

GaAs MMIC VSAT Power Amplifier, 2.0 W
 14.0 - 14.5 GHz

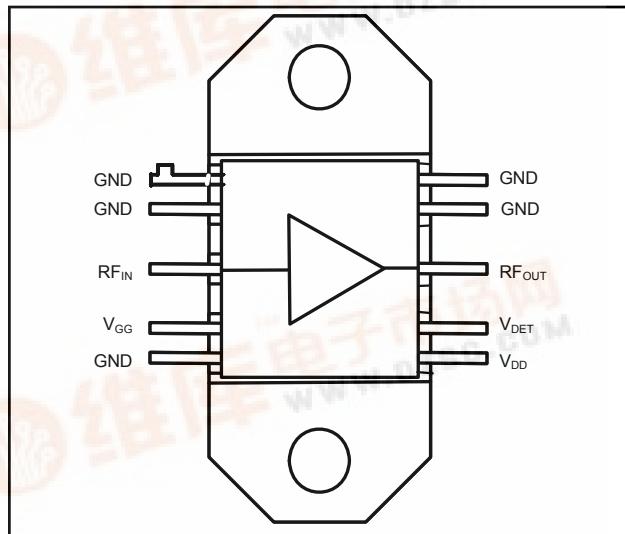
AM42-0007
 V5

Features

- High Linear Gain: 22 dB Typical
- High Saturated Output Power: +33 dBm Typical
- High Power Added Efficiency: 22% Typical
- High P_{1dB} : 32 dBm Typ.
- 50 Ω Input/Output Broadband Matched
- Integrated Output Power Detector
- Lead-Free Ceramic Bolt Down Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

M/A-COM's AM42-0007 is a three-stage MMIC linear power amplifier in a lead-free, ceramic bolt down style hermetic package. The AM42-0007 employs a fully matched chip with internally decoupled gate and drain bias networks and an output power detector. The AM42-0007 is designed to be operated from a constant voltage drain supply.


The AM42-0007 is designed for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

M/A-COM's AM42-0007 is fabricated using a mature 0.5 micron GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

Ordering Information

Part Number	Package
AM42-0007	Ceramic Bolt Down Package

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description
1	GND	DC and RF Ground
2	GND	DC and RF Ground
3	IN	RF Input
4	V _{GG}	Gate Supply
5	GND	DC and RF Ground
6	V _{DD}	Voltage Drain Supply
7	V _{DET}	Output Power Detector
8	OUT	RF Output
9	GND	DC and RF Ground
10	GND	DC and RF Ground

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs MMIC VSAT Power Amplifier, 2.0 W
14.0 - 14.5 GHz

AM42-0007
V5

Electrical Specifications: $T_A = +25^\circ\text{C}$, $V_{DD} = +9\text{ V}$, $V_{GG} = -5.0\text{ V}$, $Z_0 = 50\Omega$, $F = 14.0-14.5\text{ GHz}$

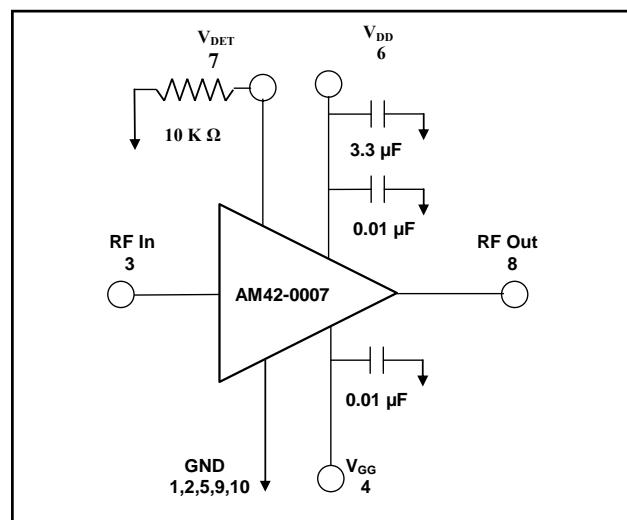
Parameter	Test Conditions	Units	Min.	Typ.	Max.
Linear Gain	$P_{IN} \leq 0\text{ dBm}$	dB	19	22	—
Input VSWR	$P_{IN} \leq 0\text{ dBm}$	Ratio	—	2.5:1	2.7:1
Output VSWR	$P_{IN} \leq 0\text{ dBm}$	Ratio	—	2.7:1	—
Saturated Output Power	$P_{IN} = +14\text{ dBm}$	dBm	—	33	—
Output Power at P1dB	—	dBm	31	32	—
Output IP3 ¹		dBm	—	41	—
Power Added Efficiency	$P_{IN} = +14\text{ dBm}$	%	—	22	—
Bias Current	$P_{IN} = +14\text{ dBm}$	mA	—	18	25
Thermal Resistance	25°C Heat Sink	°C/W	—	9.5	—
Detector Output Voltage	$R_L = 10\text{ K}\Omega$, $P_{OUT} = +31\text{ dBm}$	V	—	+3.5	—

1. IP₃ is measured with two +24 dBm output tones @ 1 MHz spacing

Absolute Maximum Ratings ^{2,3,4}

Parameter	Absolute Maximum
V_{DD}	12 Volts
V_{GG}	-10 Volts
Power Dissipation	13.2 W
RF Input Power	+23 dBm
Channel Temperature	150°C
Storage Temperature	-65°C to +150°C
I_{BS}	2100 mA

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- Case Temperature (T_C) = +25°C.

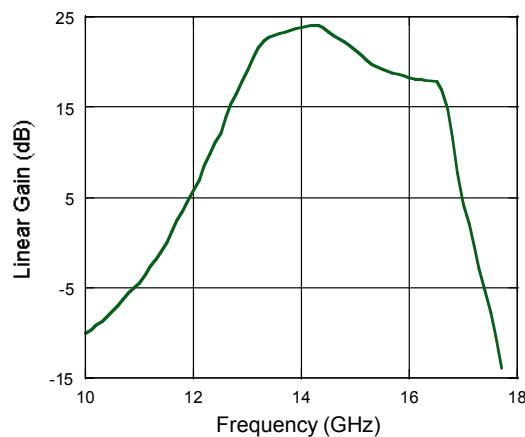

Handling Procedures

Please observe the following precautions to avoid damage:

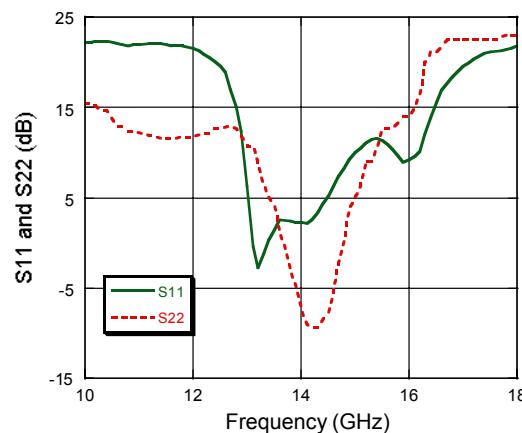
Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

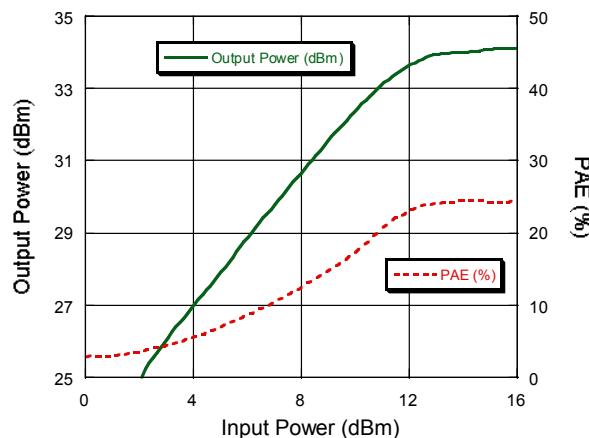
Typical Bias Configuration ^{5,6,7,8,9}

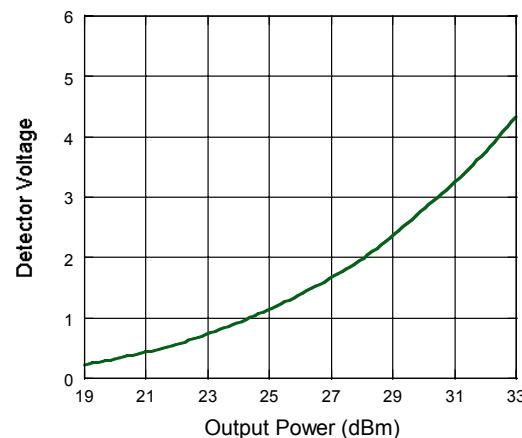

- Nominal bias is obtained by first connecting -5 volts to pin 4 (V_{GG}), followed by connection +9 volts to pin 6 (V_{DD}). Note sequence.
- RF ground and thermal interface is the flange (case bottom). Adequate heat sinking is required.
- No DC bias voltage appears at the RF ports.
- For optimum IP3 performance, the V_{DD} bypass capacitors should be placed within 0.5 inches of pin 6.
- Resistor and capacitors surrounding the amplifier are suggestions and not included as part of the AM42-0007.

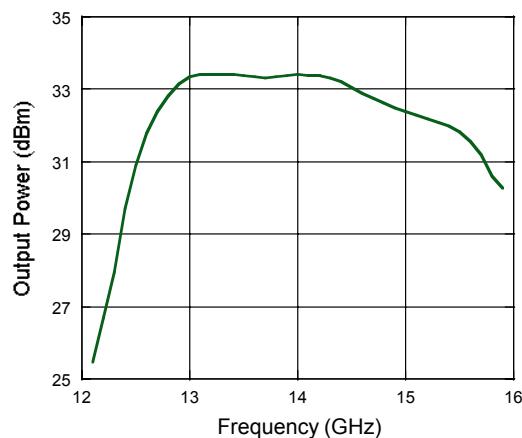
GaAs MMIC VSAT Power Amplifier, 2.0 W
14.0 - 14.5 GHz


AM42-0007
V5

Typical Performance Curves @ +25°C

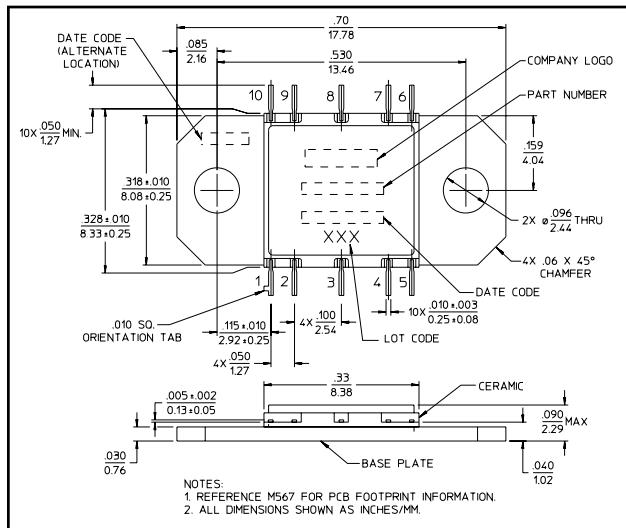

Linear Gain vs. Frequency


Input and Output Return Loss vs. Frequency


Output Power vs. Input Power @ 14.25 GHz


Detector Voltage vs. Output Power @ 14.25 GHz

Output Power vs. Frequency @ $P_{IN} = +14$ dBm


PAE vs. Frequency @ $P_{IN} = +14$ dBm

GaAs MMIC VSAT Power Amplifier, 2.0 W
14.0 - 14.5 GHz

AM42-0007
V5

Lead-Free CR-15[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.