AM411

FEATURES

- Wide Supply Voltage Range: 6...35V
- Wide Operating Temperature Range: -40°C...+85°C
- Voltage Reference: 5V
- Instrumentation Amplifier Input (Reversible Polarity)
- Operational Amplifier Input
- Adjustable Gain and Offset
- Adjustable Output Voltage Range: 0.5...4.5V, 0...5/10V, other
- Protection Against Reverse Polarity
- Output Current Limitation

APPLICATIONS

- Industrial Process Control
- Sensor Transmitter (e.g. pressure)
- Programmable Voltage Source WWW.DZSG.COM

GENERAL DESCRIPTION

The AM411 is a monolithic voltage transmitter, designed for flexible bridge input signal conditioning. The integrated circuit is ideally suited for a wide variety of transducers with an differential output signal. It contains a high accuracy instrumentation amplifier for differential input signals, an operational amplifier output stage, and a 5V reference. Output range and gain are adjustable by external resistors. Using the internal instrumentation amplifier the AM411 is a standard sensor transmitter with the possibility to indicate an over range signal. With the internal connected operational amplifier input this IC can be used as an adjustable voltage-tovoltage transmitter.

DELIVERY

- DIL8 packages (samples)
- SOP8 packages
- Dice on 5" blue foil

BLOCK DIAGRAM

Figure 1

Phone: +49 (0)6131/91 073 - 0 Fax: +49 (0)6131/91 073 - 30 F-Mail

info@analogmicro de

April 99 1/6

Rev. 2.1

AM411

ELECTRICAL SPECIFICATIONS

 $T_{amb} = 25$ °C, $V_{CC} = 24$ V, $V_{REF} = 5$ V, $I_{REF} = 1$ mA (unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Voltage Range	V_{CC}		6		35	V
Quiescent Current	I_{CC}	$T_{amb} = -40+85$ °C, $I_{REF} = 0$ mA			1.5	mA
Temperature Specifications	II .		<u> </u>			I
Operating	T_{amb}		-40		85	°C
Storage	T_{st}		-55		125	°C
Junction	T_J				150	°C
Thermal Resistance	Θ_{ja}	DIL8 plastic package		110		°C/W
	Θ_{ja}	SO8 plastic package		180		°C/W
Voltage Reference						
Voltage	V_{REF}		4.75	5.00	5.25	V
Current	I_{REF}		0.2		10.0	mA
V_{REF} vs. Temperature	$\mathrm{d}V_{REF}/\mathrm{d}T$	$T_{amb} = -40+85$ °C		±90	±140	ppm/°C
Line Regulation	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6V35V$		30	80	ppm/V
	$\mathrm{d}V_{REF}/\mathrm{d}V$	$V_{CC} = 6$ V35V, $I_{REF} \approx 5$ mA		60	150	ppm/V
Load Regulation	$\mathrm{d}V_{REF}/\mathrm{d}I$			0.05	0.10	%/mA
	$\mathrm{d}V_{REF}/\mathrm{d}I$	$I_{REF} \approx 5 \text{mA}$		0.06	0.15	%/mA
Load Capacitance	C_L		1.9	2.2	5.0	μF
Instrumentation Amplifier		_				
Internal Gain	G_{IA}		4.9	5	5.1	
Differential Input Voltage Range	V_{IN}		0		±400	mV
Common Mode Input Range	CMIR	V_{CC} < 9V	1.5		V_{CC} – 3	V
	CMIR	$V_{CC} \ge 9V$	1.5		6.0	V
Common Mode Rejection Ratio	CMRR		80	90		dB
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}			±1.5	±6	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±5		μV/°C
Input Bias Current	I_B			-120	-300	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			-0.35	-0.8	nA/°C
Output Voltage Range	V_{OUTIA}	V_{CC} < 9V, $V_{OUTIA} = G_{IA} V_{IN} + V_{ZA}$	0.02		V_{CC} – 3	V
	V_{OUTIA}	$V_{CC} \ge 9V$, $V_{OUTIA} = G_{IA} V_{IN} + V_{ZA}$	0.02		6	V
Load Capacitance	C_L				250	pF
Zero Adjust Stage	П	T	П	1		I
Internal Gain	G_{ZA}			1		
Input Voltage	V_{ZA}	$V_{ZA} \le V_{OUTIA} - G_{IA} V_{IN}$	0		V_{OUTIA}	V
Offset Voltage	V_{OS}			±0.5	±2.0	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±1.6	±5	μV/°C
Input Bias Current	I_B			38	100	nA
<i>I_B</i> vs. Temperature	dI_B/dT			24	75	pA/°C
Voltage Output Stage			1 .	I	1	
Adjustable Gain	G_{OP}		1			
Input Range	IR	<i>V_{CC}</i> < 10V	0		V_{CC} – 5	V
	IR	$V_{CC} \ge 10 \text{V}$	0		5	V

AM411

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Voltage Output Stage (cont.)						
Power Supply Rejection Ratio	PSRR		80	90		dB
Offset Voltage	V_{OS}			±0.5	±2	mV
V_{OS} vs. Temperature	$\mathrm{d}V_{OS}/\mathrm{d}T$			±3	±7	μV/°C
Input Bias Current	I_B			5	12	nA
I_B vs. Temperature	$\mathrm{d}I_B/\mathrm{d}T$			3.5	10	pA/°C
Output Voltage Range	V_{OUT}	$V_{CC} < 18 \text{V}$	0		V_{CC} – 5	V
	V_{OUT}	$V_{CC} \ge 18 \text{V}$	0		13	V
Output Current Limitation	I_{LIM}	$V_{OUT} \ge 10 \text{V}$	5	7	10	mA
Output Current	I_{OUT}		0		I_{LIM}	mA
Load Resistance	R_L		2			kΩ
Load Capacitance	C_L				500	nF
Protection Functions						
Protection against reverse polarity		Ground vs. V _S vs. V _{OUT}			35	V
System Parameters						
Nonlinearity		ideal input		0.05	0.15	%FS

Currents flowing into the IC are negative

BOUNDARY CONDITIONS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Sum Offset Resistors	$R_3 + R_4$		20		200	kΩ
V_{REF} Capacitance	C_1		1.9	2.2	5.0	μF

FUNCTIONAL DIAGRAM

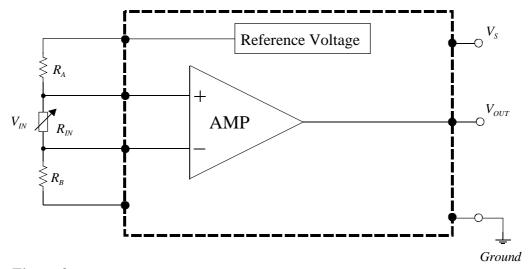


Figure 2

AM411

FUNCTIONAL DESCRIPTION

The IC AM411 is an integrated voltage transmitter for bridge input signals. With variations of a few external components the output voltage can be adjusted over a wide range. In addition to the resistors R_1 and R_2 the circuitry needs only one external capacitor C_1 for a basic application. Using the input of the voltage output stage the AM411 can be used for single ended input signals as well. Typical values for the external components are listed in the *Application Notes*.

Basically the AM411 consists of 3 functional blocks as they are shown in Figure 1:

- 1. A high accuracy *instrumentation amplifier* with an internal gain G_{IA} and the possibility to adjust the bias voltage (pin ZA) for differential input signals.
- 2. An *operational amplifier output stage* used for voltage transmission and as the voltage output. The output stage has an output current limitation protecting the IC.
- 3. A *voltage reference* can be used as an excitation for constant voltage sensors or as supply for other external devices.

The transfer function for the output voltage of the instrumentation amplifier is:

$$V_{OUTIA} = G_{IA}V_{IN} + V_{ZA}$$

with the offset voltage V_{ZA} which can be adjusted on pin ZA. For die entire output voltage V_{OUT} of the IC is valid

$$V_{OUT} = G_{OP} \cdot V_{INOP}$$

with the adjustable gain G_{OP}

$$G_{OP} = \frac{R_1}{R_2} + 1$$

The minimum supply voltage, which has to be adjusted, can be calculated over

$$V_S \ge V_{OUTmax} + 5V$$

AM411

PINOUT

<i>IN</i> + □ 1	8
GAIN 🔲 3	6
VOUT ☐ 4	5 VCC

Figure 3

PIN	NAME	DESIGNATION
1	IN+	Non Inverting Bridge Input
2	IN-	Inverting Bridge Input
3	GAIN	Gain Adjustment
4	VOUT	Voltage Output
5	VCC	Supply Voltage
6	ZA	Zero Adjust
7	GND	IC Ground
8	VREF	Reference Voltage

DELIVERY

The AM411 is available in version:

- DIL8 packages (samples)
- SOP8 packages
- Dice on 5" blue foil

PACKAGE DIMENSIONS SOP8

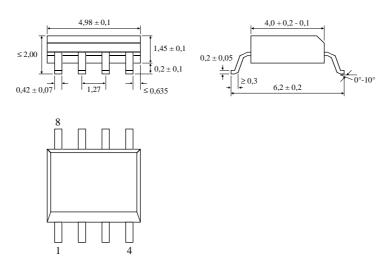


Figure 4

AM411

TYPICAL APPLICATION

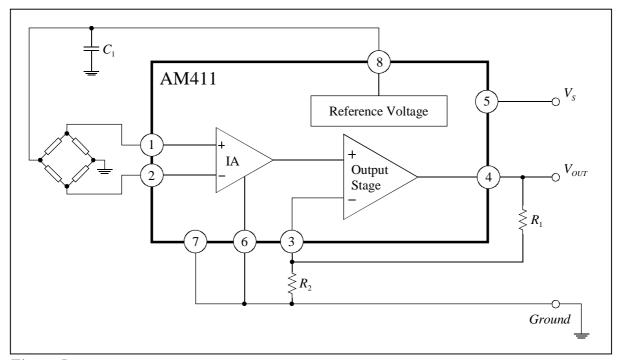


Figure 5

For Applications with an output signal of 0...5/10V zero adjust pin ZA has to be connected to IC Ground GND (Figure 5). The Gain G is adjusted by external resistors R_1 and R_2 and can be calculated by

$$G = G_{IA}G_{OP}$$

The transfer function of the output voltage V_{OUT} becomes

$$V_{OUT} = G V_{IN}$$

With this equations the external resistors R_1 and R_2 can be adjusted

$$\frac{R_1}{R_2} = \frac{V_{OUT}}{G_{IA} V_{IN}} - 1$$

Example 1: Output voltage range 0...10V

In this case the values of the external devices ($V_{IN} = 0...50 \,\mathrm{mV}$, $R_1/R_2 = 39$) are as follows

$$R_1 \approx 39 \text{k}\Omega$$

$$R_2 \approx 1 \text{k}\Omega$$

$$G_{IA} = 5$$

$$C_1 = 2.2 \mu F$$

Example 2: Output voltage range 0...5V

In this case the values of the external devices ($V_{IN} = 0...100$ mV, $R_1/R_2 = 9$) are as follows

$$R_1 \approx 90 \text{k}\Omega$$

$$R_2 \approx 10 \text{k}\Omega$$

$$G_{IA} = 5$$

$$C_1 = 2.2 \mu F$$

The information provided herein is believed to be reliable; however, Analog Microelectronics assumes no responsibility for inaccuracies or omissions. Analog Microelectronics assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licences to any of the circuits described herein are implied or granted to any third party. Analog Microelectronics does not authorise or warrant any Analog Microelectronics product use in life support devices and/or systems.