00O AN210400 0 0O oooogoopcBOODOOO02000000

Order this document
by AN2104/D

AN2104

Using Background Debug Mode for the M68HC12 Family

By Timothy J. Airaudi
Applications Engineering, Microcontroller Division
Austin, Texas

Introduction

This application note describes the basic operation of the background
debug mode (BDM) and some of its applications, as it relates to
Motorola’s M68HC12 Family of microcontrollers (MCU). Examples of in-
circuit programming of internal FLASH memory and in-circuit debugging,
using P&E Microcomputer Systems’ BDM interface cable and its
software, are also contained in this document.

The BDM’s main purpose is to allow debugging of the actual
microcontroller being used in the user’s target application. This takes the
place of hardware such as an in-circuit emulator, which uses external
components to attempt to duplicate operation of the MCU from outside
of the target application.

Instead of having this external hardware, and a variety of potential
problems, the debug logic is built into the MCU’s on-chip integration
module. This differs from other systems that have the debugging logic
located in the central processor unit (CPU). Not having the debugging
logic in the CPU allows for reading and writing of memory locations,
while the CPU is executing user code, with no degradation in real-time
operation. This is an example of the BDM being enabled but not active.

(= /© Matorola, Inc., 2001

W
A

http://www.dzsc.com/ic/sell_search.html?keyword=AN2104
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Freescale Semiconductor, Inc.

Application Note

When the BDM is active, it takes over control of the microprocessor,
which allows for debugging, etc.

Other examples of what the BDM can be used for, besides debugging,
vary from programming EPROM, EEPROM, and FLASH (internal and
external) to performing calibration on a target application (in
manufacturing and in the field) to transferring collected and stored
information to another system.

Theory of Operation

Because software packages, such as P&E Microcomputer Systems’
Windows Development Package (PKG12), take care of the operation of
the BDM, this discussion does not go into great detail. For more in-depth
information on this subject, refer to the documents referenced in
Technical Resources at the end of this document.

The operation of the BDM system requires a host PC with software, a
BDM interface POD or BDM interface, and the user’s target application.
See Figure 1. The host PC is connected to the POD with a DB-25
parallel cable from the PC’s parallel port. The POD is then connected to
the target application via a custom 6-pin BDM connector and cable. See

Figure 2.
HOST PC BDM INTERFACE TARGET BOARD
INTERFACE POD
—— i $—4 S
[— |
PARALLEL CABLE12 FROM P&E BDM 6-PIN BDM CONNECTOR
CABLE MICROCOMPUTER SYSTEMS CABLE SEE FIGURE 2

Figure 1. BDM System

AN2104

AN2104

Freescale Semiconductor, Inc.

Application Note
Theory of Operation

BKGD 1| @
NC 3| @

2 GND
4 RESET
6 Vpp

Figure 2. BDM Tool Connector

To communicate with the BDM on the part, two pins are used: BKGD and
GND. This method of serial interface is used to both send and receive
data. A special communications protocol is used that resynchronizes at
the beginning of each bit. By doing this, a greater frequency tolerance
for synchronization is allowed.

All bits are started with a falling edge signal that is initiated by the
external host. After the MCU sees this falling edge, it waits nine E-clock
cycles and then samples the level on the BKGD pin. The data is
transferred MSB (most significant bit) first at the rate of 16 E-clock cycles
per bit. The E-clock is defined as the SYSCLK divided by two.

The two types of BDM commands are:
* Hardware

* Firmware

When using hardware commands, the BDM is enabled, but not active,
and the user’s code is running. See Table 1. These commands allow all
internal and external memory, which is accessible to the microcontroller,
to be read or written. This also includes on-chip 1/O (input/output) and
control registers.

The control logic watches the bus for any free bus cycles that it can use
to execute the hardware command. By using the free bus cycles, the
CPU is not disturbed. If, however, a free cycle is not found within a
specified time, it will use a bus cycle, which temporarily freezes the CPU.

Freescale Semiconductor, Inc.

Application Note

Table 1. BDM Hardware Commands

Command Opcode Data Description
(Hex)
BACKGROUND 90 None Enter background mode (if firmware enabled).
16-bit address Read from memory with BDM in map (may steal cycles if
READ_BD BYTE E4 . external access) data for odd address on low byte,
16-bit data out X
data for even address on high byte.
FFO1, READ_BD_BYTE $FF01. Running user code. (BGND
0000 0000 (out)| instruction is not allowed.)
sTATUSD E4 FFO1, READ BD BYTE $FF01. BGND instruction is allowed
1000 0000 (out) - - ' '
FFO1, READ_BD_ BYTE $FF01. Background mode active
1100 0000 (out)| (waiting for single wire serial command).
READ BD WORD EC 16-b|_t address |Read from memory with BDM in map (may steal cycles if
- = 16-bit data out external access) must be aligned access.
16-bit address Read from memory with BDM out of map (may steal
READ_BYTE EO . cycles if external access) data for odd address on low
16-bit data out .
byte, data for even address on high byte.
READ_WORD E8 16-b!t address |Read from memory with BDM out of map (may steal
16-bit data out cycles if external access) must be aligned access.
16-bit address Write to memory with BDM in map (may steal cycles if
WRITE_BD_BYTE C4 . . external access) data for odd address on low byte,
16-bit data in .
data for even address on high byte.
Write byte $FF01, set the ENBDM bit. This allows
ENABLE_ ca FFO1, execution of commands which are implemented in
FIRMWARE®@ Lxxx XXXx (in) firmware. Typically, read STATUS, OR in the MSB,
write the result back to STATUS.
WRITE_BD_WORD cc 16—b|t. addre.ss Write to memory with BDM in map (may steal cycles if
16-bit data in external access) must be aligned access.
16-bit address Write to memory with BDM out of map (may steal cycles
WRITE_BYTE Co . . if external access) data for odd address on low byte,
16-bit data in .
data for even address on high byte.
WRITE_WORD cs 16-bit address | Write to memory with BDM out of map (may steal cycles

16-bit data in

if external access) must be aligned access.

1. STATUS command is a specific case of the READ_BD_BYTE command.
2. ENABLE_FIRMARE is a specific case of the WRITE_BD_BYTE command.

AN2104

AN2104

Freescale Semiconductor, Inc.

To execute firmware commands, the user must have the BDM enabled

Application Note
Theory of Operation

and active. See Table 2. When the BDM is active, it has control of the
CPU, which executes code out of the BDM ROM.

Table 2. BDM Firmware Commands

Command Opcode (Hex) Data Description
READ NEXT 62 16-bit data out | = Z gn:ezd; tf)eti/d)?e“ word
READ_PC 63 16-bit data out | Read program counter
READ_D 64 16-bit data out | Read D accumulator
READ_X 65 16-bit data out | Read X index register
READ_Y 66 16-bit data out | Read Y index register
READ_SP 67 16-bit data out | Read stack pointer
WRITE_NEXT 42 16-bit datain | = Z gn:ezd; t\é,v g;e)?e)“ word
WRITE_PC 43 16-bit data in | Write program counter
WRITE_D 44 16-bit data in | Write D accumulator
WRITE_X 45 16-bit data in | Write X index register
WRITE_Y 46 16-bit data in | Write Y index register
WRITE_SP 47 16-bit data in | Write stack pointer
GO 08 None Go to user program
TRACEL | 10| None | Sieateoneuserpecion
TAGGO 18 None Enable tagging and go to

user program

Freescale Semiconductor, Inc.

Application Note

BDM Registers Seven BDM registers are mapped into addresses $FF00-$FF06. See
Table 3.

NOTE: Remember that the BDM firmware ROM and registers contain different
data than the normal memory mapped locations for these addresses.

Table 3. BDM Registers

Address Register Mnemonic
$FFO0 BDM instruction register INSTRUCTION
$FFO1 BDM status register STATUS

$FF02-$FFO3 BDM shift register SHIFTER
$FFO04—$FFO5 BDM address register ADDRESS
$FF06 BDM CCR holding register CCRSAV

Only two registers are discussed here:
* BDM status register (STATUS)
» BDM CCR (condition code register) holding register (CCRSAV)

The BDM status register can be read at any time, but must not be written
to during BDM operation. See Figure 3 for a description of the bits.

Address: $FFO01

Bit 7 6 5 4 3 2 1 Bit 0
Read:
ENBDM | EDMACT | ENTAG SDV TRACE 0 0 0
Write:
Reset: 0 0 0 0 0 0 0 0
Smglle-Chp 0 0 0 0 0 0 0
Peripheral:

Figure 3. BDM Status Register (STATUS)
This register can be read or written by BDM commands or firmware.

ENBDM — Enable BDM Bit (permit active background debug mode)
0 = BDM cannot be made active (hardware commands still
allowed).
1 = BDM can be made active to allow firmware commands.

AN2104

Freescale Semiconductor, Inc.

Application Note
Theory of Operation

BDMACT — Background Mode Active Status Bit
0 = BDM not active
1 = BDM active and waiting for serial commands

ENTAG — Instruction Tagging Enable Bit

Set by the TAGGO instruction and cleared when BDM is entered
0 = Tagging not enabled or BDM active
1 = Tagging active (BDM cannot process serial commands while
tagging is active.)

SDV — Shifter Data Valid Bit

Shows that valid data is in the serial interface shift register. Used by
firmware-based instructions.

0 = No valid data

1 = Valid data

TRACE
Asserted by the TRACEL1 instruction

The second register of interest is the BDM CCR holding register. This
register contains the value of the CPU’s condition code register (CCR)
from the user’s program upon entering the BDM. See Figure 4.

Address: $FF06

Bit 7 6 5 4 3 2 1 Bit 0
Read:
CCR7 CCRe6 CCR5 CCR4 CCR3 CCR2 CCR1 CCRO
Write:
Reset: 0 0 0 0 0 0 0 0
Figure 4. BDM CCR Holding Register (CCRSAV)
Operation Here is a brief description of what transpires when going into the active
of Active BDM BDM:

* When the CPU gets the command to go into the BDM, the user’s
return address is stored in a temporary register.

* Next, the BDM ROM is turned on and the CPU fetches a vector
that points to the beginning of the BDM firmware program.

AN2104

Freescale Semiconductor, Inc.

Application Note

* Next the BDM firmware saves the contents of the user’s D register
in another temporary register and then saves the user's CCR
register in the CCRSAV register.

* The BDM firmware then checks the ENBDM bit in the STATUS
register to see if it will be allowed to go into the active BDM. If it is,
the BDM firmware enters a software loop and waits for a valid
firmware command in which to execute. The user’s program
counter (PC), stack pointer (SP), and X and Y registers are not
changed by the BDM firmware, so the user doesn’t need to save
or stack these values.

During exit from the BDM, the user’s register values are restored and a
value is stored in the BDM STATUS register. Then a jump command is
executed to resume execution of the user’s program.

M68HC12 Operating Modes

The two basic modes of operation (see Table 4) for the M68HC12
Family are:

* Normal modes — Provide protection for control registers from
being accidentally modified

» Special modes — Allow access to these control registers for
system development and special testing

If any of the normal operating modes are entered (BKGD high), the BDM
is available, but must be enabled and/or made active.

If the special single-chip mode is selected (BKGD, MODA, and MODB
all low), the BDM comes up enabled and active.

Table 4 also shows that the states of the BKGD, MODA, and MODB pins
determine a specific mode where the port A and port B pins are
configured for different functions.

AN2104

AN2104

Freescale Semiconductor, Inc.

Application Note
M68HC12 Operating Modes

Table 4. Mode Selection

BKGD | MODB | MODA Mode Port A Port B
0 0 0 Special single chip pﬁg(::;a:/_o pljsr[e)(r;gga:/-o
0 0 1 Special expanded narrow ADD A[\)Ti[[fo‘]g] ADDRI7:0]
0 1 0 Special peripheral AD[ID,@AR ADI,DAQE
0 1 1 Special expanded wide AD[ID,_\$AR ADI,DAQE
1| o | o | Nomaisingechip | R | pose 0
1 0 1 Normal expanded narrow ADD A[\)Ti[[fo‘]g] ADDR[7:0]
1 1 0 (forcedRisinrgﬁgheral) o -
1 1 1 Normal expanded wide AD[ID,_\$AR ADI,DAQE

These examples deal with the levels on the BKGD, MODA, and MODB
pins during a reset to determine which mode the part will come up in. The
user can also change the mode of operation by writing to the mode

register after the part is powered up. See Figure 5.

The MODE register can be read at any time. However, writing to this
register presents some restrictions. First, if the part comes up in the
normal mode, it can be changed only to another normal mode. This
change can be done only once.

The special mode does not have this limitation, since the values of the
MODA and MODB pins can be changed as many times as desired as
long as the part remains in special mode.

Next, coming up in the special mode, the part can change to the normal
mode, but must write to the SMODN bit in this register two times, as the
first write is ignored.

Freescale Semiconductor, Inc.

Application Note

Address: $000B

Bit 7 6 5 4 3 2 1 Bit 0
Read:
SMODN | MODB MODA ESTR IVIS EBSWAI 0 EME
Write:
Reset states:
Normal expanded narrow: 1 0 1 1 0 0 0 0
Normal expanded wide: 1 1 1 1 0 0 0 0
Special expanded narrow: 0 0 1 1 1 0 0 1
Special expanded wide: 0 1 1 1 1 0 0 1
Peripheral: 0 1 0 1 1 0 0 1
Normal single-chip: 1 0 0 1 0 0 0 0
Special single-chip: 0 0 0 1 1 0 0 1

Figure 5. Mode Register (MODE)

Operating Mode and Background Debug Mode Hints

These hints will help steer the user away from the most commonly made
mistakes.

* The states of the MODA and MODB pins, upon power-up,
determine how the port A and port B pins will be configured (see
Table 4).

* The BKGD pin is used for two purposes:

— It determines, upon reset, which operating mode the part will
enter, normal or special (see Table 4).

— Then it is used as the serial communication pin for the BDM.

* Once the part is operating in a mode, the mode can be changed
by writing to the mode register. The limitations to this are listed in
Figure 5.

* When in normal operating mode, special modes cannot be
accessed.

AN2104

10

Freescale Semiconductor, Inc.

Application Note
Background Debug Mode Application Examples

* When in normal operating mode, another normal operating mode
can be accessed, but this can be done only once.

» To change to the normal operating mode, when the partis in
special operating mode, a 1 (one) must be written twice to the
SMODN bit in the mode register.

* When the part comes up in special single-chip mode, the BDM is
enabled and active.

* When the part comes up in special single-chip mode, it accesses
the BDM ROM, not the normal memory mapped locations at
$FFO0-$FFFF.

* To perform hardware commands, the BDM does not need to be
active (see Table 1).

* To perform firmware commands, the BDM must be enabled and
active (see Table 2).

* The BDM does not operate in stop mode.

Background Debug Mode Application Examples

Two BDM application examples are given here in a step-by-step format.

In-Circuit This application example of the BDM explains how to perform in-circuit

Programming programming of the internal FLASH memory of an MC68HC912B32

of Internal FLASH using P&E Microcomputer Systems’ Cable12 POD and software (see
Figure 1). The target board for this example is the M6SBEVB912B32
evaluation board.

AN2104

11

Freescale Semiconductor, Inc.

Application Note

Follow these steps in order:

1.
2.
3.

© N o 0 &

10.
11.
12.
13.

14.
15.

16.

Load P&E’s PKG12Z software.
Connect a parallel cable from the host PC to the Cable12 POD.

Connect the 6-pin BDM cable from the POD to the evaluation
board making sure that pin 1 of the cable is connected to pin 1 of
the POD and target. On the evaluation board, make sure that
jumpers W3 and W4 are in the EVB positions and jumper W7 is in
the Vpp position.

Apply +5 Vdc to P5 of the evaluation board and +12 Vdc to W8.
Launch P&E’s WinIDE.

Open P&E’s sample code named SCI.

Assemble/compile this file. See Figure 6.

Launch the programmer. If the correction assistant window opens,
select the correct parallel port being used. Defaults should work
for the other options in this window. See Figure 7.

Select the 9b32_32k.12p programming algorithm.

Input $8000 for the base address when prompted.

Move jumper W7, on the evaluation board, to the Vpp position.
Select Erase Module.

Ensure that the SCI.s19 file is in the S-record in the configuration
window. If not, select Specify S record and select this file.

Select Program Module.

After programming is complete, move jumper W7 to the Vpp
position. Do not leave the programming voltage on the FLASH.

The SCI.s19 file has now been erased and programmed into the
FLASH of the MC68HC912B32 using the BDM. Select Verify
Module to verify that this programming is correct. The code also
can be viewed by selecting Show Module at address $8000.

AN2104

12

Freescale Semiconductor, Inc.

Application Note
Background Debug Mode Application Examples

am WIN IDE - [FELTS] - [LEWERICHD splg) L2, ssm)]

M Fle [Epwormerd Semch window EHelp =18
sl Zlolnl #w|e| slmele]

|.pagewidtn 168t -

Thiz is a #fully interrept driven code that will dessnstrate
the transmit and receivwe Featwres ofF the Serial Communications
Interface Module of Uhe GREECY12032 procesoer.

This cade is intended solely for demonstratiom purposes.
FEE Wicrocompuber Spstemns provides mo expressed aF inplied

[

-

-

L]

-

= Flease read The E3Z_SC1_READ.BOC File For code usage.

L

-

L]

= garanty. This code can be wsed Freely in whole or im part.
L
"

o

#= Reqister map setup

copotl equ GBI ; COF Control Hegister
Forth_Data_Birectien Reqister equ 3
Porti_10_Register Equ 1

wuweuss WIER SECTION Change these seftfings For your setup sessssss

= Hote Curvently omly support H-B-1 hits =mit/receiuve
= HoCe Doesm’D currently support ervor detectiom

neu_speed khy equ FEFAT v Intermal bus rate af the HEAZ processor
¢ This walue should Be rFounded op iF ol
; integral. i.e. F.372H HHZ = 737371 EHZ

Al
11 [[Toest 188 Top 1 Bt TG | Insen
|

| 9

Figure 6. P&E’s WinIDE Window

AN2104

13

Freescale Semiconductor, Inc.

Application Note

FRUGT LS Frogrammes

B [evice Progam Wedy LUposd Windows Help

= = oiizlg el 2 2

: Lhvin i Frogi anming Fianclion L T e !EE I
[BH Blank check medule || Module = CAPEMICROkpkg 1 2210632 _12k1 2p

BR Blank check rFange SRec = CAPEMICADpkg] 2A5CLe10

EH Erase byt I amge HOT RCT 1WE Base = BAAD

EW Erase wor I amige HU HE T LN
EM Erase module

PR Fragram hgtes

FH Frogram ward HOT RCTIWE
FH Frogram madule

UH Werify nodile

UR Berify range

P Ppload module

UR Bpload ramge

55 Specify 5 record
5H Shaow madule

HE Help

U fuit

RE REesel chip

PR Protect/lnpratect

[StatecWindew M=k

nitializing. Initialized,

sversion L.07, 037201999, Copyright PEE Microcomputer Systems, wwe.pemicro, oom
silewice Hetorola, GEHCLIIHIZ, 1MicMi&K, FIK Flash Memory Hlock

sdevioe Hetorola, GEHCLIFHCEY , Ixlbtxilbk, 17k Flaxh Aemory Bloock

Fandy
T T 199 Toe: 1 BPET 7416 Tiees]
Figure 7. P&E’s Programmer Window
In-Circuit This application example of the BDM explains how to perform in-circuit
Debugging debugging of an MC68HC912B32 using P&E Microcomputer Systems’

Cable12 POD and software (see Figure 1). The target board for this
example will be the M6BEVB912B32 evaluation board.

Follow these steps in order:
1. Load P&E’s PKG12Z software.
2. Connect a parallel cable from the host PC to the Cable12 POD.

3. Connect the 6-pin BDM cable from the POD to the evaluation
board making sure that pin 1 of the cable is connected to pin 1 of
the POD and target. On the evaluation board, make sure that

AN2104

14

AN2104

Freescale Semiconductor, Inc.

N oo 0 ok

10.
11.

Application Note
Background Debug Mode Application Examples

jumpers W3 and W4 are in the EVB positions and jumper W7 is in
the Vpp position.

Apply +5 Vdc to P5 of the evaluation board.
Launch P&E’s WiInIDE.
Open P&E’s sample code named SCI.

Assemble/compile this file. See Figure 6. At this point, ensure that
the FLASH is programmed as in the previous application example
in In-Circuit Programming of Internal FLASH.

Launch the debugger. If the correction assistant window opens,
select the correct parallel port being used. Defaults should work
for the other options in this window. See Figure 8.

Verify that the correct S19 is loaded in the debugger by selecting
the File drop down menu and selecting Load S19 File and the
SCI.S19 file.

In the Execute drop down menu, select Reset Processor.

From this point, the code can be debugged by selecting Single
step, Multiple step, or Go.

Breakpoints also can be set by selecting the line of code chosen for a
breakpoint, clicking the right mouse button, and selecting Toggle
Breakpoint at Cursor.

15

Freescale Semiconductor, Inc.

Application Note

- ICOT2E Debegps
tie Eweple Wadows Help

|] ¥l |or| = 8]]] @] @]

CPN 2 winadews M=l - Vaiables Windos M= Mmoo 1

I | cooe ep @ B 6@ 00 00 0O DB FF
Ak N b0 BOIGG BB 2C 19 18 0B B0 08 08 DR .,.......
B2 @ @F 0@ 0@ 0% DA 0a Ba oM L. ..eeee.
1% 001h ¥ s BE1R @B @0 AR A8 F? DA 0O 0@ B =
PCOEEDE SP E1A Memony Window 2
apna @@ ap a@ oA
CCR EEHIH... BN @ap M 19 18 n@ na nAa a8 pa prmme .
@iFfzE @1 aF o0 H0@ oY 0@ ba oa we o - ... o..o.
=
P Do 'Wirsdoss 1 0 Duzazozmialys : axm)
-y i LIS BaHE}]
o TFR X.5F + Nl BIRAEMY ST v+ gpt EF bo top of
+ RS LI HREBCE - - tus
- BORE LTX ENM -+ = 1dx Betdmsq H |:|I:I.‘ln|.' ko the Ex
- HEUE LD BHI1LE + = zix Exbuf =
+ HEDE SUpD HAM a Ldd Hesgend i calculate Che L
+ B ST HSELEH - . sihd TEHUF
- BN LDY HA - - st mEglen 1 skore the mestan
- BET ST8 THEPTR + E 1dw HBH
« B@1A ET¥ RCPTR - = st¥ tuptr ; poimt to the beginnin
H =
cloadall -i-l
l.oading Inaded .
Loading map £file with 110 entries HMAP file Loadeil.
sd i 1L
CPU reset by debugger, -
S v oo |

Sucresshl arsnbh - Mo s ||

Figure 8. P&E’s Debugger Window

Summary

This application note gives an overview of the BDM as it relates to
Motorola’s M68HC12 Family of MCUs. By providing the appropriate
connections for the BDM in the user’s application, and using a BDM

interface POD with software, it is easy to debug code, erase, or program

the FLASH in the target application.

AN2104

16

Technical Resources

Freescale Semiconductor, Inc.

Application Note
Technical Resources

AN2104

Software and Hardware Engineering: Motorola M68HC12 by
Fredrick M. and James M. Sibigtroth

CPU12 Reference Manual, document order number
CPU12RM/AD

M68HC12B Family Advance Information, Motorola document
order number M68HC12B/D

MC68HC812A4 Advance Information, Motorola document order
number MC68HC812A4/D

MC68HC912D60 Advance Information, Motorola document order
number MC68HC912D60/D

MC68HC912DG128 Advance Information, Motorola document
order number MC68HC912DG128/D

17

Freescale Semiconductor, Inc.

Application Note

AN2104

18

Freescale Semiconductor, Inc.

Application Note
Technical Resources

AN2104

19

Freescale Semiconductor, Inc.

Application Note

