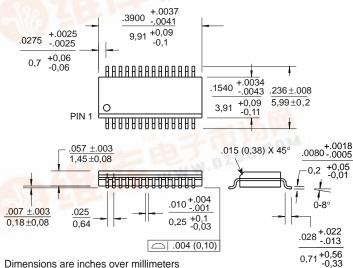


# **Preliminary Specifications**

# 250 mW Power Amplifier with T/R and Diversity Switches 2.4 - 2.5 GHz AM55-0003

#### **Features**

- Highly Integrated Power Amplifier With T/R and Diversity Switches
- Operates Over 2.7 V to 6 V Supply Voltage
- High Linear Output Power (P<sub>1dB</sub>: +24 dBm)
- Individual Gate Control for Each Amplifier Stage
- Low Cost SSOP-28 Plastic Package


#### Description

M/A-COM's AM55-0003 is a GaAs power amplifier with integrated transmit/receive and an antenna diversity switch in a low cost SSOP 28 plastic package. The power amplifier delivers +24 dBm of linear power with high efficiency and can be operated with voltages as low as 2.7 volts. The power amplifier switch is fully monolithic. The T/R and diversity switches achieve good insertion loss and isolation without degrading the overall linearity. The switches can be controlled with CMOS logic levels.

The AM55-0003 is ideally suited for QPSK, BPSK or other linearly modulated systems in the 2.4 GHz ISM frequency band. It can also be used in GFSK systems where levels of +25 dBm are required. Typical applications include WLAN and wireless portable data collection. This power amplifier can be combined with a transceiver IC (MD58-0001 or MD58-0002) to form a complete RF front end.

M/A-COM's AM55-0003 is fabricated using a mature 0.5-micron gate length GaAs process. The process features full passivation for increased performance and reliability.

#### SSOP-28



### **Ordering Information**

| Part Number  | Description                  |
|--------------|------------------------------|
| AM55-0003    | SSOP 28-Lead Plastic Package |
| AM55-0003TR  | Forward Tape & Reel*         |
| AM55-0003RTR | Reverse Tape & Reel*         |
| AM55-0003SMB | Designer's Kit               |

If specific reel size is required, consult factory for part number assignment.

### Typical Electrical Specifications

Test Conditions: Frequency: 2.45 GHz,  $V_{DD1,2,3} = 5 \text{ V} \pm 5\%$ ,  $V_{G1}$  adjusted for 20 mA quiescent bias on  $V_{DD1}$ ,  $V_{G2}$  adjusted for 70 mA quiescent bias on  $V_{DD2}$ ,  $V_{G3}$  adjusted for 90 mA quiescent bias on  $V_{DD3}$ ,  $V_{A} = +25^{\circ}\text{C}$ 

| Parameter                                                                                    | Units  | Min.       | Тур.   | Max. |
|----------------------------------------------------------------------------------------------|--------|------------|--------|------|
| Power Amplifier                                                                              |        | AVE TO THE |        | I    |
| Linear Gain                                                                                  | dB     | 24         | 28     | 32   |
| VSWR In/Out                                                                                  | LC COM |            | 1.75:1 |      |
| Output Power @ P <sub>1dB</sub>                                                              | dBm    | 22.5       | 24.5   |      |
| Second Harmonic @ P <sub>1dB</sub>                                                           | dBc    |            | -20    | 0    |
| Third Harmonic @ P <sub>1dB</sub>                                                            | dBc    |            | -30    | -10  |
| I <sub>DD</sub> @ P <sub>1dB</sub> (V <sub>DD1</sub> + V <sub>DD2</sub> + V <sub>DD3</sub> ) | mA     |            | 270    | 375  |
| T/R and Diversity Switches                                                                   |        |            |        |      |
| Insertion Loss                                                                               | dB     |            | 1.2    |      |
| solation                                                                                     | dB     | 10         | 12     |      |
| VSWR in/Out                                                                                  |        |            | 1.5:1  |      |

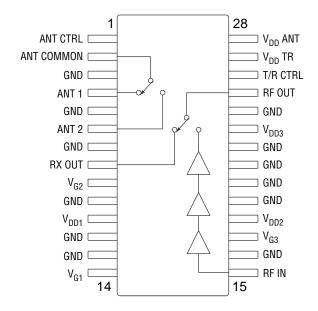
M/A-COM Inc.

#### **Pin Configuration**

|         | Pin Configuration   |                                                                                                                                                                                             |  |  |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pin No. | Pin Name            | Description                                                                                                                                                                                 |  |  |
| 1       | ANT CTRL            | Antenna selection: Select ANT 1 (0V) or ANT 2 (+5 V)                                                                                                                                        |  |  |
| 2       | ANT COMMON          | Common Port of Diversity Switch                                                                                                                                                             |  |  |
| 3       | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 4       | ANT 1               | Output #1 of Diversity Switch                                                                                                                                                               |  |  |
| 5       | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 6       | ANT 2               | Output #2 of Diversity Switch                                                                                                                                                               |  |  |
| 7       | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 8       | RX OUT              | Output of T/R Switch for receive mode                                                                                                                                                       |  |  |
| 9       | $V_{G2}$            | Negative bias control for the second PA stage, adjusted to set $V_{DD2}$ quiescent bias current, which is typically 70 mA. Typical voltage at pin = -0.55 V Input impedance: > 1 M $\Omega$ |  |  |
| 10      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 11      | V <sub>DD1</sub>    | Positive bias for the first stage of the PA, 2.7 to 6 volts                                                                                                                                 |  |  |
| 12      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 13      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 14      | V <sub>G1</sub>     | Negative bias control for the first PA stage, adjusted to set $V_{DD1}$ quiescent bias current, which is typically 20 mA. Typical voltage at pin = -0.75 V Input impedance: > 1 M $\Omega$  |  |  |
| 15      | RF IN               | RF Input of the Power Amplifier                                                                                                                                                             |  |  |
| 16      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 17      | $V_{G3}$            | Negative bias control for the third PA stage, adjusted to set $V_{DD3}$ quiescent bias current, which is typically 90 mA. Typical voltage at pin = -0.95 V Input impedance: > 1 M $\Omega$  |  |  |
| 18      | V <sub>DD2</sub>    | Positive bias for the second stage of the PA, 2.7 to 6 volts                                                                                                                                |  |  |
| 19      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 20      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 21      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 22      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 23      | V <sub>DD3</sub>    | Positive bias for the third stage of the PA, 2.7 to 6 volts                                                                                                                                 |  |  |
| 24      | GND                 | DC and RF Ground                                                                                                                                                                            |  |  |
| 25      | RF OUT              | RF output of T/R switch and power amplifier for transmit mode                                                                                                                               |  |  |
| 26      | T/R CTRL            | 0 V for transmit mode, +5 V for receive mode                                                                                                                                                |  |  |
| 27      | V <sub>DD</sub> TR  | V <sub>DD</sub> for T/R switch                                                                                                                                                              |  |  |
| 28      | V <sub>DD</sub> ANT | V <sub>DD</sub> for Diversity Switch                                                                                                                                                        |  |  |

# **Absolute Maximum Ratings**<sup>1</sup>

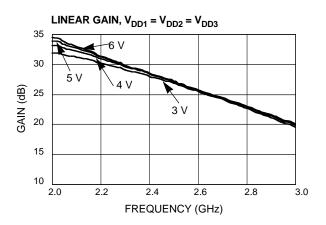
| Parameter                         | Absolute Maximum       |
|-----------------------------------|------------------------|
| Max. Input Power <sup>2</sup>     | +23 dBm                |
| Operating Voltages <sup>2,3</sup> | V <sub>DD</sub> = 8 V  |
|                                   | V <sub>GG</sub> = -8 V |
| Operating Temperature             | -40°C to +85°C         |
| Storage Temperature               | -65°C to +150°C        |

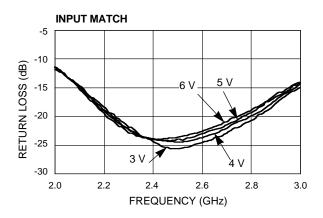

- Exceeding these limits may cause permanent damage.
   Ambient temperature (T<sub>A</sub>) = +25°C
   |V<sub>DD</sub>| + |V<sub>GG</sub>| not to exceed 12 volts.

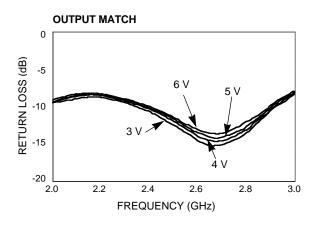
#### **Truth Table**

| Control Line |      | Operating |  |
|--------------|------|-----------|--|
| ANT          | T/R  | Mode      |  |
| CTRL         | CTRL | l lileas  |  |
| X            | 1    | Receive   |  |
| X            | 0    | Transmit  |  |
| 0            | X    | ANT 1     |  |
| 1            | X    | ANT 2     |  |

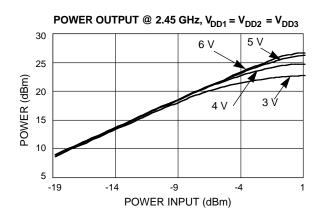
X - Don't Care

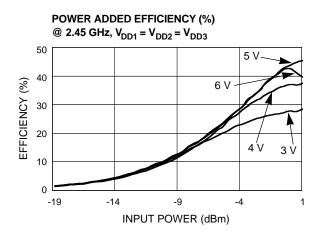

# **Functional Diagram and Pin Configuration**

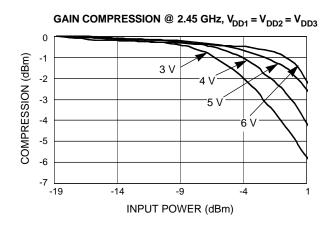




<sup>&</sup>quot;0" = 0 V to 0.2 V @ 100  $\mu A$ 

<sup>&</sup>quot;1" =  $V_{DD}$  to  $V_{DD}$  - 0.2 V @ 200  $\mu A$ 

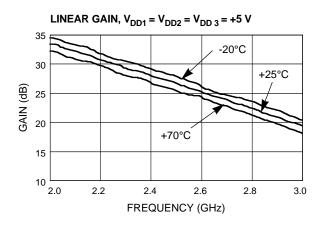

# Power Amplifier Small Signal Performance<sup>1</sup>

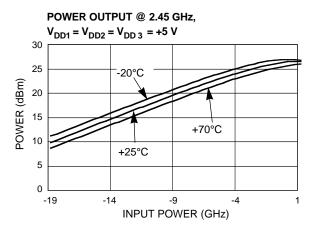




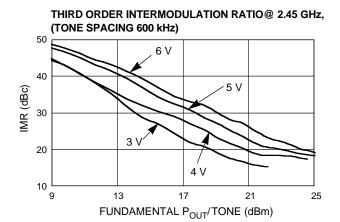

# Power Amplifier CW Performance at Various Supply Voltages<sup>1</sup>

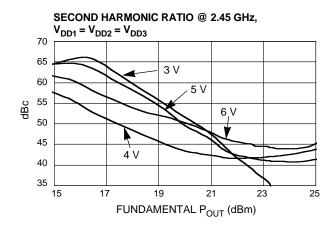


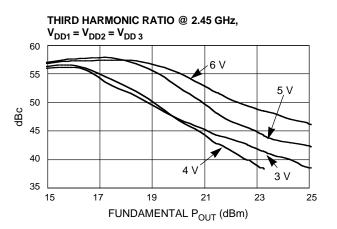






1. All data measured at  $T_A = +25$ °C and  $V_{G1}$ ,  $V_{G2}$  and  $V_{G3}$  adjusted for first stage quiescent current of 20 mA, second stage current of 70 mA and third stage current of 90 mA, respectively.

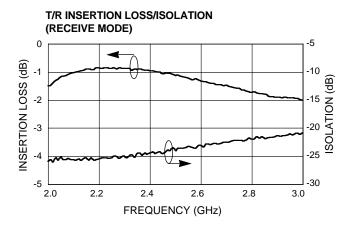

# Power Amplifier Temperature Performance<sup>1</sup>

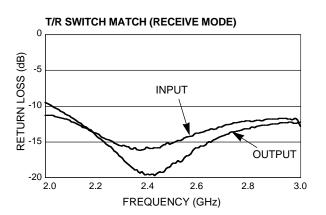


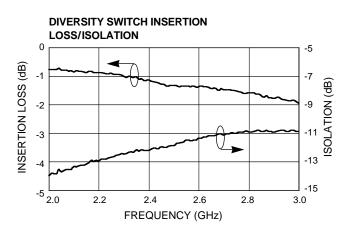


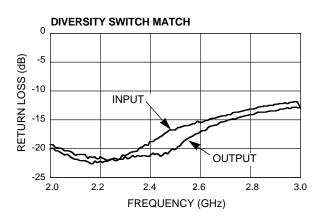

# Power Amplifier Spurious Response at Various Supply Voltages<sup>1</sup>

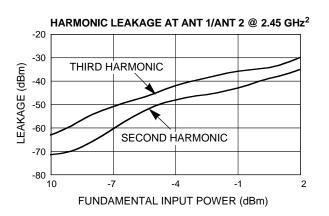






 All data measured at T<sub>A</sub> = +25°C and V<sub>G1</sub>, V<sub>G2</sub> and V<sub>G3</sub> adjusted for first stage quiescent current of 20 mA, second stage current of 70 mA and third stage current of 90 mA, respectively.

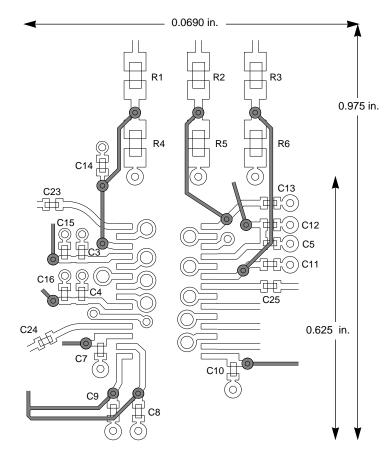

#### Transmit/Receive Switch Performance<sup>1</sup>



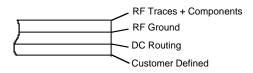



### Diversity Switch Performance<sup>1</sup>









- 1. All data measured with  $V_{DD}$  TR =  $V_{DD}$  ANT = +5 V,  $T_{A}$  = +25°C.
- 2. Measured at 2.45 GHz at RF IN. Output measured at ANT 1 or ANT 2, with RF OUT and ANT COMMON terminated in 50  $\Omega$ .

#### **Recommended PCB Configuration**

#### **Layout View**



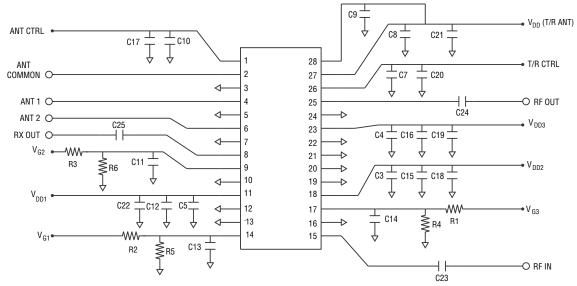
#### **Cross-Section View**



The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between  $50\,\Omega$  lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008 in. (0.2 mm), yielding a  $50\,\Omega$  line width of 0.015 in. (0.38 mm). The recommended metalization thickness is 1 oz. copper.

Shaded traces are vias to DC routing layer and traces on DC routing layer.

#### **Biasing Procedure**

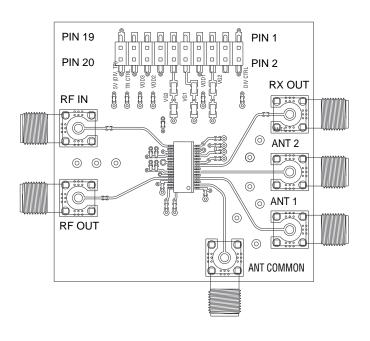

The AM55-0003 requires that  $V_{GG}$  bias be applied prior to  $\emph{any}$   $V_{DD}$  bias. Permanent damage may occur if this procedure is not followed. All FETs in the PA will draw excessive current and damage internal circuitry.

#### **External Circuitry Parts List**

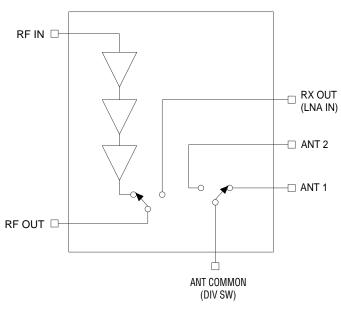
| Label     | Value   | Purpose         |
|-----------|---------|-----------------|
| C1 - C6   | 22 pF   | Bypass (GHz)    |
| C23 - C24 | 22 pF   | DC Block        |
| C7 - C16  | 1000 pF | Bypass (MHz)    |
| C17 - C22 | 0.01 µF | Bypass (kHz)    |
| R1, R6    | 1.5 kΩ  |                 |
| R3, R5    | 5 kΩ    | FET Gate        |
| R2        | 12 kΩ   | Divider Network |
| R4        | 1 kΩ    |                 |

All off-chip components are low-cost surface mount components obtainable from multiple sources. (0.020 in. x 0.040 in. or 0.030 in. x 0.050 in.)

### **External Circuitry**




Specifications Subject to Change Without Notice


#### Designer's Kit (AM55-0003SMB)

The AM55-0003SMB Designer's Kit allows for immediate evaluation of M/A-COM's AM55-0003 integrated power amplifier with T/R and diversity switches. The evaluation board consists of an AM55-0003, recommended external surface mount circuitry, RF connectors and a DC multi-pin connector, all mounted to a multi-layer FR-4 PCB. Other items included in the Designer's Kit: a floppy disk (with typical performance data and a .DXF file of the recommended PCB layout) and any additional Application Notes. The AM55-0003SMB evaluation PCB and block diagram are illustrated below with all functional ports labeled.

#### P/A Switch Sample Board



#### **Functional Block Diagram**



#### **DC Connector Pinout**

| PCB DC<br>Connector | Function                | Device<br>Pin Number |
|---------------------|-------------------------|----------------------|
| 1                   | GND                     | N/C                  |
| 2                   | ANT CTRL (0 V/ +5 V)    | 1                    |
| 3                   | N/C                     | N/C                  |
| 4                   | N/C                     | N/C                  |
| 5                   | N/C                     | N/C                  |
| 6                   | $V_{G2}$                | 9                    |
| 7                   | VSW                     | N/C                  |
| 8                   | V <sub>DD1</sub> (+5 V) | 11                   |
| 9                   | N/C                     | N/C                  |
| 10                  | V <sub>G1</sub>         | 14                   |

| PCB DC<br>Connector | Function                                      | Device<br>Pin Number |
|---------------------|-----------------------------------------------|----------------------|
| 11                  | N/C                                           | N/C                  |
| 12                  | $V_{G3}$                                      | 17                   |
| 13                  | N/C                                           | N/C                  |
| 14                  | V <sub>DD2</sub> (+5 V)                       | 18                   |
| 15                  | N/C                                           | N/C                  |
| 16                  | V <sub>DD3</sub> (+5 V)                       | 23                   |
| 17                  | N/C                                           | N/C                  |
| 18                  | T/R CTRL (0 V/ +5 V)                          | 8                    |
| 19                  | GND                                           | N/C                  |
| 20                  | V <sub>DD</sub> TR, V <sub>DD</sub> ANT(+5 V) | 27, 28               |

#### AM55-0003SMB Biasing Procedure

In order to prevent transients which may damage the MMIC, please adhere to the following procedure.

- Turn on all power supplies and set all voltages to 0 volts BEFORE connecting the power supplies to the DC connector.
- Apply a -5.0 volt supply to DC connector pin 10  $(V_{G1})$ .
- Apply a -5.0 volt supply to DC connector pin 6 (V<sub>G2</sub>).
- Apply a -5.0 volt supply to DC connector pin 12  $(V_{G3})$ .
- Apply a +5.0 volt supply to the DC connector pin 20 (V<sub>DD</sub> TR, V<sub>DD</sub> ANT).
- Apply a +5.0 volt supply to the DC connector pin 8 (V<sub>DD1</sub>).
- Apply a +5.0 volt supply to the DC connector pin 14 (V<sub>DD2</sub>).
- Apply a +5.0 volt supply to the DC connector pin 16 (V<sub>DD3</sub>).
- Apply a GND or +5.0 volt supply to the DC connector pin 18 (T/R CTRL, see truth table for desired mode).
- Apply a GND or +5.0 volt supply to the DC connector pin 2 (ANT CTRL, see truth table for desired mode).
- $\bullet$  Adjust  $V_{G1}$ ,  $V_{G2}$ ,  $V_{G3}$  supplies to -5 volts.
- Adjust all V<sub>DD</sub> supplies to +5 volts.
- ullet Adjust  $V_{G1}$  supply for desired  $V_{DD1}$  quiescent current (typically 20 mA,  $V_{G1}$  nominally -2.5 volts).
- $\bullet$  Adjust  $V_{G2}$  supply for desired  $V_{DD2}$  quiescent current (typically 70 mA,  $V_{G2}$  nominally -2.5 volts).
- $\bullet$  Adjust  $V_{G3}$  supply for desired  $V_{DD3}$  quiescent current (typically 90 mA,  $V_{G3}$  nominally -2.5 volts).
- To power off, reverse above procedure.
  - 1) Set all V<sub>DD</sub> lines to 0 volts.
  - 2) Set  $V_{G1}$ ,  $V_{G2}$  and  $V_{G3}$  to 0 volts.
  - 3) Disconnect bias lines from DC connector.
  - 4) Turn off power supplies.

#### **Evaluation PCB and RF Connector Losses**

| Port Reference      | Loss (dB) |
|---------------------|-----------|
| RF IN               | 0.25      |
| RF OUT              | 0.25      |
| RX OUT (LNA IN)     | 0.25      |
| ANT COMMON (DIV SW) | 0.25      |
| ANT 1               | 0.25      |
| ANT 2               | 0.25      |

The DC connector on the Designer's Kit PCB allows selection of all the device's operating modes. It is accomplished by one or more of the following methods.

- A mating female multi-pin connector (Newark Electronics Stock #46F-4658, not included)
- 2. Wires soldered to the necessary pins (not included)
- 3. Clip leads (not included)
- 4. A combination of clip leads or wires and jumpers (jumpers included as required)