## AMMC－5033



Chip Size： $2730 \times 1300 \mu \mathrm{~m}(108 \times 51.6$ mils $)$
Chip Size Tolerance：$\pm 10 \mu \mathrm{~m}$（ $\pm 0.4$ mils）
Chip Thickness： $100 \pm 10 \mu \mathrm{~m}(4 \pm 0.4$ mils $)$
Pad Dimensions： $80 \times 80 \mu \mathrm{~m}$（ $2.95 \pm 0.4$ mils）

## Description

Avago＇s AMMC－5033 is a MMIC power amplifier designed for use in wireless transmitters that operate within 17．7 GHz to 32 GHz range．At 25 GHz ，it provides 27 dBm of output power（ $\mathrm{P}-1 \mathrm{~dB}$ ）and 20 dB of small－signal gain from a small easy－to－use device．The device has input and output matching circuitry for use in $50 \Omega$ environ－ ments．The AMMC－ 5033 also integrates a temperature compensated RF power detection circuit that enables power detection of $0.1 \mathrm{~V} / \mathrm{W}$ at 22 GHz ．For improved reliability and moisture protection，the die is passivated at the active areas．

AMMC－5033 Absolute Maximum Ratings ${ }^{[1]}$

| Symbol | Parameters／Conditions | Units | Min． | Max． |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{d} 1,2}$ | Positive Drain Voltage | V |  | 7 |
| $\mathrm{V}_{\mathrm{g} 1} \mathrm{~V}_{\mathrm{gg}}$ | Gate Supply Voltage | V | －3 | 0.5 |
| Det Bias | Applied Detector Bias （Optional） | V |  | 7 |
| $\mathrm{I}_{\text {d1 }}$ | First Stage Drain Current | mA |  | 320 |
| $\mathrm{I}_{\mathrm{d} 2}$ | Second Stage Drain Current | mA |  | 640 |
| $\mathrm{P}_{\text {in }}$ | CW Input Power | dBm |  | 23 |
| $\mathrm{T}_{\text {ch }}$ | Operating Channel Temp． | ${ }^{\circ} \mathrm{C}$ |  | ＋150 |
| $\mathrm{T}_{\text {stg }}$ | Storage Case Temp． | ${ }^{\circ} \mathrm{C}$ | －65 | ＋150 |
| $\mathrm{T}_{\text {max }}$ | Maximum Assembly Temp． （60 sec max） | ${ }^{\circ} \mathrm{C}$ |  | ＋300 |

## Features

－Wide frequency range： $17.7-32 \mathrm{GHz}$
－High power： $\mathrm{P}-1 \mathrm{~dB}$＠ $25 \mathrm{GHz}=27 \mathrm{dBm}$
－High gain： 20 dB
－Return loss：Input：-13 dB ，Output：-20 dB
－Integrated RF power detector

## Applications

－Designed for use in transmitters that operate in various frequency bands between 17.7 GHz and 32 GHz ．
－Can be driven by the AMMC－5040（20－40 GHz）or the AMMC－5618（ $6-20 \mathrm{GHz}$ ）MMIC amplifiers，increasing the power handling capability of transmitters requiring linear operation．

## Note：

1．Operation in excess of any one of these conditions may result in permanent damage to this device．

AMMC-5033 DC Specifications/Physical Properties ${ }^{[1]}$

| Symbol | Parameters and Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{d} 1}$ | First Stage Drain Supply Current $\left(\mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 1}=\right.$ Open, $\mathrm{V}_{\mathrm{gq}}$ set for $\mathrm{I}_{\mathrm{d} 2}$ Typical) | mA |  | 280 | 320 |
| $\mathrm{I}_{\mathrm{d} 2}$ | Second Stage Drain Supply Current ( $\mathrm{V}_{\mathrm{d} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{q} 1}=$ Open, $\mathrm{V}_{\mathrm{gq}}$ set for $\mathrm{I}_{\mathrm{d} 2}$ Typical) | V |  | 500 |  |
| Vgg | Gate Supply Operating Voltage $\left(\mathrm{I}_{\mathrm{d} 1(0)}+\mathrm{I}_{\mathrm{d} 2(0)}=780(\mathrm{~mA})\right)$ | V | -0.75 | -0.6 | -0.4 |
| DETBias | Detector Bias Voltage (Optional) | V |  | Vd2 |  |
| $\theta_{\text {c1(ch-bs) }}$ | First Stage Thermal Resistance ${ }^{[2]}$ <br> (Backside Temperature, $\mathrm{Tb}=25^{\circ} \mathrm{C}$ ) | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  | 31 |  |
| $\theta_{\text {c2(ch-bs) }}$ | Second Stage Thermal Resistance ${ }^{[2,3]}$ <br> (Backside Temperature, $\mathrm{Tb}=25^{\circ} \mathrm{C}$ ) | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  | 19 |  |

## Notes:

1. Backside temperature $\mathrm{T}_{\mathrm{b}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
2. Channel-to-backside Thermal Resistance ( $\theta \mathrm{ch}-\mathrm{b}$ ) $=42^{\circ} \mathrm{C} / \mathrm{W}$ at Tchannel $(\mathrm{Tc})=150^{\circ} \mathrm{C}$ as measured using infrared microscopy. Thermal Resistance at backside temperature $(\mathrm{Tb})=25^{\circ} \mathrm{C}$ calculated from measured data.
3. Channel-to-backside Thermal Resistance ( $\theta \mathrm{ch}-\mathrm{b}$ ) $=24^{\circ} \mathrm{C} / \mathrm{W}$ at Tchannel ( Tc ) $=150^{\circ} \mathrm{C}$ as measured using infrared microscopy. Thermal Resistance at backside temperature $(\mathrm{Tb})=25^{\circ} \mathrm{C}$ calculated from measured data.

## AMMC-5033 RF Specifications ${ }^{[4,5]}$

$\underline{\mathrm{Tb}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{d} 2}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{d} 1(Q)}=280 \mathrm{~mA}, \mathrm{I}_{\mathrm{d} 2(0)}=500 \mathrm{~mA}, \mathrm{Zo}=50 \Omega}$

|  | Parameters and |  | Lower Band Specifications ( 17.7 - 21 GHz) |  | Mid Band <br> Specifications <br> (21-26.5 GHz) |  | Upper BandSpecifications$(26.5-32 \mathrm{GHz})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Test Condition | Unit | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |
| Gain | Small-Signal Gain ${ }^{[5]}$ | dB | 20 | 22 |  | 17.5 | 20 |  | 16.5 | 18.5 |  |
| $P_{-1 d B}$ | Output Power at 1dB Gain Compression ${ }^{[6]}$ | dB | 23.5 | 25 |  | 25.5 | 27 |  | 25 | 26.5 |  |
| $\mathrm{P}_{-3 \mathrm{~dB}}$ | Output Power at 3dB Gain Compression ${ }^{[6]}$ | dB |  | 27 |  |  | 28 |  |  | 27 |  |
| $\mathrm{OIP}_{3}$ | Output Third Order Intercept <br> Point; ${ }^{[6]} ; \Delta f=2 \mathrm{MHz}$; <br> Pin $=+2 \mathrm{dBm}$ | dBm | 27 | 29 |  | 29.5 | 32 |  | 29 | 32 |  |
| $\mathrm{RL}_{\text {in }}$ | Input Return Loss ${ }^{[5]}$ | dB | 11.5 | 13.5 |  | 11 | 13 |  | 11 | 13 |  |
| $\mathrm{RL}_{\text {out }}$ | Output Return Loss ${ }^{[5]}$ | dB | 14 | 20 |  | 14 | 19 |  | 15 | 22 |  |
| Isolation | Min. Reverse Isolation | dB |  | 47 |  |  | 48 |  |  | 46 |  |

## Notes:

4. Data measured in wafer form $\mathrm{T}_{\mathrm{b}}=25^{\circ} \mathrm{C}$.
5. $100 \%$ on-wafer RF test is done at frequency $=17.7,21,26.5$ and 32 GHz .
6. $100 \%$ on-wafer test frequency $=17.7,26.5$ and 32 GHz .

## AMMC-5033 Typical Performances

$\left(\mathrm{T}_{\mathrm{b}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 1}=280 \mathrm{~mA}, \mathrm{~V}_{\mathrm{d} 2}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{d} 2}=500 \mathrm{~mA}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right)$


Figure 1. Gain and reverse isolation


Figure 3. Output power at 1 dB and 3 dB gain compression


Figure 2. Return loss (input and output)


Figure 4. Noise figure


Figure 5. Output 3rd order intercept point

## AMMC-5033 Typical Performance Curves (Over Temperature and Voltage)



Figure 6. Linear and log detector voltage and output power, freq. $=22 \mathrm{GHz}$, Det_B $=5 \mathrm{~V}$


Figure 8. Output power at 1 dB gain compression and $\mathrm{V}_{\mathrm{d} 2}$ voltage, $\mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}$ (constant)


Figure 7. Gain and $V_{\mathrm{d} 2}$ voltage, $\mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}$ (constant)


Figure 9. Return-loss with temperature


Figure 10. Output power at 1 dB gain compression and temperature


Figure 11. Output power, PAE, and total drain. Current vs. input power at 25 GHz


Figure 12. Gain with temperature

Typical Scattering Parameters ${ }^{[1]}$
$\left(\mathrm{T}_{\mathrm{b}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{d} 1}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 1}=280 \mathrm{~mA}, \mathrm{~V}_{\mathrm{d} 2}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 2}=500 \mathrm{~mA}, \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega\right)$

| Freq | S11 |  |  | S21 |  |  | S12 |  |  | S22 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [ GHz ] | dB | Mag | Phase |
| 1 | -10.7 | 0.29 | 173 | -51.1 | 0.003 | -163 | -95.1 | 1.77E-05 | 128 | -0.5 | 0.95 | -26 |
| 2 | -11.0 | 0.28 | 167 | -70.1 | 0 | 79 | -83.1 | 6.97E-05 | 76 | -0.7 | 0.92 | -51 |
| 3 | -11.4 | 0.27 | 161 | -46.6 | 0.005 | -103 | -74.5 | $1.89 \mathrm{E}-04$ | 81 | -1.2 | 0.87 | -76 |
| 4 | -12.1 | 0.25 | 153 | -37.3 | 0.014 | 72 | -74.5 | 1.88E-04 | 69 | -2.2 | 0.78 | -95 |
| 5 | -15.3 | 0.17 | 140 | -22.6 | 0.074 | -31 | -80.3 | $9.66 \mathrm{E}-05$ | -47 | -2.4 | 0.76 | -112 |
| 6 | -12.2 | 0.25 | 149 | -20.4 | 0.096 | 144 | -80.1 | 9.90E-05 | -126 | -2.8 | 0.73 | -130 |
| 7 | -14.0 | 0.2 | 143 | -20.5 | 0.095 | 79 | -80.3 | 9.68E-05 | 94 | -4.0 | 0.63 | -146 |
| 8 | -15.3 | 0.17 | 139 | -25.4 | 0.053 | -3 | -74.1 | $1.97 \mathrm{E}-04$ | 35 | -4.2 | 0.62 | -150 |
| 9 | -17.6 | 0.13 | 138 | -33.1 | 0.022 | 108 | -81.4 | 8.52E-05 | -62 | -3.5 | 0.67 | -166 |
| 10 | -19.4 | 0.11 | 145 | -18.9 | 0.113 | 54 | -81.4 | 8.56E-05 | -162 | -3.8 | 0.64 | 177 |
| 11 | -18.6 | 0.12 | 152 | -18.2 | 0.123 | -37 | -81.3 | 8.59E-05 | 151 | -4.4 | 0.6 | 161 |
| 12 | -19.7 | 0.1 | 141 | -29.0 | 0.035 | -77 | -74.6 | 1.86E-04 | 178 | -5.2 | 0.55 | 146 |
| 13 | -24.5 | 0.06 | 134 | -15.4 | 0.169 | 103 | -81.3 | 8.65E-05 | -180 | -6.3 | 0.48 | 131 |
| 14 | -27.4 | 0.04 | 159 | 0.9 | 1.107 | 61 | -81.2 | 8.70E-05 | -20 | -7.9 | 0.41 | 115 |
| 15 | -30.6 | 0.03 | -148 | 12.7 | 4.316 | -8 | -74.6 | $1.86 \mathrm{E}-04$ | 152 | -10.1 | 0.31 | 100 |
| 16 | -24.1 | 0.06 | -121 | 22.6 | 13.52 | -87 | -76.2 | $1.55 \mathrm{E}-04$ | 144 | -13.3 | 0.22 | 86 |
| 17 | -21.2 | 0.09 | -116 | 28.8 | 27.62 | 174 | -74.7 | $1.84 \mathrm{E}-04$ | -164 | -20.5 | 0.09 | 76 |
| 18 | -18.0 | 0.13 | -116 | 28.7 | 27.25 | 73 | -64.8 | $5.75 \mathrm{E}-04$ | 165 | -20.0 | 0.1 | 133 |
| 19 | -15.5 | 0.17 | -123 | 26.4 | 20.92 | 3 | -64.3 | 6.08E-04 | 123 | -19.4 | 0.11 | 130 |
| 20 | -14.0 | 0.2 | -133 | 24.7 | 17.18 | -53 | -64.4 | 6.03E-04 | 90 | -19.1 | 0.11 | 135 |
| 21 | -13.3 | 0.22 | -142 | 23.4 | 14.82 | -103 | -69.7 | 3.27E-04 | 76 | -18.7 | 0.12 | 133 |
| 22 | -13.0 | 0.22 | -151 | 22.4 | 13.2 | -151 | -58.2 | $1.23 \mathrm{E}-03$ | 80 | -18.5 | 0.12 | 129 |
| 23 | -12.9 | 0.23 | -157 | 21.5 | 11.9 | 164 | -63.3 | 6.80E-04 | 92 | -19.0 | 0.11 | 124 |
| 24 | -12.9 | 0.23 | -163 | 20.8 | 10.97 | 121 | -61.0 | 8.96E-04 | 44 | -20.7 | 0.09 | 119 |
| 25 | -13.0 | 0.23 | -172 | 20.3 | 10.36 | 79 | -66.1 | 4.97E-04 | 55 | -21.8 | 0.08 | 122 |
| 26 | -13.3 | 0.22 | -178 | 19.9 | 9.895 | 37 | -64.3 | 6.09E-04 | 53 | -22.9 | 0.07 | 131 |
| 27 | -13.9 | 0.2 | 174 | 19.7 | 9.691 | -6 | -63.1 | 7.00E-04 | 58 | -22.9 | 0.07 | 135 |
| 28 | -14.9 | 0.18 | 165 | 19.5 | 9.457 | -49 | -60.2 | $9.75 \mathrm{E}-04$ | 68 | -22.6 | 0.07 | 142 |
| 29 | -15.8 | 0.16 | 155 | 19.4 | 9.384 | -94 | -61.9 | $8.00 \mathrm{E}-04$ | 38 | -22.1 | 0.08 | 136 |
| 30 | -17.0 | 0.14 | 140 | 19.3 | 9.247 | -141 | -56.3 | $1.53 \mathrm{E}-03$ | 25 | -22.4 | 0.08 | 125 |
| 31 | -19.1 | 0.11 | 113 | 19.1 | 8.972 | 171 | -57.7 | $1.31 \mathrm{E}-03$ | 15 | -24.9 | 0.06 | 117 |
| 32 | -21.0 | 0.09 | 75 | 18.6 | 8.519 | 121 | -58.2 | $1.23 \mathrm{E}-03$ | 1 | -31.9 | 0.03 | 126 |
| 33 | -20.5 | 0.1 | 30 | 18.1 | 7.989 | 69 | -56.0 | $1.59 \mathrm{E}-03$ | -15 | -31.4 | 0.03 | -148 |
| 34 | -17.0 | 0.14 | -9 | 17.2 | 7.281 | 14 | -57.7 | $1.31 \mathrm{E}-03$ | -12 | -24.4 | 0.06 | -141 |
| 35 | -14.9 | 0.18 | -31 | 16.2 | 6.44 | -43 | -59.0 | 1.12E-03 | -36 | -20.0 | 0.1 | -145 |
| 36 | -12.8 | 0.23 | -45 | 14.6 | 5.378 | -104 | -60.8 | $9.14 \mathrm{E}-04$ | -40 | -16.2 | 0.16 | -152 |
| 37 | -10.7 | 0.29 | -58 | 12.1 | 4.014 | -171 | -62.9 | 7.13E-04 | -31 | -13.1 | 0.22 | -167 |
| 38 | -9.8 | 0.33 | -71 | 7.7 | 2.42 | 122 | -57.1 | 1.40E-03 | -55 | -11.1 | 0.28 | 174 |
| 39 | -9.1 | 0.35 | -77 | 1.9 | 1.238 | 65 | -61.0 | 8.94E-04 | -61 | -10.1 | 0.31 | 154 |
| 40 | -8.5 | 0.38 | -85 | -3.5 | 0.671 | 14 | -60.9 | 9.04E-04 | -59 | -9.8 | 0.33 | 134 |
| 41 | -8.6 | 0.37 | -92 | -9.2 | 0.347 | -41 | -67.6 | 4.15E-04 | -65 | -9.7 | 0.33 | 116 |
| 42 | -8.6 | 0.37 | -92 | -16.1 | 0.157 | -90 | -59.2 | $1.09 \mathrm{E}-03$ | -82 | -10.1 | 0.31 | 98 |
| 43 | -8.0 | 0.4 | -92 | -23.2 | 0.069 | -134 | -61.0 | 8.95E-04 | -75 | -10.6 | 0.29 | 80 |
| 44 | -7.6 | 0.42 | -90 | -32.0 | 0.025 | -172 | -62.0 | 7.96E-04 | -59 | -11.4 | 0.27 | 62 |
| 45 | -6.0 | 0.5 | -87 | -31.7 | 0.026 | -148 | -64.6 | $5.91 \mathrm{E}-04$ | -123 | -12.3 | 0.24 | 41 |
| 46 | -4.4 | 0.6 | -93 | -40.7 | 0.009 | -164 | -61.1 | 8.84E-04 | -82 | -13.2 | 0.22 | 21 |
| 47 | -3.5 | 0.67 | -98 | -46.2 | 0.005 | 62 | -102.4 | 7.57E-06 | -171 | -14.2 | 0.2 | 0 |
| 48 | -2.7 | 0.74 | -102 | -58.4 | 0.001 | 80 | -60.1 | $9.93 \mathrm{E}-04$ | 176 | -14.8 | 0.18 | -27 |
| 49 | -1.8 | 0.81 | -111 | -46.4 | 0.005 | 50 | -59.2 | 1.10E-03 | -69 | -14.7 | 0.18 | -49 |
| 50 | -1.7 | 0.83 | -118 | -44.2 | 0.006 | 113 | -61.9 | 8.00E-04 | 26 | -14.9 | 0.18 | -77 |

## Note:

1. Data obtained from on-wafer measurements.

## Biasing and Operation

The recommended quiescent DC bias condition for optimum efficiency, performance, and reliability is $\mathrm{V}_{\mathrm{d} 1}=3.5$ volts and $\mathrm{V}_{\mathrm{d} 2}=5$ volts with $\mathrm{V}_{\mathrm{gg}}$ set for $I_{d 1}+I_{d 2}=780 \mathrm{~mA}$ (no connection to $\mathrm{V}_{\mathrm{g} 1}$ ). This bias arrangement results in default quiescent drain currents $I_{d 1}=280 \mathrm{~mA}, I_{\mathrm{d} 2}=500 \mathrm{~mA}$. A single DC gate supply connected to $\mathrm{V}_{\mathrm{gg}}$ will bias all gain stages.

If operation with both $\mathrm{V}_{\mathrm{d} 1}$ and $\mathrm{V}_{\mathrm{d} 2}$ at 5 volts is desired, an additional wire bond connection from the $\mathrm{V}_{\mathrm{q} 1}$ pad to $\mathrm{V}_{g 9}$ external bypass chip capacitor (shorting $\bigvee^{q^{1}}$ to $\left.\mathrm{V}^{\mathrm{gg}}\right)^{\mathrm{gg}}$ will balance the current in each gain stage. $\mathrm{V}_{\mathrm{gg}}(=$ $\mathrm{V}_{\mathrm{g} 1}^{\mathrm{gg}}$ ) can be adjusted for $\mathrm{I}_{\mathrm{d} 1}+I_{\mathrm{d} 2}=780 \mathrm{~mA}$. Muting can be accomplished by setting $\mathrm{V}_{\mathrm{g} 1}$ and/or $\mathrm{V}_{\mathrm{gg}}$ to the pinchoff voltage $\mathrm{V}_{\mathrm{p}}$.

An optional output power detector network is also provided. Detector sensitivity can be adjusted by biasing the diodes with typically 1 to 5 volts applied to the Det- bias terminal. Simply connecting Det-Bias to the $\mathrm{V}_{\mathrm{d} 2}$ supply is a convenient method of biasing this detector network. The differential voltage between the Det-Ref and Det-Out pads can be correlated with the RF power emerging from the RF output port. The detected voltage is given by:

$$
V=\left(V_{\text {ref }}-V_{\text {det }}\right)-V_{\text {ofs }}
$$

Where $\mathrm{V}_{\text {ref }}$ is the voltage at the DET_REF port, $\mathrm{V}_{\text {det }}$ is a voltage at the DET_OUT port, and $\mathrm{V}_{\text {ofs }}$ is the zero-in-put-power offset voltage. There are three methods to calculate $\mathrm{V}_{\text {ofs }}$ :

1. $\mathrm{V}_{\text {ofs }}$ can be measured before each detector measurement (by removing or switching off the power source and measuring $\mathrm{V}_{\text {ref }}-\mathrm{V}_{\text {det }}$ ). This method gives an error due to temperature drift of less than $0.0002 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.
2. $\mathrm{V}_{\text {ofs }}$ can be measured at a single reference temperature. The drift error will be less than 0.25 dB .
3. $V_{\text {ofs }}$ can either be characterized over temperature and stored in a lookup table, or it can be measured at two temperatures and a linear fit used to calculate $V_{\text {ofs }}$ at any temperature. This method gives an error close to method \#1

With reference to Figure 13, the RF input is DC coupled to a shunt $50 \Omega$ resistor but it is $D C$ blocked to the input of the first stage. The RF output is DC blocked to the output of the second stage, however, it is DC coupled to the detector bias circuit. If the output detector is biased using the on-chip optional Det-Bias network, an external DC blocking capacitor may be required at the RF Output port.

No ground wires are needed since ground connections are made with plated through-holes to the backside of the device.

## Assembly Techniques

The backside of the AMMC- 5033 chip is RF ground. For microstripline applications, the chip should be attached directly to the ground plane (e.g., circuit carrier or heatsink) using electrically conductive epoxy. ${ }^{[1]}$

For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plated metal shim (same length and width as the MMIC) under the chip, which is of the correct thickness to make the chip and adjacent circuit coplanar.

The amount of epoxy used for chip and or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip or shim. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment.

The location of the RF bond pads is shown in Figure 14. Note that all the RF input and output ports are in a Ground-Signal-Ground configuration.

RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is sufficient for signal connections, however double-bonding with 0.7 mil gold wire or the use of gold mesh ${ }^{[2]}$ is recommended for best performance, especially near the high end of the frequency range.

Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. Gold mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of $76 \pm 8 \mathrm{mS}$. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is $150 \pm 2^{\circ} \mathrm{C}$.

Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time.

The chip is $100 \mu \mathrm{~m}$ thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up die with vacuum on die center.)

This MMIC is also static sensitive and ESD handling precautions should be taken.

## Notes:

1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824


Figure 13. AMMC-5033 schematic


Figure 14. AMMC-5033 bonding pad locations, dimensions are in microns


Figure 15. AMMC-5033 assembly diagram

## Ordering Information:

AMMC-5033-W10 $=10$ devices per tray
AMMC-5033-W50 $=50$ devices per tray

