" ([Table 13: SPI Control Register 0](#)). Whenever this parameter is changed, the coil-currents will be updated immediately at the next PWM period. More information can be found in [Table 24: SPI Control Parameter Overview CUR\[4:0\]](#).

8.5 Speed and Load Angle Output

The SLA-pin provides an output voltage that indicates the level of the Back-e.m.f. voltage of the motor. This Back-e.m.f. voltage is sampled during every so-called "coil current zero crossings". Per coil, two zero-current positions exist per electrical period, yielding in total four zero-current observation points per electrical period.

Because of the relatively high recirculation currents in the coil during current decay, the coil voltage V_{COIL} shows a transient behavior. As this transient is not always desired in application software, two operating modes can be selected by means of the bit <SLAT> (see "SLA-transparency" in [Table 15: SPI Control Register 2](#)). The SLA pin shows in "transparent mode" full visibility of the voltage transient behavior. This allows a sanity-check of the speed-setting versus motor operation and characteristics and supply voltage levels. If the bit "SLAT" is cleared, then only the voltage samples at the end of each coil current zero crossing are visible on the SLA-pin. Because the transient behavior of the coil voltage is not visible anymore, this mode generates smoother Back e.m.f. input for post-processing, e.g. by software.

In order to bring the sampled Back e.m.f. to a descent output level (0 to 5V), the sampled coil voltage V_{COIL} is divided by 2 or by 4. This divider is set through an SPI bit <SLAG>. ([Table 15: SPI Control Register 2](#))

Table 12: Parameter Table SLA Pin

Symbol	Pin(s)	Parameter	Remark/Test Conditions	Min.	Typ.	Max.	Unit
V_{out}	SLA	Output voltage range		0.5		4.5	V
V_{off}		Output offset the SLA pin	$0.2V < V_{sla} < V_{dd} - 0.2V$	-20		20	mV
R_{out}		Output resistance SLA pin				1	k Ω
C_{load}		Load capacitance SLA pin				50	pF
G_{sla}		Gain of SLA pin = V_{BEMF} / V_{COIL}	SLAG=0 SLAG=1		0,5 0,25		

The following drawing illustrates the operation of the SLA-pin and the transparency-bit. "PWMsh" and "Icoil=0" are internal signals that define together with SLAT the sampling and hold moments of the coil voltage.

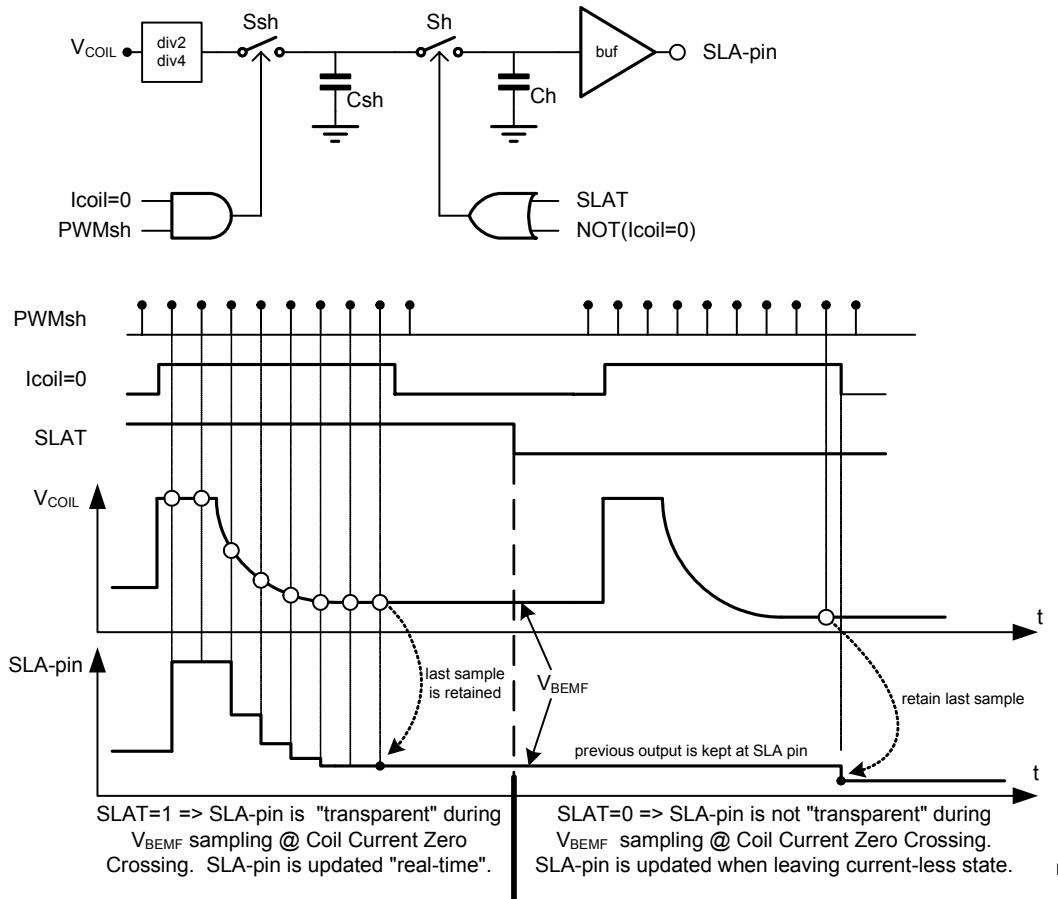


Figure 13: Timing Diagram of SLA-pin

8.6 Warning, Error Detection and Diagnostics Feedback

8.6.1. Thermal Warning and Shutdown

When junction temperature rises above T_{TW} , the thermal warning bit $\langle T_{TW} \rangle$ is set (Table 27: SPI Status Register 0). If junction temperature increases above thermal shutdown level, then the circuit goes in "thermal shutdown" mode ($\langle T_{SD} \rangle$) and all driver transistors are disabled (high impedance) (Table 29: SPI Status Register 2). The conditions to reset flag $\langle T_{SD} \rangle$ is to be at a temperature lower than T_{TW} and to clear the $\langle T_{SD} \rangle$ flag by reading it using any SPI read command.

8.6.2. Over-Current Detection

The over-current detection circuit monitors the load current in each activated output stage. If the load current exceeds the over-current detection threshold, then the over-current flag is set and the drivers are switched off to reduce the power dissipation and to protect the integrated circuit. Each driver transistor has an individual detection bit in the Table 28: SPI Status Register 1 and Table 29: SPI Status Register 2 ($\langle OVCX_{ij} \rangle$ and $\langle OVCY_{ij} \rangle$). Error condition is latched and the microcontroller needs to clean the status bits to reactivate the drivers.

8.6.3. Open Coil Detection

Open coil detection is based on the observation of 100 percent duty cycle of the PWM regulator. If in a coil 100 percent duty cycle is detected for longer than 200ms then the related driver transistors are disabled (high-impedance) and an appropriate bit in the SPI status register is set (<OPENX> or <OPENY>). ([Table 27: SPI Status Register 0](#))

8.6.4. Charge Pump Failure

The charge pump is an important circuit that guarantees low $R_{DS(on)}$ for all drivers, especially for low supply voltages. If supply voltage is too low or external components are not properly connected to guarantee $R_{DS(on)}$ of the drivers, then the bit <CPFAIL> is set in the [Table 27: SPI Status Register 0](#). Also after power-on-reset the charge pump voltage will need some time to exceed the required threshold. During that time <CPFAIL> will be set to "1".

8.6.5. Error Output

This is a digital output to flag a problem to the external microcontroller. The signal on this output is active low and the logic combination of:

$$\text{NOT}(\text{ERRB}) = \text{<TW>} \text{ OR } \text{<TSD>} \text{ OR } \text{<OVCXi,j>} \text{ OR } \text{<OVCYi,j>} \text{ OR } \text{<OPENi>} \text{ OR } \text{<CPFAIL>}$$

8.7 CLR pin (=Hard Reset)

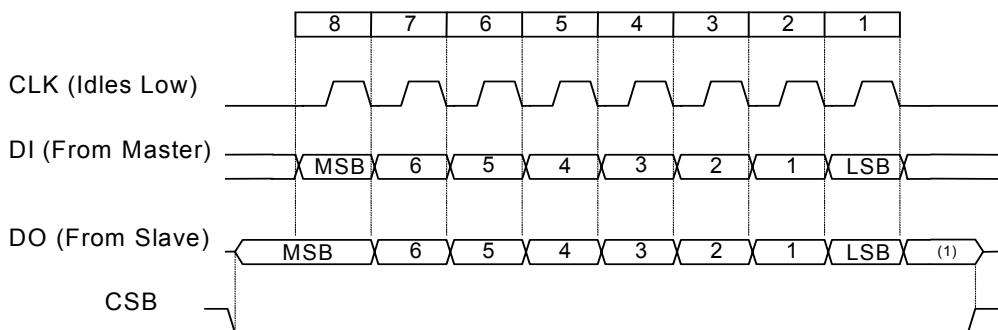
Logic 0 on CLR pin allows normal operation of the chip. To reset the complete digital inside AMIS-30521, the input CLR needs to be pulled to logic 1 during minimum time given by T_{CLR} . ([Table 6: AC Parameters](#)) This reset function clears all internal registers without the need of a power-cycle. The operation of all analog circuits is depending on the reset state of the digital, charge pump remains active. Logic 0 on CLR pin resumes normal operation again.

8.8 Sleep Mode

The bit <SLP> in [Table 15: SPI Control Register 2](#) is provided to enter a so-called "sleep mode". This mode allows reduction of current-consumption when the motor is not in operation. The effect of sleep mode is as follows:

- The drivers are put in HiZ
- All analog circuits are disabled and in low-power mode
- All internal registers are maintaining their logic content
- NXT and DIR inputs are forbidden
- SPI communication remains possible (slight current increase during SPI communication)
- Reset of chip is possible through CLR pin
- Oscillator and digital clocks are silent, except during SPI communication

Normal operation is resumed after writing logic '0' to bit <SLP>. A start-up time is needed for the charge pump to stabilize. After this time, NXT commands can be issued.


9.0 SPI interface

The serial peripheral interface (SPI) is used to allow external microcontroller (MCU) to communicate with the device. The implemented SPI block is flexible enough to interface directly with numerous microcontrollers from several manufacturers. AMIS-30521 acts always as a slave and it can't initiate any transmission. The operation of the device is configured and controlled by means of SPI registers, which are observable for read and/or write from the master.

9.1 SPI Transfer Format and Pin Signals

During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (CLK) synchronizes shifting and sampling of the information on the two serial data lines (DO and DI). DO signal is the output from the slave, and DI signal is the output from the master. A slave select line (CSB) allows individual selection of a slave SPI device in a multiple-slave system. The CSB line is active low. If AMIS-30521 is not selected, DO is in high impedance state and it does not interfere with SPI bus activities. Since AMIS-30521 always clocks data out on the falling edge and samples data in on rising edge of clock, the MCU SPI port must be configured to match this operation. SPI clock idles low between the transferred bytes.

The diagram below is both a master and a slave timing diagram since CLK, DO and DI pins are directly connected between the master and the slave.

Note (1): MSB of data stored on the new address (see Transfer packet). The internal data-out shift buffer of AMIS-30521 is updated with new content only at the last (every eighth) falling edge of the CLK signal.

Figure 14: Timing Diagram of an SPI Transfer

9.2 Transfer Packet

Serial data transfer is assumed to follow MSB first rule. The transfer packet contains one or more 8-bit characters (bytes).

MSB	Command and Address								LSB	MSB	LSB	
Cmd2	Cmd1	Cmd0	Addr4	Addr3	Addr2	Addr1	Addr0	Data7 - Data0				

The first byte contains command and SPI Register address and will be sent upfront of the packet to indicate to AMIS-30521 the chosen register and the type of operation.

There are two possible commands for the master in normal operation mode of AMIS-30521:

- READ from SPI register: **Cmd2 = 0**
- WRITE to SPI register: **Cmd2 = 1**

WRITE command executed for read-only register will not affect the register and the device operation. In case of READ command the data byte is optional. If a byte is transmitted after READ command it is also interpreted as a command (see examples below).

If the master reads data from a status register ([SPI Status Register Description](#)), then the most significant bit (Data 7) represents a parity of Data6 to Data0 bits. If the number of logical ones in the data is odd then the parity bit equals 1. If the number of logical ones is even then the parity bit equals 0. This is a simple mechanism to protect against noise and to verify the correct transmission operation and the consistency of the status data. If a parity check error occurs, the master could initiate an additional READ command to obtain the status again.

The CSB line is active low and may remain low between each successive READ commands. There is only one exception of this rule: if error condition is latched in status register ([SPI Status Register Description](#)) and the master needs to clear the status bits then exactly after READ command of a latched status register CSB line should go from low to high. This is explained in the following note:

Note: The status registers and ERRB pin ([SPI Status Register Description](#)) are updated by the internal system clock only when CSB line is high. It is recommended to keep the CSB line high always when the SPI bus is idle.

If the master sends WRITE command, then the incoming data will be stored in the corresponding register only if CSB goes from low to high. The writing to the register is only enabled if exactly 16 bits are transmitted within one transfer packet. If more or less clock pulses are counted within one packet the complete packet is ignored.

AMIS-30521 responds on every incoming byte by shifting out the data stored on the last address sent via the bus. After POR the initial address is unknown. The following examples illustrate communication sessions between the master and AMIS-30521:

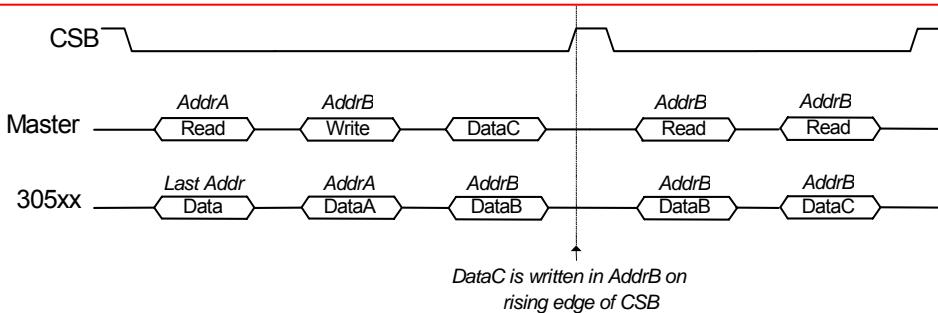


Figure 15: Example SPI Transfer

In this example, the master reads first the status from AddrA and then writes control byte in AddrB. After write operation the master could initiate a read back command in order to verify the data just written. Note that the first verification read operation returns the old content of AddrB, the second read command returns the new AddrB data.

Note: The internal data out shift buffer of AMIS-30521 is updated with the content of the selected SPI register only at the last (every eighth) falling edge of the CLK signal ([SPI Transfer Format and Pin Signals](#)). As a result, new data for transmission cannot be written to the shift buffer at the beginning of the transfer packet and the first byte shifted out might represent old data.

This rule also applies when the master device wants to initiate an SPI transfer to read the status registers. Because the internal system clock updates the status registers only when CSB line is high, the first read out byte might represent an old status (see [Figure 16](#) and [Figure 17](#) below).

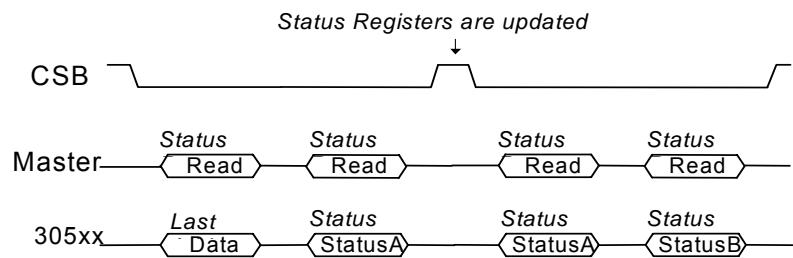


Figure 16: Example SPI Transfer

The last case illustrates data polling from several registers of the SPI register bank:

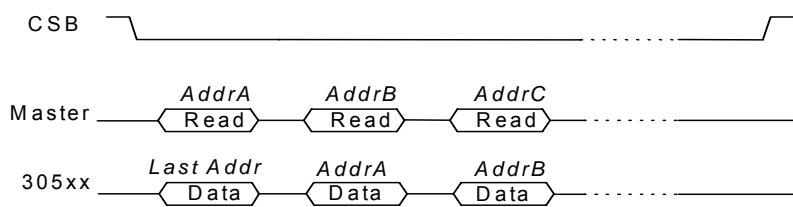


Figure 17: Example SPI Transfer

9.3 SPI Control Registers

All SPI control registers have Read/Write access and default to "0" after power-on or hard reset.

Table 13: SPI Control Register 0

Address	Content	Structure									
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
01h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Reset	0	0	0	0	0	0	0	0		
	Data	SM[2:0]		CUR[4:0]							

Where:

R/W Read and Write access
 Reset: Status after power-On or hard reset
 SM[2:0]: Step mode
 CUR[4:0]: Current amplitude

Table 14: SPI Control Register 1

Address	Content	Structure							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
02h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset	0	0	0	0	0	0	0	0
	Data	DIRCTRL	NXTP	-	-	PWMF	PWMJ	EMC[1:0]	

Where:

R/W Read and Write access
 Reset::: Status after power-on or hard reset
 DIRCTRL Direction control
 NXTP NEXT polarity
 PWMF PWM frequency
 PWMJ PWM jitter
 EMC [1:0] EMC slope control

Table 15: SPI Control Register 2

Address	Content	Structure							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
03h	Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset	0	0	0	0	0	0	0	0
	Data	MOTEN	SLP	SLAG	SLAT	-	-	-	-

Where:

R/W Read and Write access
 Reset: Status after power-On or hard reset
 MOTEN Motor enable
 SLP Sleep
 SLAG Speed load angle gain
 SLAT Speed load angle transparency

Table 16: SPI Control Parameter Overview SLAT

Symbol	Description	Status	Behavior
SLAT	Speed Load Angle Transparency bit	$\text{<} \text{SLAT} \text{>} = 0$	SLA is transparent

AMIS-30521 Micro-stepping Motor Driver

Data Sheet

Table 17: SPI Control Parameter Overview SLAG

Symbol	Description	Status	Value
SLAG	Speed Load Angle Gain setting	$<\text{SLAG}> = 0$	Gain = 0.5
		$<\text{SLAG}> = 1$	Gain = 0.25

Table 18: SPI Control Parameter Overview PWMF

Symbol	Description	Status	Value
PWMF	Enables doubling of the PWM frequency	$<\text{PWMF}> = 0$	$f_{\text{PWM}} = 22.8\text{kHz}$
		$<\text{PWMF}> = 1$	$f_{\text{PWM}} = 45.6\text{kHz}$

Table 19: SPI Control Parameter Overview PWMJ

Symbol	Description	Status	Behavior
PWMJ	Enables jittery PWM	$<\text{PWMJ}> = 0$	Jitter disabled
		$<\text{PWMJ}> = 1$	Jitter enabled

Table 20: SPI Control Parameter Overview SLP

Symbol	Description	Status	Behavior
SLP	Enables sleep mode	$<\text{SLP}> = 0$	Active mode
		$<\text{SLP}> = 1$	Sleep mode

Table 21: SPI Control Parameter Overview MOTEN

Symbol	Description	Status	Value
MOTEN	Activates the motor driver outputs	$<\text{MOTEN}> = 0$	Drivers disabled
		$<\text{MOTEN}> = 1$	Drivers enabled

Table 22: SPI Control Parameter Overview DIRCTRL

Symbol	Description	Status	Value
DIRCTRL	Controls the direction of rotation (in combination with logic level on input DIR)	$<\text{DIR}> = 0$	$<\text{DIRCTRL}> = 0$
		$<\text{DIR}> = 0$	CCW motion
		$<\text{DIR}> = 1$	CCW motion
		$<\text{DIR}> = 1$	CW motion

Table 23: SPI Control Parameter Overview NXTP

Symbol	Description	Status	Value
NXTP	Selects if NXT triggers on rising or falling edge	$<\text{NXTP}> = 0$	Trigger on rising edge
		$<\text{NXTP}> = 1$	Trigger on falling edge

CUR[4:0] Selects IMCmax peak. This is the peak or amplitude of the regulated current waveform in the motor coils.

Table 24: SPI Control Parameter Overview CUR[4:0]

Index	CUR[4:0]	Current (mA)	Index	CUR[4:0]	Current (mA)
0	0 0 0 0 0	30	10	1 0 0 0 0	365
1	0 0 0 0 1	60	11	1 0 0 0 1	400
2	0 0 0 1 0	90	12	1 0 0 1 0	440
3	0 0 0 1 1	100	13	1 0 0 1 1	485
4	0 0 1 0 0	110	14	1 0 1 0 0	535
5	0 0 1 0 1	120	15	1 0 1 0 1	595
6	0 0 1 1 0	135	16	1 0 1 1 0	650
7	0 0 1 1 1	150	17	1 0 1 1 1	725
8	0 1 0 0 0	160	18	1 1 0 0 0	800
9	0 1 0 0 1	180	19	1 1 0 0 1	885
A	0 1 0 1 0	200	1A	1 1 0 1 0	970
B	0 1 0 1 1	220	1B	1 1 0 1 1	1070
C	0 1 1 0 0	240	1C	1 1 1 0 0	1190
D	0 1 1 0 1	270	1D	1 1 1 0 1	1300
E	0 1 1 1 0	300	1E	1 1 1 1 0	1450
F	0 1 1 1 1	325	1F	1 1 1 1 1	1600

EMC [1 : 0] Adjusts the dV/dt of the PWM voltage slopes on the motor pins.

Table 25: SPI Control Parameter Overview EMC[1:0]

Index	EMC[1:0]		Slope (V/μs)	Remark
0	0	0	150	Turn-on and turn-off voltage slope 10% to 90%
1	0	1	100	"
2	1	0	50	"
3	1	1	25	"

SM [2 : 0] Selects the micro-stepping mode.

Table 26: SPI Control Parameter Overview SM[2:0]

Index	SM[2:0]			Step Mode	Remark
0	0	0	0	$1/32$	Micro-step
1	0	0	1	$1/16$	Micro-step
2	0	1	0	$1/8$	Micro-step
3	0	1	1	$1/4$	Micro-step
4	1	0	0	$1/2$	Uncompensated half-step
5	1	0	1	$1/2$	Compensated half-step
6	1	1	0	Full	Full step
7	1	1	1	N/A	For future use

9.4 SPI Status Register Description

All four SPI status registers have Read Access and are default to "0" after power-on or hard reset.

Table 27: SPI Status Register 0

Address	Content	Status Register 0 (SR0)							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
04h	Access	R	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0	0
	Data	PAR	TW	CPfail	-	OPENX	OPENY	-	-

Where:

R	Read only mode access
Reset	Status after power-on or hard reset
PAR	Parity check
TW	Thermal warning
Cpfail	Charge pump failure
OPENX	Open Coil X detected
OPENY	Open Coil Y detected

Remark: Data is **not** latched

Table 28: SPI Status Register 1

Address	Content	Status Register 1 (SR1)							
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
05h	Access	R	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0	0
	Data	PAR	OVCXPT	OVCXPB	OVCXNT	OVCXNB	-	-	-

Where:

R	Read only mode access
Reset	Status after power-on or hard reset
PAR	Parity check
OVCXPT	Over-current detected on X H-bridge: MOTXP terminal, top transistor
OVCXPB	Over-current detected on X H-bridge: MOTXP terminal, bottom transistor
OVCXNT	Over-current detected on X H-bridge: MOTXN terminal, top transistor
OVCXNB	Over-current detected on X H-bridge: MOTXN terminal, bottom transistor

Remark: Data is latched

Table 29: SPI Status Register 2

Status Register 2 (SR2)								
06h	Content	Structure						
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 0
	Access	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0
06h	Data	PAR	OVCYPT	OVCYPB	OVCYYNT	OVCYNB	TSD	–

Where:

R Read only mode access
 Reset Status after power-on or hard reset
 PAR Parity check
 OVCYPT Over-current detected on Y H-bridge: MOTYP terminal, top transistor
 OVCYPB Over-current detected on Y H-bridge: MOTYP terminal, bottom transistor
 OVCYNT Over-current detected on Y H-bridge: MOTYN terminal, top transistor
 OVCYNB Over-current detected on Y H-bridge: MOTYN terminal, bottom transistor
 TSD Thermal shutdown

Remark: Data is latched

Table 30: SPI Status Register 3

Status Register 3 (SR3)								
07h	Content	Structure						
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 0
	Access	R	R	R	R	R	R	R
	Reset	0	0	0	0	0	0	0
07h	Data	PAR	MSP[6:0]					

Where:

R Read only mode access
 Reset Status after power-on or hard reset
 PAR Parity check
 MSP [6 : 0] Translator micro-step position

Remark: Data is **not** latched

AMIS-30521 Micro-stepping Motor Driver

Data Sheet

Table 31: SPI Status Flags Overview

Flag	Mnemonic	Length (bit)	Related SPI Register	Comment	Reset State
Charge pump failure	CPFail	1	SPI Status Register 0	'0' = no failure '1' = failure: indicates that the charge pump does not reach the required voltage level. Note 1	'0'
Micro-step position	MSP [6 : 0]	7	SPI Status Register 0	Translator micro-step position	'0000000'
OPEN Coil X	OPENX	1	SPI Status Register 0	'1' = Open coil detected	'0'
OPEN Coil Y	OPENY	1	SPI Status Register 0	'1' = Open coil detected	'0'
Over Current on X H-bridge; MOT _{XN} terminal; Bottom tran.	OVCXNB	1	SPI Status Register 1	'0' = no failure '1' = failure: indicates that over current is detected at bottom transistor XN-terminal	'0'
Over Current on X H-bridge; MOT _{XN} terminal; Top transist.	OVCXNT	1	SPI Status Register 1	'0' = no failure '1' = failure: indicates that over current is detected at top transistor XN-terminal	'0'
Over Current on X H-bridge; MOT _{XP} terminal; Bottom tran.	OVCXPB	1	SPI Status Register 1	'0' = no failure '1' = failure: indicates that over current is detected at bottom transistor XP-terminal	'0'
Over Current on X H-bridge; MOT _{XP} terminal; Top transist.	OVCXPT	1	SPI Status Register 1	'0' = no failure '1' = failure: indicates that over current is detected at top transistor XP-terminal	'0'
Over Current on Y H-bridge; MOT _{YN} terminal; Bottom tran.	OVCYNB	1	SPI Status Register 2	'0' = no failure '1' = failure: indicates that over current is detected at bottom transistor YN-terminal	'0'
Over Current on Y H-bridge; MOT _{YN} terminal; Top transist.	OVCYNT	1	SPI Status Register 2	'0' = no failure '1' = failure: indicates that over current is detected at top transistor YN-terminal	'0'
Over Current on Y H-bridge; MOT _{YP} terminal; Bottom tran.	OVCYPB	1	SPI Status Register 2	'0' = no failure '1' = failure: indicates that over current is detected at bottom transistor YP-terminal	'0'
Over Current on Y H-bridge; MOT _{YP} terminal; Top transist.	OVCYPT	1	SPI Status Register 2	'0' = no failure '1' = failure: indicates that over current is detected at top transistor YP-terminal	'0'
Thermal shutdown	TSD	1	SPI Status Register 2		'0'
Thermal warning	TW	1	SPI Status Register 0		'0'

10.0 Package Outline

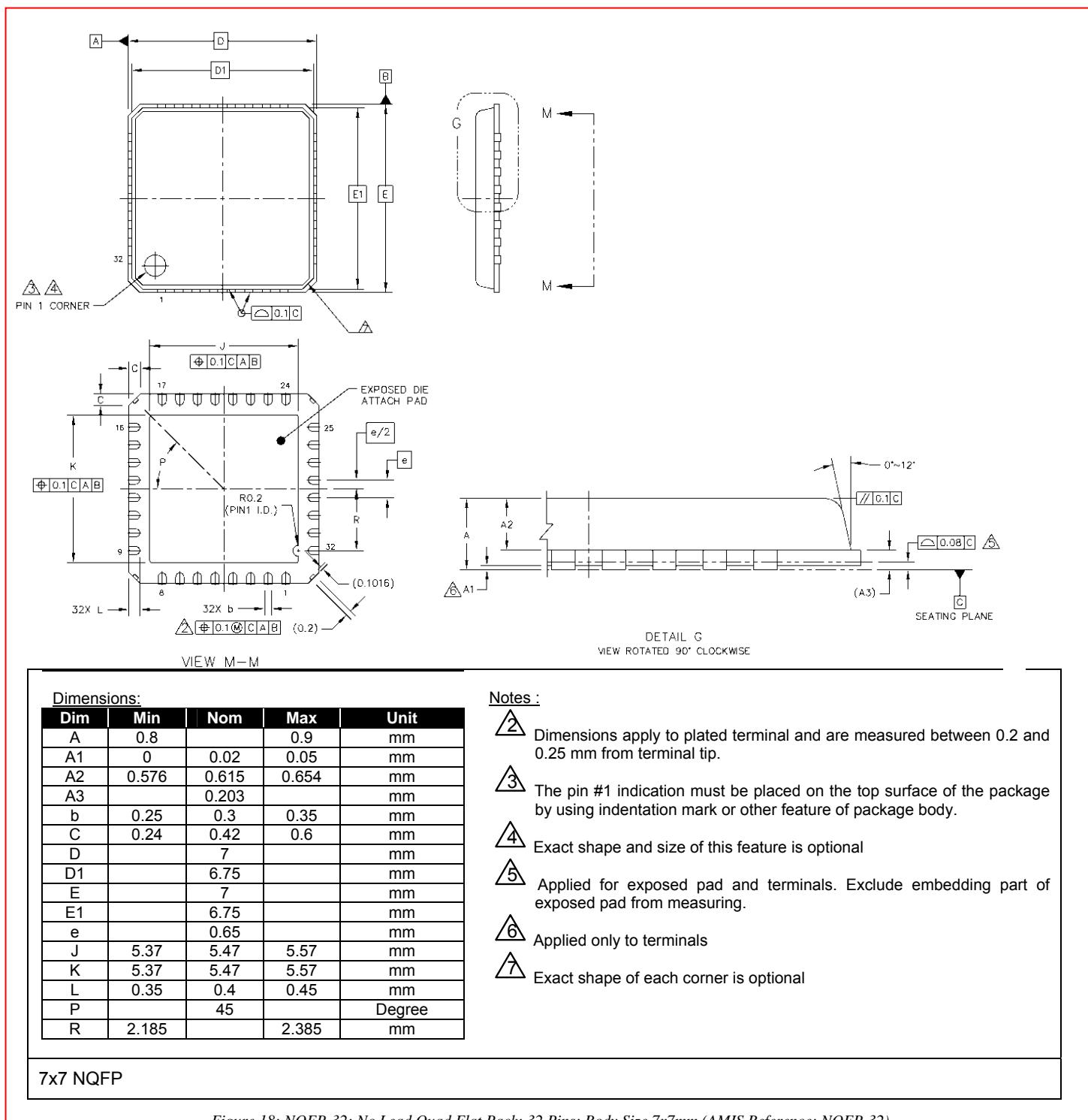


Figure 18: NQFP-32: No Lead Quad Flat Pack; 32 Pins; Body Size 7x7mm (AMIS Reference: NQFP-32)

11.0 Soldering

11.1 Introduction to Soldering Surface Mount Packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in the AMIS "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards (PCB) with high population densities. In these situations re-flow soldering is often used.

11.2 Re-flow Soldering

Re-flow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the PCB by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for re-flowing; for example, infrared/convection heating in a conveyor type oven.

Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on the heating method. Typical re-flow peak temperatures range from 215 to 260°C. The top-surface temperature of the packages should preferably be kept below 230°C.

11.3 Wave Soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or PCBs with a high component density, as solder bridging and non-wetting can present major problems. To overcome these problems, the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - Larger than or equal to 1.27mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the PCB;
 - Smaller than 1.27mm, the footprint longitudinal axis must be parallel to the transport direction of the PCB. The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the PCB. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical dwell time is four seconds at 250°C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

11.4 Manual Soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300°C.

When using a dedicated tool, all other leads can be soldered in one operation within two to five seconds between 270 and 320°C.

Table 32: Soldering Process

Package	Soldering Method	
	Wave	Re-flow ⁽¹⁾
BGA, SQFP	Not suitable	Suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS	Not suitable ⁽²⁾	Suitable
PLCC ⁽³⁾ , SO, SOJ	Suitable	Suitable
LQFP, QFP, TQFP	Not recommended ⁽³⁾⁽⁴⁾	Suitable
SSOP, TSSOP, VSO	Not recommended ⁽⁵⁾	Suitable

Notes:

- (1) All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods."
- (2) These packages are not suitable for wave soldering as a solder joint between the PCB and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- (3) If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- (4) Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65mm.
- (5) Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5mm.

12.0 Company or Product Inquiries

For more information about AMI Semiconductor's products or services visit our Web site at <http://www.amis.com>.

13.0 Document History

Table 33: Revision History

Version	Date	Modification
0.1	18-jan-06	initial draft
0.2	24-jan-06	draft : changed PWM description, added SLA pin description, changed POR and WD paragraphs.
0.3	9-feb-06	CEN->CENB, NXT pin timing, SPI I/F, 30521 section 8.5, 8.6,8.7, 30522 section 8.4,8.5
0.4	9-mar-06	updated pin-out & added drawing, CENB->CLR, ERR->ERRB, removed SWP bits, updated SPI bits, added package details
0.5	22-mar-06	Renamed CS -> CSB, Swapped pins CLR and CSB
0.6	24-may-06	Updated pins, AC&DC tables, SLA specs, SM[2:0] decoding
1.0	2-june-07	Final version

Devices sold by AMIS are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMIS makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMIS makes no warranty of merchantability or fitness for any purposes. AMIS reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI Semiconductor's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMIS for such applications. Copyright ©2007 AMI Semiconductor, Inc.