

查询AM50006供应商

捷多邦，专业PCB打样工厂，24小时加急出货

Low Noise Amplifier

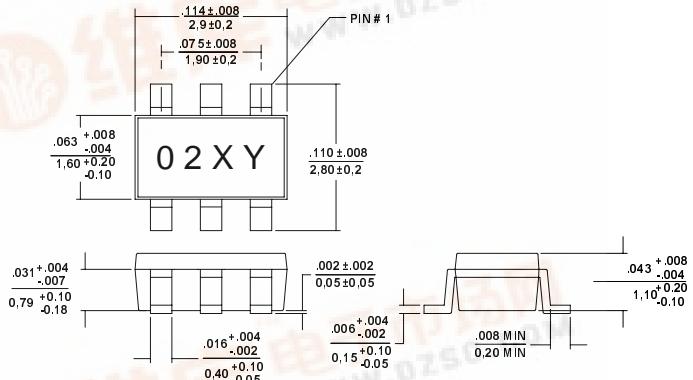
1400 - 2000 MHz

AM50-0006

V2.00

Features

- Low Noise Figure: 1.6 dB
- High Input IP3: -6 dBm at 3 V, 6.5 mA bias
- High Gain: 18 dB
- Single Supply: +3 to +8 VDC
- Low Cost SOT-26 Miniature Plastic Package
- Adjustable current: 3 to 20 mA with an external resistor


Description

M/A-COM's AM50-0006 is a high dynamic range, GaAs MMIC, low noise amplifier in a low cost, SOT-26 miniature surface mount, plastic package. It employs external input matching to obtain optimum noise figure performance and operating frequency flexibility. The AM50-0006 also features flexible biasing to control the current consumption vs. dynamic range trade-off. The AM50-0006 can operate from any positive supply voltage in the 3 V to 8 V range. Its current can be controlled over a range of 3 mA to 20 mA with an external resistor.

The AM50-0006 is ideally suited for use where low noise figure, high gain, high dynamic range, and low power consumption are required. Typical applications include receiver front ends in PDC-1500, DCS-1800, DCS-1900, PHS and other PCN/PCS applications. It is also useful as a gain block, buffer, driver and IF amplifier in both fixed and portable PDC, PHS, and PCN/PCS systems.

The AM50-0006 is fabricated using a low-cost 0.5-micron gate length GaAs process. The process features full passivation for increased performance reliability. The AM50-0006 is 100% RF tested to ensure performance specification compliance.

SOT-26

Ordering Information

Part Number	Package
AM50-0006	SOT-26 Plastic Package
AM50-0006TR	Forward Tape and Reel*
AM50-0006PDC	1400-1520 MHz Designer's Kit
AM50-0006PCS	1700-2000 MHz Designer's Kit

* If specific reel size is required, consult factory for part number assignment.

Electrical Specifications¹: $T_A=+25^\circ\text{C}$, $Z_0 = 50 \Omega$, $P_{IN} = -30 \text{ dBm}$

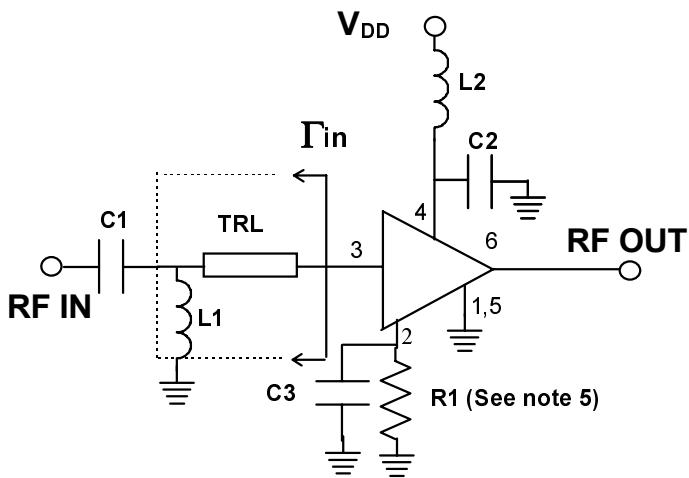
Parameter	Test Conditions	Units	1500 MHz			1900 MHz		
			Min.	Typ.	Max.	Min.	Typ.	Max.
Gain	$V_{DD} = 3 \text{ Volts}$	dB	15	18	20	15	17.5	20
Noise Figure	$V_{DD} = 3 \text{ Volts}$	dB		1.60	2.00		1.65	2.00
Input VSWR				2.2:1			1.5:1	
Output VSWR				1.5:1			1.5:1	
Output 1 dB Compression	$V_{DD} = 3 \text{ Volts}$	dBm		1			0	
Input IP3	$V_{DD} = 3 \text{ Volts}$	dBm		-5.0			-6.0	
Reverse Isolation		dB		35			35	
Drain current	$V_{DD} = 3 \text{ Volts}$	mA	4.5	6.5	10	4.5	6.5	10

1. Using external 120 Ω resistor. See functional block diagrams on pages 2 and 5.

Specifications Subject to Change Without Notice.

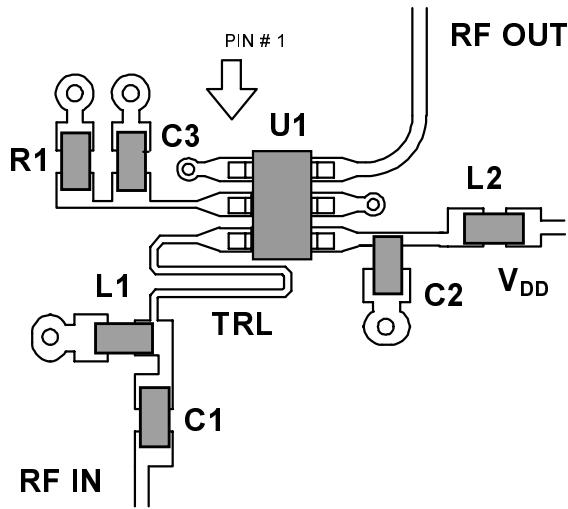
North America: Tel. (800) 366-2266
Fax (800) 618-8883

◆ Asia/Pacific: Tel. +81 3 3263-8761
Fax +81 3 3263-8769


◆ Europe: Tel. +44 (1344) 869-595
Fax +44 (1344) 300-020

Absolute Maximum Ratings ¹

Parameter	Absolute Maximum
V_{DD}	+10 VDC
Input Power Current ²	+17 dBm 30 mA
Channel Temperature ³	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C


1. Exceeding any one or combination of these limits may cause permanent damage.
2. When pin #2 is used to increase current. (See note 5.)
3. Thermal resistance (θ_{JC}) = +150°C/W.

Functional Block Diagram For 1700-2000 MHz Operation

Recommended PCB Configuration For 1700-2000 MHz Operation

Layout View

Specifications Subject to Change Without Notice.

Pin Configuration

Pin No.	Pin Name	Description
1	GND	RF and DC Ground
2	Rext	External Current Control
	Cext	By-Pass Capacitor
3	IN	RF Input of the Amplifier
4	V_{DD}	Positive Supply Voltage
5	GND	RF and DC Ground
6	OUT	RF Output of the Amplifier

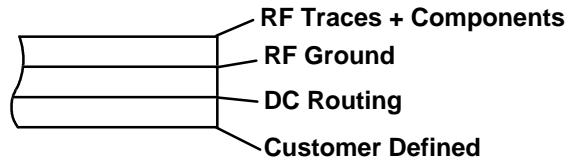
Input Reflection Coefficient 1700-2000 MHz Operation

Freq.	1700 MHz	1850 MHz	2000 MHz
Γ_{in} (mag)	0.699	0.674	0.649
Γ_{in} (ang)	48.47 °	38.68 °	29.27 °

External Circuitry Parts List For 1700-2000 MHz Operation ⁴

Part	Value	Purpose
C1	47 pF	DC Block
C2	470 pF	By-Pass
L1	2.7 nH	Tuning
L2	22 nH	RF Choke
R1	See Note 5	Current control
C3	470 pF	By-Pass

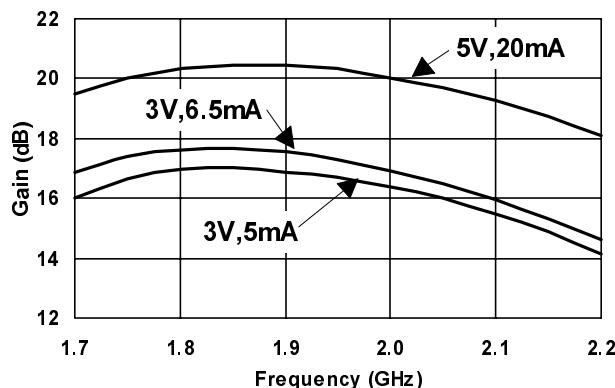
4. All external circuitry parts are readily available, low cost surface mount components (.060 in. x .030 in. or .080 in. x .050 in.).

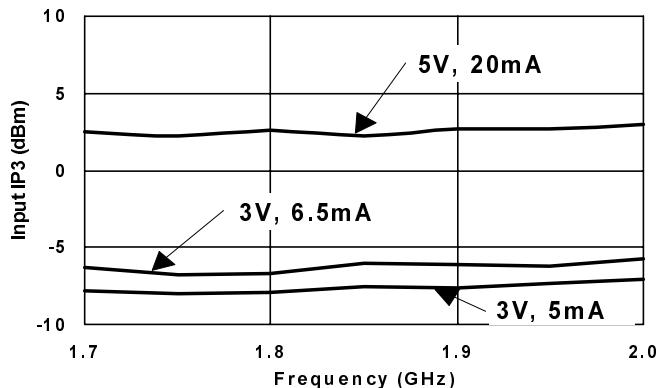

5. Pin 2 allows use of an external resistor to ground for optional, higher current.

For $I_{DD} \sim 5$ mA, $R1 = 150$ ohms;

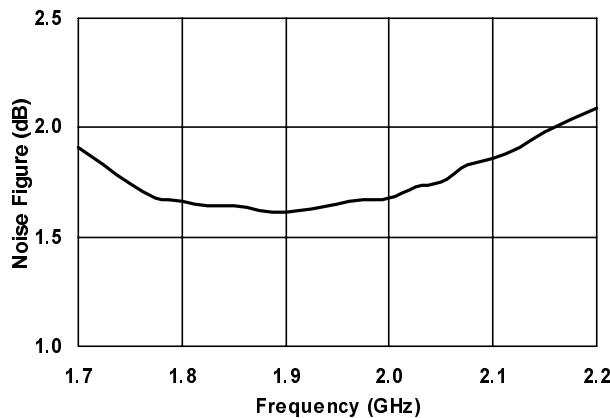
$I_{DD} \sim 6.5$ mA, $R1 = 120$ ohms;

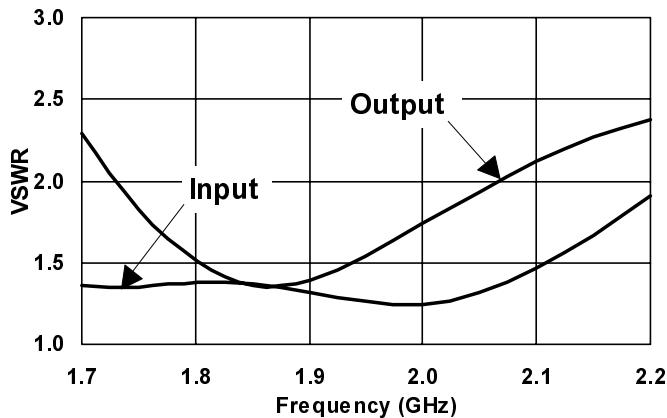
$I_{DD} \sim 20$ mA, $R1 = 27$ ohms.

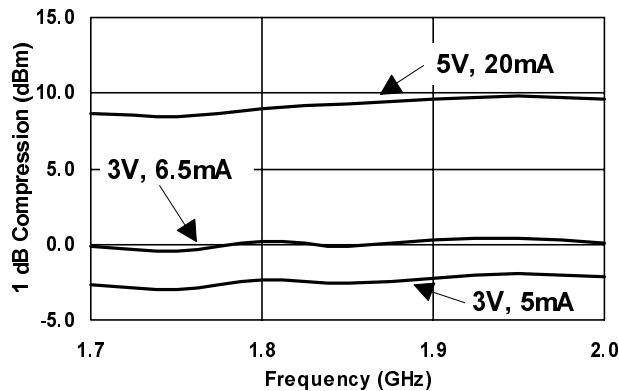

Cross Section View

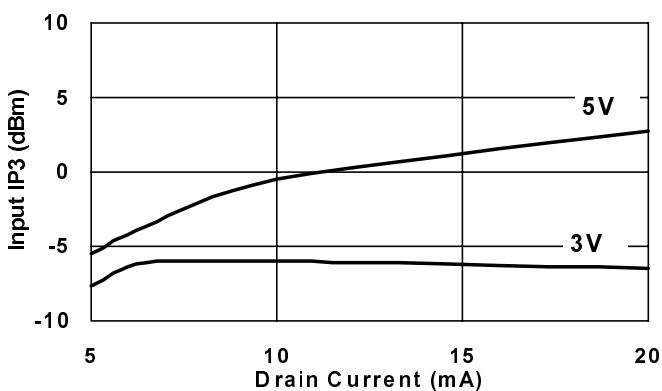

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between $50\ \Omega$ lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a $50\ \Omega$ line width of 0.015" (0.38 mm). The recommended RF metalization is 1 ounce copper.

Typical 1700-2000 MHz Performance Data (when matched at input with Γ_{in} , see page 2)Test Conditions: $T_A = +25^\circ\text{C}$, $Z_0 = 50 \Omega$, unless otherwise specified.

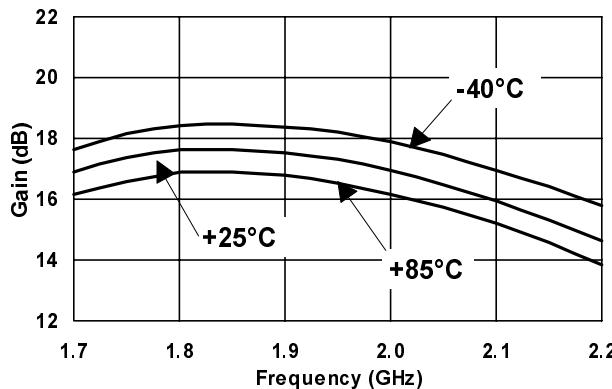

GAIN vs. FREQUENCY


INPUT IP3 vs. FREQUENCY

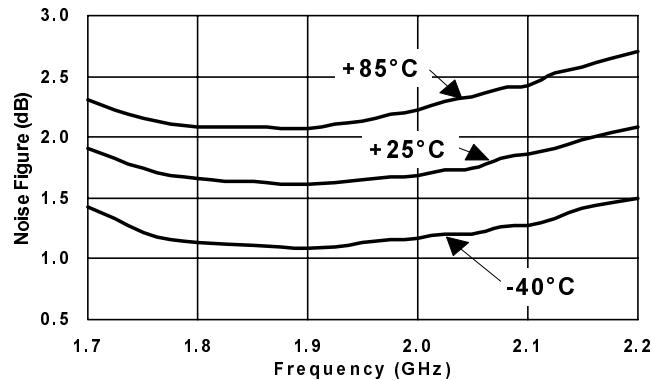

NOISE FIGURE vs. FREQUENCY (Bias = 3V, 6.5mA)


VSWR vs. FREQUENCY (Bias = 3V, 6.5mA)

OUTPUT P1dB vs. FREQUENCY

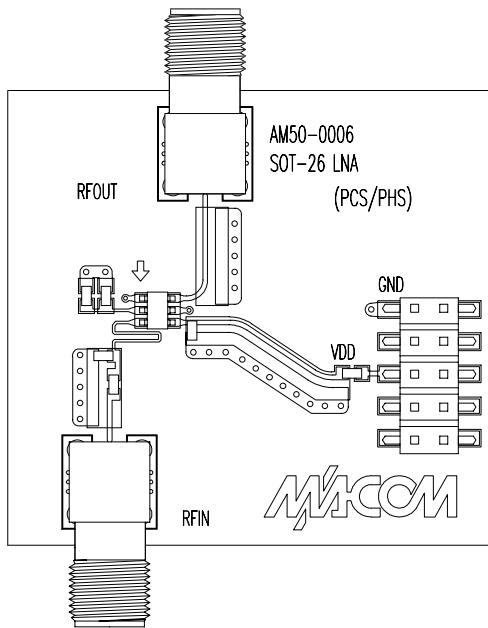


INPUT IP3 vs. DRAIN CURRENT (Freq. = 1900 MHz)



Typical 1700-2000 MHz Performance Data cont. (when matched at input with Γ_{in} , see page 2)Test Conditions: Bias = 3V, 6.5 mA, $Z_0 = 50 \Omega$, unless otherwise specified.

GAIN vs. TEMPERATURE


NOISE FIGURE vs. TEMPERATURE

Designer's Kit AM50-0006PCS

The AM50-0006 Designer's Kit allows for immediate evaluation of M/A-COM's AM50-0006 tuned for 1700-2000 MHz operation. The Designer's Kit includes an AM50-0006, an evaluation board, and a floppy disk containing typical performance data and a DXF files of the recommended PCB layouts.

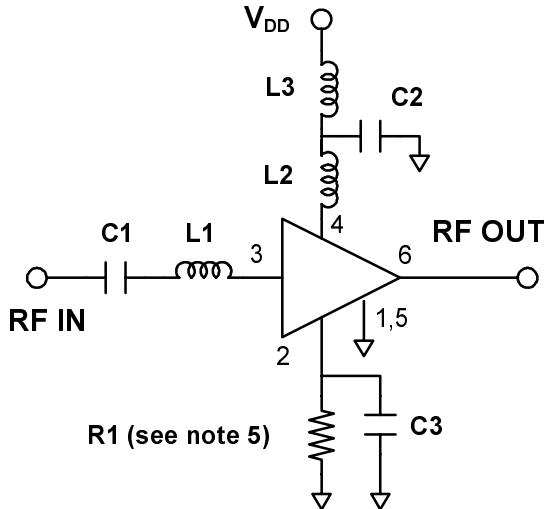
The evaluation board consists of the recommended external surface mount circuitry, RF connectors, and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM50-0006PCS evaluation PCB is illustrated below with all functional ports labeled.

AM50-0006PCS EVALUATION BOARD

Evaluation PCB + RF Connector Losses

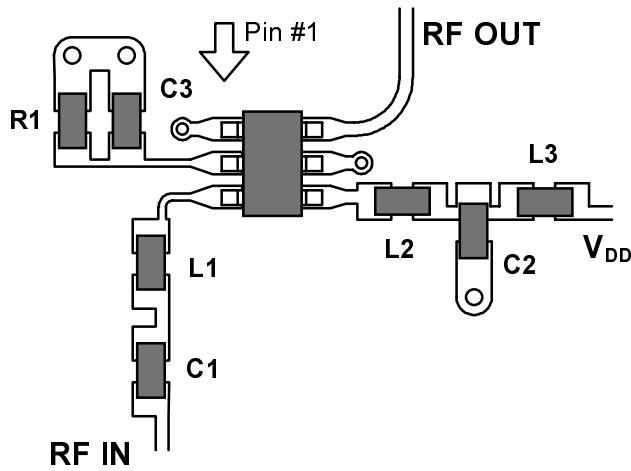
Port Reference	Approximate RF Loss
LNA Input	0.15 dB @ 1.90 GHz
LNA Output	0.15 dB @ 1.90 GHz

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by one or more of the following methods:


1. A mating female multi-pin connector (Newark Electronics Stock # 46F-4658, not included).
2. Wires soldered to the necessary pins (not included).
3. Clip leads (not included).

Absolute Maximum Ratings ¹

Parameter	Absolute Maximum
V_{DD}	+10 VDC
Input Power Current ²	+17 dBm 30 mA
Channel Temperature ³	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C


1. Exceeding any one or combination of these limits may cause permanent damage.
2. When pin #2 is used to increase current. (See note 5.)
3. Thermal resistance (θ_{jc}) = +150°C/W.

Functional Block Diagram For 1400-1520 MHz Operation

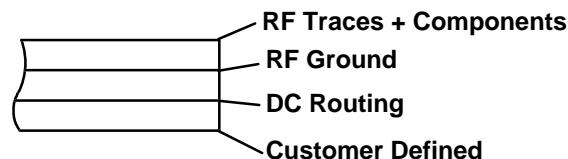
Recommended PCB Configuration For 1400-1520 MHz Operation

Layout View

Pin Configuration

Pin No.	Pin Name	Description
1	GND	RF and DC Ground
2	Rext	External Current Control
	Cext	By-Pass Capacitor
3	IN	RF Input of the Amplifier
4	V_{DD}	Positive Supply Voltage
5	GND	RF and DC Ground
6	OUT	RF Output of the Amplifier

External Circuitry Parts List For 1400-1520 MHz Operation ⁴

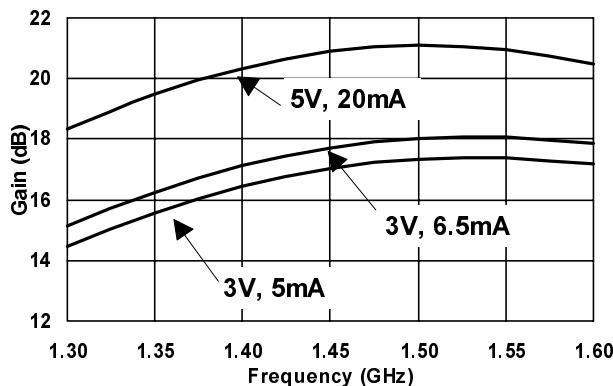

Part	Value	Purpose
C1	47 pF	DC Block
C2	470 pF	By-Pass
L1	10 nH	Tuning
L2	3.9 nH	Tuning
L3	22 nH	RF Choke
R1	See Note 5	Current control
C3	470 pF	By-Pass

4. All external circuitry parts are readily available, low cost surface mount components (.060 in. x .030 in. or .080 in. x .050 in.).

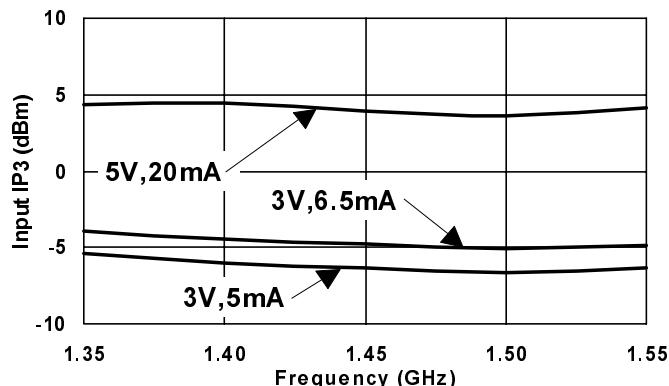
5. Pin 2 allows use of an external resistor to ground for optional, higher current.

For $I_{DD} \sim 5$ mA, $R1 = 150$ ohms;
 $I_{DD} \sim 6.5$ mA, $R1 = 120$ ohms;
 $I_{DD} \sim 20$ mA, $R1 = 27$ ohms.

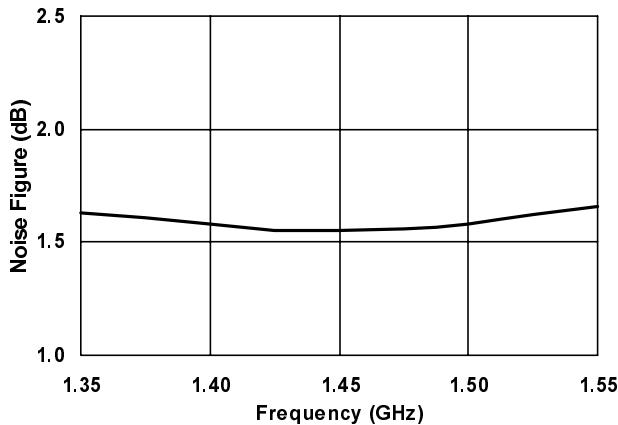
Cross Section View

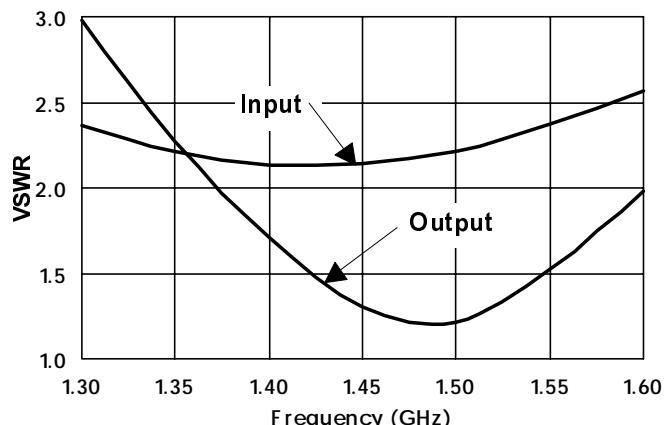


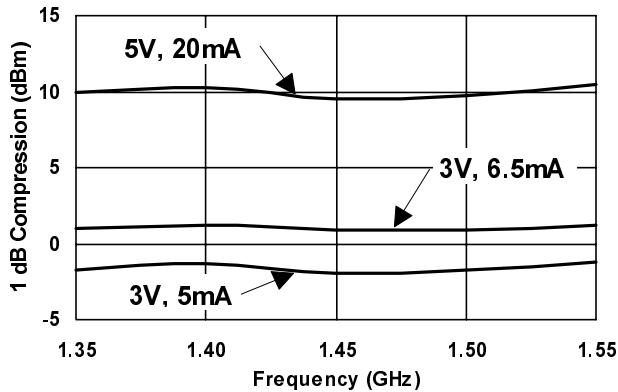
The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between $50\ \Omega$ lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a $50\ \Omega$ line width of 0.015" (0.38 mm). The recommended RF metalization is 1 ounce copper.

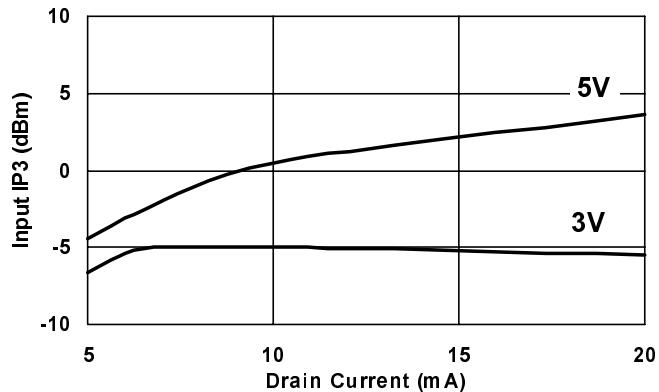

Typical 1400-1520 MHz Performance Data (when matched as shown on page 5)

Test Conditions: $T_A = +25^\circ\text{C}$, $Z_0 = 50 \Omega$, unless otherwise specified.

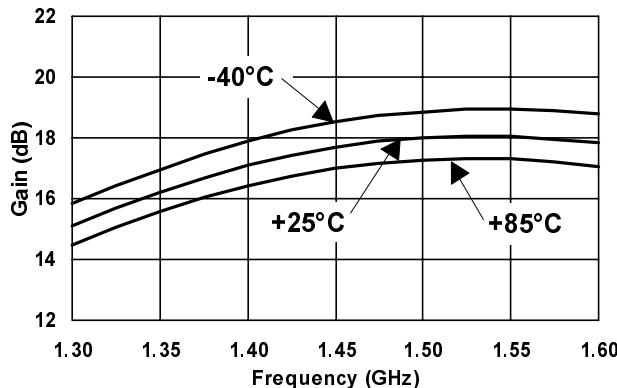

GAIN vs. FREQUENCY

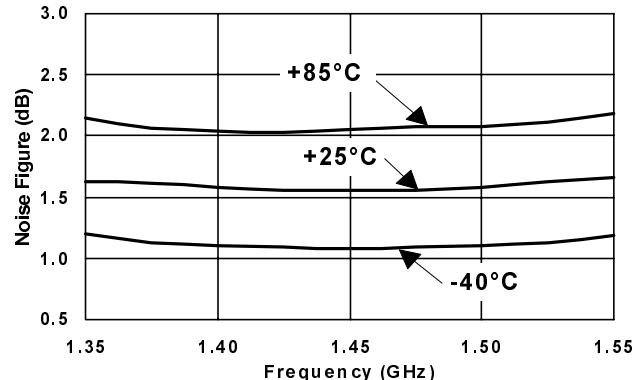

INPUT IP3 vs. FREQUENCY


NOISE FIGURE vs. FREQUENCY (Bias = 3V, 6.5mA)


VSWR vs. FREQUENCY (Bias = 3V, 6.5mA)

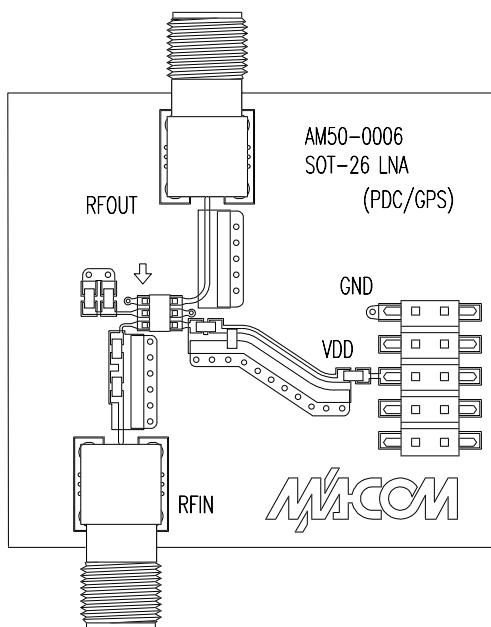
OUTPUT P1dB vs. FREQUENCY


INPUT IP3 vs. DRAIN CURRENT (Freq. = 1500 MHz)


Typical 1400-1520 MHz Performance Data cont. (when matched as shown on page 5)

Test Conditions: Bias=3V, 6.5 mA, $Z_0 = 50 \Omega$, unless otherwise specified.

GAIN vs. TEMPERATURE


NOISE FIGURE vs. TEMPERATURE

Designer's Kit AM50-0006PDC

The AM50-0006 Designer's Kit allows for immediate evaluation of M/A-COM's AM50-0006 tuned for 1400-1520 MHz operation. The Designer's Kit includes an AM50-0006, an evaluation board, and a floppy disk containing typical performance data and a DXF files of the recommended PCB layouts.

The evaluation board consists of the recommended external surface mount circuitry, RF connectors, and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. The AM50-0006PDC evaluation PCB is illustrated below with all functional ports labeled.

Evaluation PCB + RF Connector Losses

Port Reference	Approximate RF Loss
LNA Input	0.1 dB @ 1.50 GHz
LNA Output	0.1 dB @ 1.50 GHz

The DC connector on the Designer's Kit PCB allows convenient DC line access. This is accomplished by one or more of the following methods:

1. A mating female multi-pin connector (Newark Electronics Stock # 46F-4658, not included).
2. Wires soldered to the necessary pins (not included).
3. Clip leads (not included).

AM50-0006PDC EVALUATION BOARD