
### AM460

# PRINCIPLE FUNCTION

Amplification and conversion of voltage signals referenced to ground Integrated protection for IC and external components Integrated, adjustable current/voltage sources for external components



### **TYPICAL APPLICATIONS**

- Peripheral processor IC (see Figure 12 on page 17)
- Industrial protector and output IC for microprocessors (Frame ASIC concept [1])
- Impedance converter
- Adjustable voltage and current source (supply unit)
- Voltage regulator with additional functions

# malog microelectronics

Analog Microelectronics GmbH Ander Fahrt 13, D – 55124 Mainz Internet: http://www.analogmicro.de

Phone: Fax: E-mail<sup>:</sup>

+49 (0)6131/91 073 - 0
 +49 (0)6131/91 073 - 30
 info@analogmicro.de

April 2003 1/18 Rev. 1.1

### TABLE OF CONTENTS

| Features                                                                            | 3  |
|-------------------------------------------------------------------------------------|----|
| General Description                                                                 | 3  |
| Block Diagram                                                                       | 3  |
| Electrical Specifications                                                           | 4  |
| Boundary Conditions                                                                 | 6  |
| Detailed Description of Functions                                                   | 6  |
| Operating AM460                                                                     | 8  |
| General information on 2- and 3-wire applications and the use of the current output | 8  |
| Setting the voltage gain using the voltage output                                   | 9  |
| Setting the output current range using the current output                           | 9  |
| Selecting the supply voltage                                                        | 9  |
| Connecting OP2 as a current source                                                  | 10 |
| Connecting OP2 as a voltage reference                                               | 11 |
| Operating AM460: Important Points to Note                                           | 12 |
| Applications                                                                        | 12 |
| Typical 3-wire application with an input signal referenced to ground                | 12 |
| Typical 2-wire application with an input signal referenced to ground                | 14 |
| Block Diagram and Pinout                                                            | 16 |
| Examples of Possible Applications                                                   | 17 |
| Delivery                                                                            | 18 |
| Further Reading                                                                     | 18 |

### **TABLE OF FIGURES**

| Table 1: AM460 pinout                                                                                            | 16 |
|------------------------------------------------------------------------------------------------------------------|----|
| Figure 1: Block diagram of AM460                                                                                 | 3  |
| Figure 2: Block diagram of AM460 with external components (3-wire circuit for current output)                    | 7  |
| Figure 3: Difference between 2- and 3-wire operation                                                             | 8  |
| Figure 4: Working range in conjunction with the load resistor                                                    | 10 |
| Figure 5: Connecting up a constant current source                                                                | 10 |
| Figure 6: Connecting up a voltage reference                                                                      | 11 |
| Figure 7: Typical application for input signals referenced to ground                                             | 13 |
| Figure 8: Typical 2-wire application for input signals referenced to ground                                      | 14 |
| Figure 9: Block diagram of AM460                                                                                 | 16 |
| Figure 10: Pinout                                                                                                | 16 |
| Figure 11: Application for input signals referenced to ground (protected output stage, impedance converter etc.) | 17 |
| Figure 12: Complex configuration as a peripheral processor IC                                                    | 17 |
| Figure 13: Conversion of a 0.54.5V sensor signal                                                                 | 17 |

## AM460

## AM460

### **FEATURES**

- Supply voltage: 6...35V
- Wide working temperature range: -40°C...+85°C
- Adjustable integrated reference voltage source: 4.5 to 10V
- Additional voltage/current source
- Operational amplifier with integrated driver stage
- Adjustable amplification
- Analogue parallel voltage (0...5/10V) and current output (0/4...20mA)
- Protection against reverse polarity and short-circuiting
- Output current limit
- Low-cost device: replaces a number of discrete elements
- 2- and 3-wire operation

### **GENERAL DESCRIPTION**

AM460 is a universal converter and amplifier IC with a number of additional functions. The IC basically consists of an amplifier, whose gain can be set externally, and parallel output stages which can condition signals referenced to ground in industrial voltage and current signals. An additional reference voltage source for the supply of external components is also included in the device. A further operational amplifier can be connected up as a current source, voltage reference or comparator.

One of the main features of the IC is its integrated protective circuitry. The device is protected against reverse polarity, short-circuiting and has a built-in output current limit. Amplifier IC AM460 enables industrial standard voltage (e.g. 0–5/10V) and current loop (e.g. 0/4–20mA) signals to be produced relatively easily.

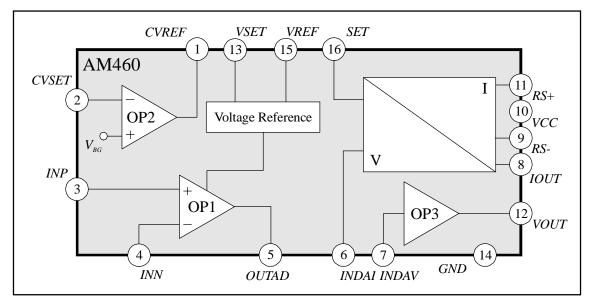



Figure 1: Block diagram of AM460

# analog microelectronics

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz Internet: http://www.analogmicro.de Phone: Fax: F-mail:

: +49 (0)6131/91 073 - 0 +49 (0)6131/91 073 - 30 I: info@analogmicro.de April 2003 3/18 Rev. 1.1

#### BLOCK DIAGRAM

### **ELECTRICAL SPECIFICATIONS**

 $T_{amb} = 25^{\circ}$ C,  $V_{CC} = 24$ V,  $V_{REF} = 5$ V,  $I_{REF} = 1$ mA (unless otherwise stated), currents flowing into the IC are negative

| Parameter                                           | Symbol                          | Conditions                                     | Min.     | Тур. | Max.                      | Unit   |
|-----------------------------------------------------|---------------------------------|------------------------------------------------|----------|------|---------------------------|--------|
| Supply Voltage Range                                | V <sub>CC</sub>                 |                                                | 6        |      | 35                        | V      |
| Quiescent Current                                   | $I_{CC}$                        | $T_{amb} = -40+85^{\circ}$ C, $I_{REF} = 0$ mA |          |      | 1.5                       | mA     |
| Temperature Specifications                          |                                 |                                                |          |      | •                         |        |
| Operating                                           | Tamb                            |                                                | -40      |      | 85                        | °C     |
| Storage                                             | $T_{st}$                        |                                                | -55      |      | 125                       | °C     |
| Junction                                            | $T_J$                           |                                                |          |      | 150                       | °C     |
| Thermal Resistance                                  | $\Theta_{ja}$                   | DIL16 plastic package                          |          | 70   |                           | °C/W   |
|                                                     | $\Theta_{ja}$                   | SO16 narrow plastic package                    |          | 140  |                           | °C/W   |
| Voltage Reference                                   |                                 |                                                | - 11     |      |                           | u      |
| Voltage                                             | $V_{REF}$                       | VSET not connected                             | 4.75     | 5.00 | 5.25                      | V      |
|                                                     | $V_{REF10}$                     | $VSET = GND, V_{CC} \ge 11V$                   | 9.5      | 10.0 | 10.5                      | v      |
| Trim Range                                          | V <sub>REFADJ</sub>             |                                                | 4.5      |      | $V_{REF10}$               | v      |
| Current                                             | I <sub>REF</sub> *              |                                                | 0        |      | 10.0                      | mA     |
| $V_{REF}$ vs. Temperature                           | $\mathrm{d}V_{REF}/\mathrm{d}T$ | $T_{amb} = -40+85^{\circ}C$                    |          | ±90  | ±140                      | ppm/°C |
| Line Regulation                                     | $\mathrm{d}V_{REF}/\mathrm{d}V$ | $V_{CC} = 6V35V$                               |          | 30   | 80                        | ppm/V  |
|                                                     | $\mathrm{d}V_{REF}/\mathrm{d}V$ | $V_{CC} = 6V35V, I_{REF} \approx 5mA$          |          | 60   | 150                       | ppm/V  |
| Load Regulation                                     | dV <sub>REF</sub> /dI           |                                                |          | 0.05 | 0.10                      | %/mA   |
|                                                     | dV <sub>REF</sub> /dI           | $I_{REF} \approx 5 \mathrm{mA}$                |          | 0.06 | 0.15                      | %/mA   |
| Load Capacitance                                    | $C_L$                           |                                                | 1.9      | 2.2  | 5.0                       | μF     |
| Current/Voltage Source OP2                          |                                 |                                                | - 11     |      |                           | u      |
| Internal Reference                                  | $V_{BG}$                        |                                                | 1.20     | 1.27 | 1.35                      | V      |
| $V_{BG}$ vs. Temperature                            | $\mathrm{d}V_{BG}/\mathrm{d}T$  | $T_{amb} = -40+85^{\circ}C$                    |          | ±60  | ±140                      | ppm/°C |
| Current Source: $I_{CV} = V_{BG}/R_{SET}$ , from Fi | gure 5                          |                                                |          |      |                           |        |
| Adjustable Current Range                            | $I_{CV}^*$                      |                                                | 0        |      | 10                        | mA     |
| Output Voltage                                      | $V_{CV}$                        | $V_{CC} < 19 \mathrm{V}$                       | $V_{BG}$ |      | $V_{CC} - 4$              | v      |
|                                                     | $V_{CV}$                        | $V_{CC} \ge 19$ V                              | $V_{BG}$ |      | 15                        | v      |
| Voltage Source: $V_{CV} = V_{BG} (1 + R_7 / R_6)$   | ), from Figure 6                |                                                | 1        | 1    | 1                         | 1      |
| Adjustable Voltage Range                            | V <sub>CV</sub>                 | $V_{CC} < 19 \text{V}$                         | 0.4      |      | $V_{CC} - 4$              | V      |
|                                                     | $V_{CV}$                        | $V_{CC} \ge 19$ V                              | 0.4      |      | 15                        | v      |
| Output Current                                      | $I_{CV}^*$                      | Source                                         |          |      | 10                        | mA     |
| -                                                   | $I_{CV}$                        | Sink                                           |          |      | -100                      | μA     |
| Load Capacitance                                    | $C_L$                           | Source mode                                    | 0        | 1    | 10                        | nF     |
| Operational Amplifier Gain Stage (O                 | I                               |                                                |          |      |                           |        |
| Adjustable Gain                                     | $G_{GAIN}$                      |                                                | 1        |      |                           |        |
| Input Range                                         | IR                              | $V_{CC} < 10 \text{V}$                         | 0        |      | <i>V<sub>CC</sub></i> – 5 | v      |
|                                                     | IR                              | $V_{CC} \ge 10 \text{V}$                       | 0        |      | 5                         | v      |
| Power Supply Rejection Ratio                        | PSRR                            |                                                | 80       | 90   |                           | dB     |
| Offset Voltage                                      | $V_{OS}$                        |                                                |          | ±0.5 | ±2                        | mV     |
| $V_{OS}$ vs. Temperature                            | $dV_{OS}/dT$                    |                                                |          | ±3   | ±7                        | μV/°C  |

| Parameter                                      | Symbol                         | Conditions                                      | Min. | Тур.      | Max.                      | Unit  |
|------------------------------------------------|--------------------------------|-------------------------------------------------|------|-----------|---------------------------|-------|
| Operational Amplifier Gain Stage (OP1) (cont.) |                                |                                                 |      |           |                           |       |
| Input Bias Current                             | $I_B$                          |                                                 |      | 10        | 25                        | nA    |
| $I_B$ vs. Temperature                          | $\mathrm{d}I_B/\mathrm{d}T$    |                                                 |      | 7         | 20                        | pA/°C |
| Output Voltage Limit                           | $V_{LIM}$                      |                                                 |      | $V_{REF}$ |                           | v     |
| Output Voltage Range                           | Voutad                         | $V_{CC} < 10 \text{V}$                          | 0    |           | $V_{CC} - 5$              | v     |
|                                                | Voutad                         | $V_{CC} \ge 10 \text{V}$                        | 0    |           | $V_{REF}$                 | v     |
| Load Capacitance                               | $C_L$                          |                                                 |      |           | 250                       | pF    |
| Operational Amplifier Output Stage             | (OP3)                          | •                                               | •    |           |                           |       |
| Internal Gain                                  | $G_{OP}$                       |                                                 | 2.15 | 2.20      | 2.25                      |       |
| Input Range                                    | IR                             | $V_{CC} < 11 \mathrm{V}$                        | 0    |           | $V_{CC} - 5$              | v     |
|                                                | IR                             | $V_{CC} \ge 11 \mathrm{V}$                      | 0    |           | 6                         | v     |
| Power Supply Rejection Ratio                   | PSRR                           |                                                 | 80   | 90        |                           | dB    |
| Offset Voltage                                 | $V_{OS}$                       |                                                 |      | ±0.5      | ±2                        | mV    |
| $V_{OS}$ vs. Temperature                       | $\mathrm{d}V_{OS}/\mathrm{d}T$ |                                                 |      | ±3        | ±7                        | µV/°C |
| Input Bias Current                             | $I_B$                          |                                                 |      | 10        | 25                        | nA    |
| $I_B$ vs. Temperature                          | $\mathrm{d}I_B/\mathrm{d}T$    |                                                 |      | 7         | 20                        | pA/°C |
| Output Voltage Range                           | $V_{OUT}$                      | $V_{CC} < 19 \mathrm{V}$                        | 0    |           | $V_{CC} - 5$              | v     |
|                                                | $V_{OUT}$                      | $V_{CC} \ge 19 \mathrm{V}$                      | 0    |           | 14                        | v     |
| Output Current Limitation                      | I <sub>LIM</sub>               | $V_{OUT} \ge 10 \text{V}$                       | 5    | 7         | 10                        | mA    |
| Output Current                                 | I <sub>OUT</sub>               |                                                 | 0    |           | I <sub>LIM</sub>          | mA    |
| Load Resistance                                | $R_L$                          |                                                 | 2    |           |                           | kΩ    |
| Load Capacitance                               | $C_L$                          |                                                 |      |           | 500                       | nF    |
| V/I Converter                                  | <b>U</b>                       |                                                 |      | 1         |                           | u     |
| Internal Gain                                  | $G_{VI}$                       |                                                 |      | 0.125     |                           |       |
| Trim Range                                     |                                | Adjustable by $R_0$                             | 0.75 | 1.00      | 1.25                      |       |
| Voltage Range at $R_0$ FS                      | $V_{R0}FS$                     |                                                 | 350  |           | 750                       | mV    |
| Offset Voltage                                 | $V_{OS}$                       | $\beta_F \ge 100$                               |      | ±2        | ±4                        | mV    |
| V <sub>OS</sub> vs. Temperature                | $\mathrm{d}V_{OS}/\mathrm{d}T$ | $\beta_F \ge 100$                               |      | ±7        | ±14                       | µV/°C |
| Input Resistance                               | R <sub>IN</sub>                |                                                 | 120  | 160       |                           | kΩ    |
| $R_{IN}$ vs. Temperature                       | d <i>RI</i> №/d <i>T</i>       |                                                 | 0.2  | 0.3       |                           | kΩ/°C |
| Output Offset Current                          | I <sub>OUTOS</sub>             | 3-wire operation                                |      | -25       | -35                       | μA    |
| $I_{OUTOS}$ vs. Temperature                    | dI <sub>OUTOS</sub> /dT        | 3-wire operation                                |      | 16        | 26                        | nA/°C |
| Output Offset Current                          | IOUTOS                         | 2-wire operation                                |      | 9.5       | 14                        | μA    |
| <i>I</i> <sub>OUTOS</sub> vs. Temperature      | dI <sub>OUTOS</sub> /dT        | 2-wire operation                                |      | 6         | 8                         | nA/°C |
| Output Control Current                         | IOUTC                          | 2-wire operation, $V_{R0}/100$ mV               |      | 6         | 8                         | μΑ    |
| $I_{OUTC}$ vs. Temperature                     | dI <sub>OUTC</sub> /dT         | 2-wire operation                                |      | -10       | -15                       | nA/°C |
| Output Voltage Range                           | V <sub>OUT</sub>               | $V_{OUT} = R_L I_{OUT}, V_{CC} < 18 \text{V}$   | 0    |           | <i>V<sub>CC</sub></i> – 6 | v     |
| -                                              | V <sub>OUT</sub>               | $V_{OUT} = R_L I_{OUT}, V_{CC} \ge 18 \text{V}$ | 0    |           | 12                        | v     |
| Output Current Range FS                        | IOUTFS                         | $I_{OUT} = V_{R0}/R_0$ , 3-wire operation       |      | 20        |                           | mA    |
| Output Resistance                              | R <sub>OUT</sub>               |                                                 | 0.5  | 1.0       |                           | MΩ    |
| Load Capacitance                               | $C_L$                          |                                                 | 0    |           | 500                       | nF    |

| Parameter                           | Symbol                         | Conditions                                | Min. | Тур. | Max. | Unit              |  |
|-------------------------------------|--------------------------------|-------------------------------------------|------|------|------|-------------------|--|
| SET Stage                           | jET Stage                      |                                           |      |      |      |                   |  |
| Internal Gain                       | $G_{SET}$                      |                                           |      | 0.5  |      |                   |  |
| Input Voltage                       | $V_{SET}$                      |                                           | 0    |      | 1.15 | V                 |  |
| Offset Voltage                      | $V_{OS}$                       |                                           |      | ±0.5 | ±1.5 | mV                |  |
| V <sub>OS</sub> vs. Temperature     | $\mathrm{d}V_{OS}/\mathrm{d}T$ |                                           |      | ±1.6 | ±5   | $\mu V/^{\circ}C$ |  |
| Input Bias Current                  | $I_B$                          |                                           |      | 8    | 20   | nA                |  |
| $I_B$ vs. Temperature               | $\mathrm{d}I_B/\mathrm{d}T$    |                                           |      | 7    | 18   | pA/°C             |  |
| Protection Functions                |                                |                                           |      |      |      |                   |  |
| Voltage Limitation at $R_0$         | V <sub>LIMR0</sub>             | $V_{R0} = V_{INDAI} G_{VI}, SET = GND$    | 580  | 635  | 690  | mV                |  |
|                                     | V <sub>LIMR0</sub>             | $V_{INDAI} = 0, V_{R0} = G_{SET} V_{SET}$ | 580  | 635  | 690  | mV                |  |
| Protection against reverse polarity |                                | Ground vs. $V_S$ vs. $V_{OUT}$            |      |      | 35   | V                 |  |
|                                     |                                | Ground vs. $V_S$ vs. $I_{OUT}$            |      |      | 35   | V                 |  |
| Current with reverse polarity       |                                | <i>Ground</i> = 35V, $V_S = I_{OUT} = 0$  |      | 4.5  |      | mA                |  |
| System Parameters                   |                                |                                           |      |      |      | •                 |  |
| Nonlinearity                        |                                | Ideal input                               |      | 0.05 | 0.15 | %FS               |  |

\* In 2-wire operation a maximum current of  $I_{OUTmin} - I_{CC}$  is valid

#### **BOUNDARY CONDITIONS**

| Parameter                           | Symbol          | Conditions                   | Min.         | Тур.         | Max.         | Unit |
|-------------------------------------|-----------------|------------------------------|--------------|--------------|--------------|------|
| Sense Resistor                      | $R_0$           | $I_{OUTFS} = 20 \text{mA}$   | 17           | 27           | 38           | Ω    |
|                                     | $R_0$           | $c = 20 \text{mA}/I_{OUTFS}$ | $c \cdot 17$ | $c \cdot 27$ | $c \cdot 38$ | Ω    |
| Stabilisation Resistor              | $R_5$           | $I_{OUTFS} = 20 \text{mA}$   | 35           | 40           | 45           | Ω    |
|                                     | $R_5$           | $c = 20 \text{mA}/I_{OUTFS}$ | $c \cdot 35$ | $c \cdot 40$ | $c \cdot 45$ | Ω    |
| Load Resistor                       | $R_L$           | Only for 3-wire operation    | 0            |              | 600          | Ω    |
| Sum Gain Resistors                  | $R_1 + R_2$     |                              | 20           |              | 200          | kΩ   |
| Sum Offset Resistors                | $R_{3} + R_{4}$ |                              | 20           |              | 200          | kΩ   |
| V <sub>REF</sub> Capacitor          | $C_1$           | Ceramic                      | 1.9          | 2.2          | 5.0          | μF   |
| Output Capacitor                    | $C_2$           | Only for 2-wire operation    | 90           | 100          | 250          | nF   |
| D1 Breakdown Voltage                | $V_{BR}$        |                              | 35           | 50           |              | v    |
| T <sub>1</sub> Forward Current Gain | $\beta_F$       | BCX54/55/56, for example     | 50           | 150          |              |      |

#### **DETAILED DESCRIPTION OF FUNCTIONS**

AM460 is a modular, universal converter and protector IC which has been specially developed for the conditioning of voltage signals referenced to ground. It has been conceived for both 2- and 3-wire operation<sup>1</sup> in industrial applications (cf. application on page 8). The functions of AM460 are depicted in the block diagram (Figure 2) which also illustrates how few external components are required for the operation of this particular device. Electrical specifications for the external components are given on page 6.

<sup>&</sup>lt;sup>1</sup>The principle of AM460 is such that only the current output can be used in 2-wire operation.

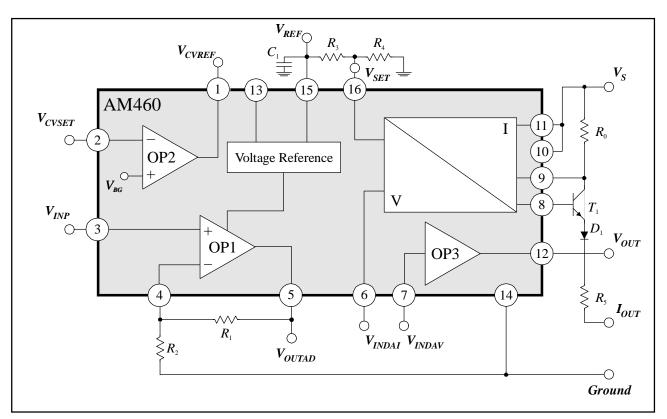



Figure 2: Block diagram of AM460 with external components (3-wire circuit for current output)

AM460 consist of several modular function blocks (operational amplifiers, voltage-to-current converters and references) which depending on external configurations can either be switched together or operated separately (see the basic circuitry in Figure 2):

1. Operational amplifier stage OP1 enables a positive voltage signal to be amplified. OP1 gain  $G_{GAIN}$  can be set via external resistors  $R_1$  and  $R_2$ . Protective circuitry against overvoltage is integrated into the chip, limiting the voltage to the set value of the reference voltage. Output voltage  $V_{OUTAD}$  at pin OUTAD is calculated as:

$$V_{OUTAD} = V_{INP} \cdot G_{GAIN} \text{ with } G_{GAIN} = 1 + \frac{R_1}{R_2}$$
(1)

where  $V_{INP}$  is the voltage at OP1 input pin *INP*.

2. Using the current-limited *operational amplifier stage* OP3 with its integrated protection against reverse polarity an industrial voltage signal ( $V_{OUT}$ ) can be realised. The internal amplification of OP3 is set to a fixed value of  $G_{OP} = 2.2$ . The output is configured as a driver so that OP3 is particularly suitable as an output stage. For OP3 output voltage  $V_{OUT}$  at pin *VOUT* of the IC the following applies:

$$V_{OUT} = G_{OP} \cdot V_{INDAV} \tag{2}$$

with  $V_{INDAV}$  the voltage at pin *INDAV* (OP3 input).

3. The voltage-to-current converter (V/I converter) provides a voltage-controlled current signal at IC output *IOUT* (pin 8) which activates an external transistor  $T_1$ ; this in turn supplies the actual output current  $I_{OUT}$ . To

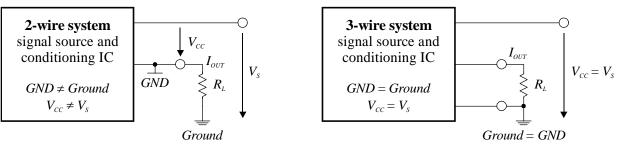
reduce power dissipation the transistor is an external component and protected against reverse polarity by an additional diode  $D_1$ . Via pin *SET* an offset current  $I_{SET}$  can be set at output *IOUT* (with the help of the internal voltage reference and an external voltage divider as shown in Figure 2, for example). External resistor  $R_0$  permits the output current to be finely adjusted with parallel operation of current and the voltage output. For the output current provided by  $T_1$  the following ratio applies:

$$I_{OUT} = \frac{V_{INDAI}}{8R_0} + I_{SET} \text{ with } I_{SET} = \frac{V_{SET}}{2R_0}$$
(3)

with  $V_{INDAI}$  the voltage at INDAI and  $V_{SET}$  the voltage at pin SET (V/I converter inputs, Figure 2)<sup>2</sup>.

4. The AM460 *reference voltage source* enables voltage to be supplied to external components (such as sensors, microprocessors, etc.). The reference voltage value  $V_{REF}$  can be set via pin 13 *VSET*. If pin *VSET* is not connected,  $V_{REF} = 5V$ ; if *VSET* is switched to ground,  $V_{REF} = 10V$ . Values between these can be set if two external resistors are used (inserted between pin *VREF* and pin *VSET* and between pin *VSET* and *GND*).

External (ceramic) capacitor  $C_1$  at pin *VREF* stabilises the reference voltage. It <u>must</u> be connected even if the voltage reference is not in use.


5. The additional *operational amplifier stage* OP2 can be used as a current or voltage source to supply external components. OP2's positive input is connected internally to voltage  $V_{BG}$  so that the output current or output voltage can be set across a wide range using one or two external resistors.

#### **OPERATING AM460**

#### General information on 2- and 3-wire applications and the use of the current output

In 3-wire operation (cf. Figure 3 right and Figure 7) the ground of the IC (pin *GND*) is connected up to the external mass of the system *Ground*. The system's supply voltage  $V_s$  is connected to pin *VCC* and pin *VCC* to pin *RS*+.

In 2-wire operation (cf. Figure 3 left and Figure 7) system supply voltage  $V_S$  is connected to pin RS+ and pin VCC to RS-. The ground of the IC (pin GND) is connected to the node between resistor  $R_5$  and load resistor  $R_L$  (current output  $I_{OUT}$ ). IC ground (GND) is <u>not</u> the same as system ground (Ground)!! The output signal is picked up via load resistor  $R_L$  which connects current output  $I_{OUT}$  to the system ground.



*Figure 3:* Difference between 2- and 3-wire operation

<sup>&</sup>lt;sup>2</sup> The construction of the V/I converter is such that output current  $I_{OUT}$  is largely independent of the current amplification  $\beta_F$  of external transistor  $T_1$ . Production-specific variations in the current amplification of the transistors used are compensated for internally by the V/I converter.

In 2-wire operation the IC ground is "virtual" (floating), as with a constant load resistance the supply voltage of the device  $V_{CC}$  changes according to the current. As a rule, the following equation applies to 2-wire operation:

$$V_{CC} = V_S - I_{OUT} \left( V_{IN} \right) R_L$$

The reason for this is that in 2-wire operation the IC is connected in series to the actual load resistor  $R_L$ . This is illustrated in Figure 3.

In 3-wire operation  $V_{CC} = V_s$ , as the IC ground is connected to the ground of the system.

#### Setting the voltage gain using the voltage output

Using amplifier stages OP1 and OP3 for signal conditioning the overall gain can be set by selecting suitable external resistors  $R_1$  and  $R_2$ . The transfer function for the output voltage is calculated by multiplying Equations 1 and 2 as follows:

$$V_{OUT} = V_{INP} \cdot G_{GAIN} \cdot G_{OP} \tag{5}$$

with  $G_{GAIN} = 1 + R_1/R_2$  and  $G_{OP} = 2.2$ .

#### Setting the output current range using the current output

When using amplification stage OP1 together with the V/I converter for signal conditioning the offset of the output current should first be compensated for by suitable selection of resistors  $R_3$  and  $R_4$ . To this end the OP1 input must be connected to ground ( $V_{INP} = 0$ ). With the short circuit at the input and by connecting up V/I converter pin *VSET* as shown in Figure 2 the values of the output current according to Equation 3 are as follows:

$$I_{OUT}(V_{INDAI} = 0) = I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$$
(6)

and thus for the ratio of the resistors  $R_3/R_4$ :

$$\frac{R_3}{R_4} = \frac{V_{REF}}{2R_0 I_{SET}} - 1$$
(7)

The output current area is set in conjunction with the selection of external resistors  $R_1$  and  $R_2$  (or fine adjustment with  $R_0$ ). With Equations 1 and 3 the following is calculated for output current  $I_{OUT}$ :

$$I_{OUT} = V_{INP} \frac{G_{GAIN}}{8R_0} + I_{SET} \text{ with } G_{GAIN} = 1 + \frac{R_1}{R_2}$$

$$\tag{8}$$

#### Selecting the supply voltage

System supply voltage  $V_s$  needed to operate AM460 is dependent on the selected mode of operation.

• When using voltage output pin *VOUT* the minimum  $V_s$  needed for operation is determined by the maximum output voltage  $V_{OUTmax}$  required by the application. This is expressed as follows:

$$V_{S} \ge V_{OUT\,\max} + 5V \tag{9}$$

## analog microelectronics

April 2003 9/18

(4)

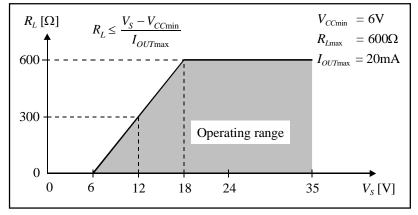



Figure 4: Working range in conjunction with the load resistor

• When using current output pin *IOUT* (in conjunction with the external transistor) the value of  $V_s$  is dependent on that of the relevant load resistor  $R_L$  (max. 600 $\Omega$ ) used by the application. The minimum system supply voltage  $V_s$  is then:

$$V_S \ge I_{OUT\max} R_L + V_{CC\min} \tag{10}$$

Here,  $I_{OUTmax}$  stands for the maximum output current and  $V_{CCmin}$  for the minimum IC supply voltage which is dependent on the selected reference voltage:

$$V_{CC\min} \ge V_{REF} + 1V \tag{11}$$

The working range resulting from Equation 10 is described in Figure 4. Example calculations and typical values for the external components can be found in the example applications from page 12 onwards.

#### **Connecting OP2 as a current source**

The additional operational amplifier OP2 can easily be connected up as a constant current source. Using the cir-

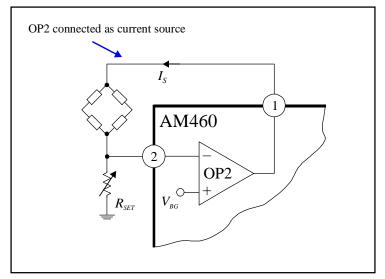



Figure 5: Connecting up a constant current source

cuit in Figure 5 the following applies:

$$I_{S} = \frac{V_{BG}}{R_{SET}} = \frac{1.27 \,\mathrm{V}}{R_{SET}}$$
(12)

The bridge symbol represents the component to be supplied with current (e.g. a piezoresistive sensing element or temperature sensor).

#### Example 1:

A supply current of  $I_s = 1$ mA is to be set. Using Equation 12 the following value is calculated for external resistor  $R_{SET}$ , which in turn stipulates the size of the current:

$$R_{SET} = \frac{V_{BG}}{I_S} = \frac{1.27 \text{ V}}{1 \text{ mA}} = 1.27 \text{ k}\Omega$$

#### Connecting OP2 as a voltage reference

In addition to the integrated voltage reference OP2 can also be used to supply voltage to external components such as A/D converters and microprocessors, for example. Lower voltages can be generated (e.g. 3.3V) which with the increasing miniaturisation of devices and need for ever lower levels of power dissipation in digital components is today of growing importance.

The additional operational amplifier OP2 can easily be connected up as a voltage reference. Using the circuit in Figure 6 the following applies:

$$V_{CVREF} = V_{BG} \left( 1 + \frac{R_6}{R_7} \right) = 1.27 \,\mathrm{V} \left( 1 + \frac{R_6}{R_7} \right)$$
(13)

#### Example 2:

A voltage of  $V_{CVREF}$  = 3.3V is to be set. Using Equation 13 the following ratio is calculated for external resistors

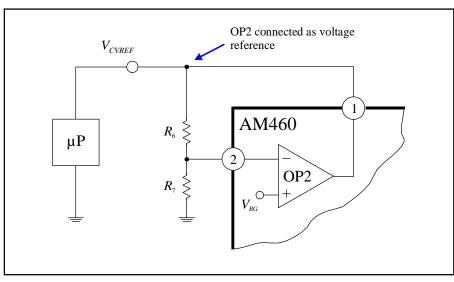



Figure 6: Connecting up a voltage reference

 $R_6$  and  $R_7$ :

$$\frac{R_6}{R_7} = \frac{V_{CVREF}}{V_{BG}} - 1 \approx 2.6 - 1 = 1.6$$

The following example values are produced for the resistors:

 $R_7 = 10 \mathrm{k}\Omega$   $R_6 = 16 \mathrm{k}\Omega$ 

#### **OPERATING AM460: IMPORTANT POINTS TO NOTE**

- 1. When using AM460 it is imperative that external capacitor  $C_1$  (a top-grade ceramic capacitor) is **always** connected (cf. Figure 2). Care must be taken that the value of the capacitor, also within the temperature range, does not exceed the range of values given in the boundary conditions on page 6. In 2-wire operation ceramic capacitor  $C_2$  must also be used (cf. Figure 8)
- 2. In a 2-wire setup the power consumption of the entire system (AM460 plus all external components, including the configuration resistors) **must not exceed** the sum of  $I_{OUTmin}$  (usually 4mA).
- 3. All AM460 function blocks not required by the application must be connected to a defined (and allowed) potential.
- 4. With operation of the voltage output the load resistance at pin *VOUT* must be <u>at least  $2k\Omega$ </u>.
- 5. When operating the current output a <u>maximum</u> load resistance of  $600\Omega$  is permitted.
- 6. The values of external resistors  $R_0$ ,  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$  and  $R_5$  must be selected within the permissible range given in the boundary conditions on page 6.

#### **APPLICATIONS**

#### Typical 3-wire application with an input signal referenced to ground

Figure 7 shows a 3-wire application in which AM460 amplifies and converts a positive voltage signal referenced to ground. The unused blocks (e.g. OP2) have been set to defined operating points. Alternatively, these function groups can also be used here (e.g. to supply external components).

In this particular application, using Equations 1 and 2 output voltage  $V_{OUT}$  is calculated as:

$$V_{OUT} = G_V V_{INP} \text{ with } G_V = G_{GAIN} G_{OP} = \left(1 + \frac{R_1}{R_2}\right) \cdot 2.2$$
(14)

For output current  $I_{OUT}$  the following applies according to Equation 3:

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} \text{ with } G_I = G_{GAIN} = 1 + \frac{R_1}{R_2} \text{ and } I_{SET} = 0$$

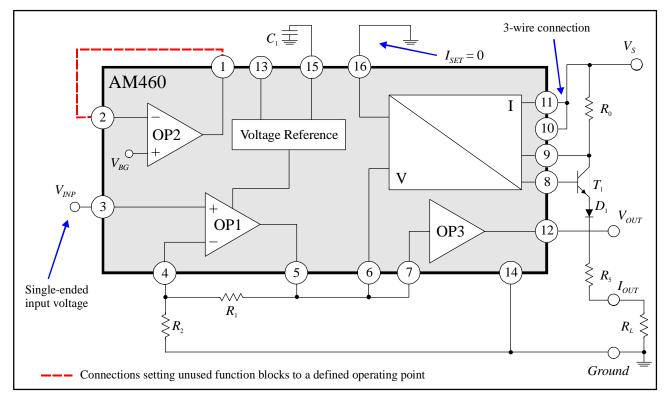



Figure 7: Typical application for input signals referenced to ground

#### Example 3:

To obtain a signal of  $V_{INP} = 0...1V$  at the OP1 input the external components are to be dimensioned in such a way that the output current has a range of 0...20mA (i.e.  $I_{SET} = 0 \Rightarrow SET = GND$ ) and the output voltage one of 0...10V.

Using Equation 14 the output voltage is defined as follows:

$$V_{OUT} = V_{INP} \cdot \left(1 + \frac{R_1}{R_2}\right) \cdot 2.2 \quad \Rightarrow \frac{R_1}{R_2} = \frac{V_{OUT}}{2.2 \cdot V_{INP}} - 1 = \frac{10V}{2.2 \cdot 1V} - 1 \approx 3.55$$

i.e.  $G_{GAIN} = 1 + \frac{R_1}{R_2} = 4.55$ 

The following then applies to the output current:

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} \quad \Rightarrow \quad R_0 = V_{INP} \cdot \frac{G_{GAIN}}{8I_{OUT}} = 1 \nabla \frac{4.55}{8 \cdot 20 \text{mA}} \approx 28.44 \Omega$$

Observing the boundary conditions, the following values are obtained for the external components:

 $\begin{array}{ll} R_0 \approx 28.44 \Omega & R_1 \approx 35.5 \mathrm{k} \Omega & R_2 = 10 \mathrm{k} \Omega \\ R_5 = 39 \Omega & R_L = 0...600 \Omega & C_1 = 2.2 \mu \mathrm{F} \end{array}$ 

#### Typical 2-wire application with an input signal referenced to ground

In 2-wire operation (cf. Figure 8) system supply voltage  $V_s$  is connected up to pin RS+ and pin VCC to pin RS-. The ground of the IC (pin GND) is connected to the node between resistor  $R_5$  and load resistor  $R_L$  (current output  $I_{OUT}$ ). IC ground (GND) is **not** the same as system ground (Ground)!! The output signal is picked up via load resistor  $R_L$  which connects current output  $I_{OUT}$  to the system ground.

For output current  $I_{OUT}$  the following applies according to Equation 3:

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET}$$
 with  $G_I = G_{GAIN} = 1 + \frac{R_1}{R_2}$  and  $I_{SET} = \frac{V_{REF}}{2R_0} \cdot \frac{R_4}{R_3 + R_4}$ 

#### **Example 4:**

To obtain a signal of  $V_{INP} = 0...1V$  at the OP1 input the external components are to be dimensioned in such a way that the output current has a range of 4...20mA.

$$I_{OUT} = V_{INP} \cdot \frac{G_I}{8R_0} + I_{SET} = V_{INP} \cdot \frac{G_{GAIN}}{8R_0} + 4\text{mA}$$

With  $R_0 = 27\Omega$  Equation 7 produces the following:

$$\frac{R_3}{R_4} = \frac{V_{REF}}{2R_0 I_{SET}} - 1 = \frac{5V}{2 \cdot 27\Omega \cdot 4\text{mA}} - 1 \approx 22.15$$

and thus the following value for the gain to be set:

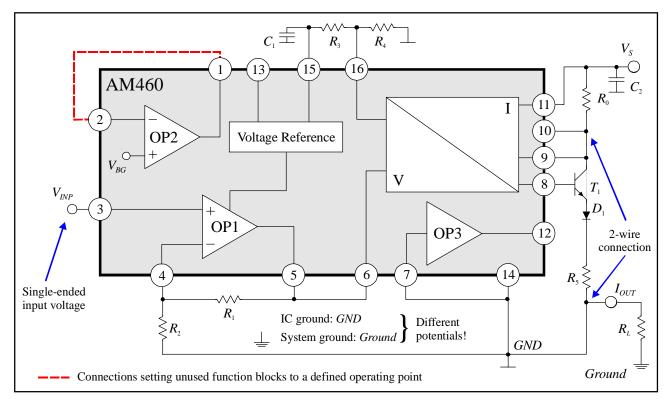



Figure 8: Typical 2-wire application for input signals referenced to ground

## AM460

$$G_{GAIN} = 8R_0 \frac{I_{OUT \max} - I_{SET}}{V_{INP}} = 8 \cdot 27\Omega \cdot \frac{16\text{mA}}{1\text{V}} = 3.456 \qquad \Rightarrow \qquad \frac{R_1}{R_2} = 3.456 - 1 = 2.456$$

Observing the boundary conditions, the following values are obtained for the external components:

$$\begin{array}{ll} R_1 \approx 24.56 \mathrm{k}\Omega & R_2 = 10 \mathrm{k}\Omega & R_3 \approx 44.3 \mathrm{k}\Omega & R_4 = 2 \mathrm{k}\Omega \\ R_0 = 27 \Omega & R_5 = 39 \Omega & R_L = 0 \dots 600 \Omega & C_1 = 2.2 \mathrm{\mu}\mathrm{F} & C_2 = 100 \mathrm{n}\mathrm{F} \end{array}$$

#### **BLOCK DIAGRAM AND PINOUT**

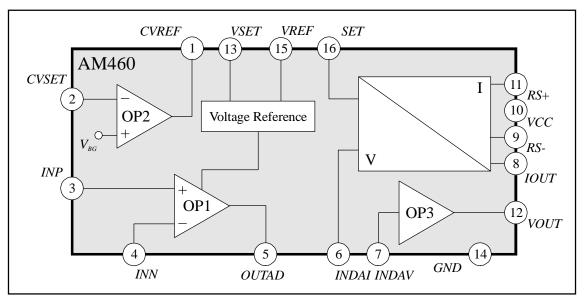



Figure 9: Block diagram of AM460

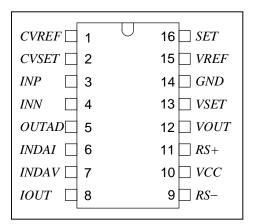
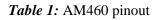
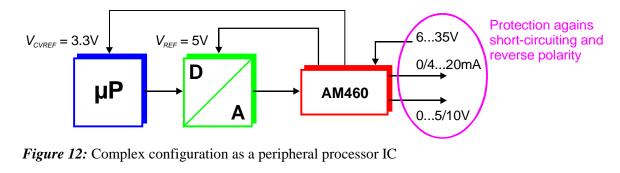




Figure 10: Pinout

| PIN | NAME  | EXPLANATION                     |
|-----|-------|---------------------------------|
| 1   | CVREF | Current/Voltage reference       |
| 2   | CVSET | Current/Voltage reference set   |
| 3   | INP   | Positive input                  |
| 4   | INN   | Negative input                  |
| 5   | OUTAD | System amplification output     |
| 6   | INDAI | Current output stage input      |
| 7   | INDAV | Voltage output stage input      |
| 8   | IOUT  | Current output                  |
| 9   | RS-   | Sensing resistor -              |
| 10  | VCC   | Supply voltage                  |
| 11  | RS+   | Sensing resistor +              |
| 12  | VOUT  | Voltage output                  |
| 13  | VSET  | Reference voltage source set    |
| 14  | GND   | IC ground                       |
| 15  | VREF  | Reference voltage source output |
| 16  | SET   | Output offset current set       |




#### **EXAMPLES OF POSSIBLE APPLICATIONS**

• Conditioning signals referenced to ground (protected output stage, impedance converter etc.)



*Figure 11:* Application for input signals referenced to ground (protected output stage, impedance converter etc.)

• Complex configuration as a peripheral processor IC



• Conversion of a 0.5...4.5V sensor signal

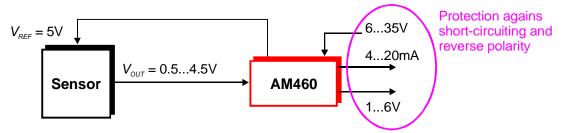



Figure 13: Conversion of a 0.5...4.5V sensor signal

#### **DELIVERY**

The AM460 converter and protector IC is available as the following packages:

- DIP16
- SO16(n) (maximum power dissipation  $P_D = 300$  mW)
- Dice on 5" blue foil

#### FURTHER READING

- [1] The Frame ASIC concept: <u>http://www.Frame-ASIC.de/</u>
- [2] The Analog Microelectronics GmbH website: http://www.analogmicro.de/

#### **NOTES**

Analog Microelectronics reserves the right to make amendments to any dimensions, technical data or other information herein without further notice.