

AO4496

N-Channel Enhancement Mode Field Effect Transistor

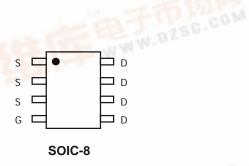
General Description

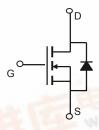
The AO4496/L uses advanced trench technology to provide excellent R_{DS(ON)} with low gate charge. This device is suitable for use as a DC-DC converter application. AO4496 and AO4496L are electrically identical.

- -RoHS Compliant
- -AO4496L is Halogen Free

Features

 $V_{DS}(V) = 30V$


 $I_D = 10A$ (V_{GS} = 10V)


 $R_{DS(ON)}$ < 19.5m Ω (V_{GS} = 10V)

 $R_{DS(ON)} < 26m\Omega$ (V_{GS} = 4.5V)

UIS TESTED!

Rg, Ciss, Coss, Crss Tested

Absolute Maximum Ratings T _J =25°C unless otherwise noted							
Parameter Drain-Source Voltage Gate-Source Voltage		Symbol	Maximum	Units			
		V_{DS}	30	V			
		V_{GS}	±20				
Continuous Drain	T _A =25°C		10	一年场四			
Current ^A	T _A =70°C	I _D	7.5	Asc.GC			
Pulsed Drain Current ^B		I _{DM}	50	W.DZSU			
Avalanche Current ^G		I _{AR}	17	1000			
Repetitive avalanche energy L=0.1mH ^G		E _{AR}	14	mJ			
Power Dissipation ^A	T _A =25°C	D	3.1	W			
	T _A =70°C	P _D	2.0	VV			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\scriptscriptstyle{ hetaJA}}$	31	40	°C/W			
Maximum Junction-to-Ambient A	Steady State	ady State		75	°C/W			
Maximum_Junction-to-Lead ^C	Steady State	$R_{ hetaJL}$	16	24	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$	30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 30V, V _{GS} = 0V			1	μА			
500		T _J = 55°C			5	μ. (
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = 250 \mu A$	1.4	1.8	2.5	V			
$I_{D(ON)}$	On state drain current	V_{GS} = 10V, V_{DS} = 5V	50			Α			
	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 10A		16	19.5				
$R_{DS(ON)}$		T _J =125°C		24	29	mΩ			
		$V_{GS} = 4.5V, I_D = 7.5A$		21	26				
g _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 10A$		30		S			
V_{SD}	Diode Forward Voltage	$I_S = 1A, V_{GS} = 0V$		0.76	1	V			
I_S	Maximum Body-Diode Continuous Current				3	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			550	715	pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		110		pF			
C _{rss}	Reverse Transfer Capacitance]		55		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	3	4	5.5	Ω			
SWITCHII	NG PARAMETERS								
Q _g (10V)	Total Gate Charge			9.8	13	nC			
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =10A		4.6	6.1	nC			
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -10A		1.8		nC			
Q_{gd}	Gate Drain Charge	1 [2.2		nC			
$t_{D(on)}$	Turn-On DelayTime			5		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} = 1.5 Ω ,		3.2		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		24		ns			
t _f	Turn-Off Fall Time] [6		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=100A/μs		22	29	ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =10A, dI/dt=100A/μs		14		nC			

A: The value of R $_{0.JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25°C. The value in any given application depends on the user's specific board design.

Rev2: July 2008

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $t \le 300 \mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_j =25C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

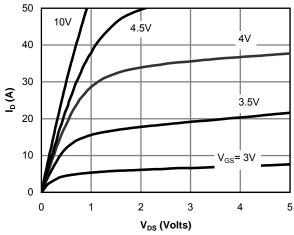


Figure 1: On-Region Characteristics

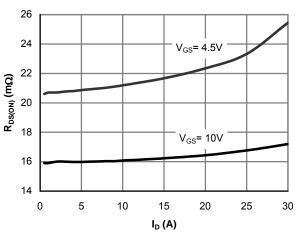


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

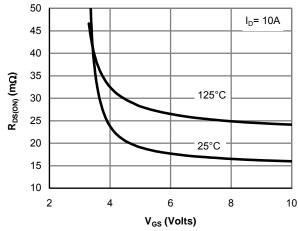


Figure 5: On-Resistance vs. Gate-Source Voltage

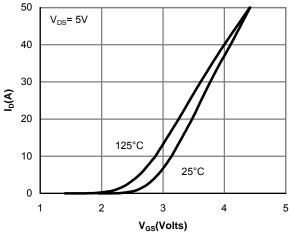


Figure 2: Transfer Characteristics

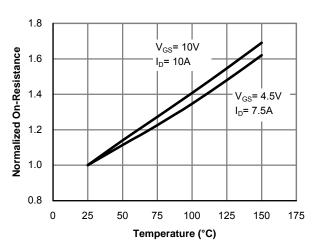


Figure 4: On-Resistance vs. Junction Temperature

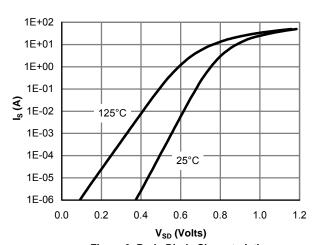
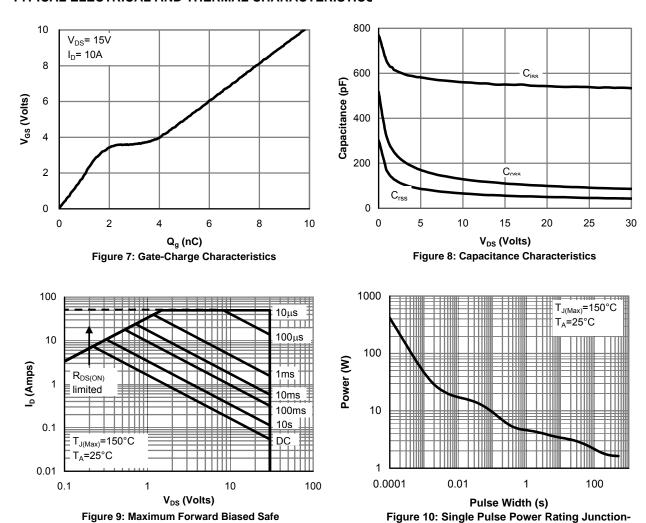
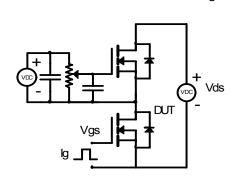
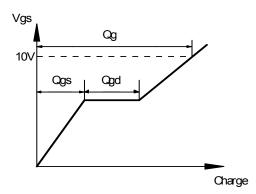



Figure 6: Body-Diode Characteristics

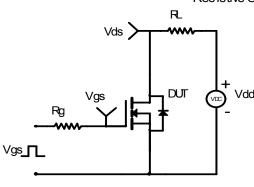
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

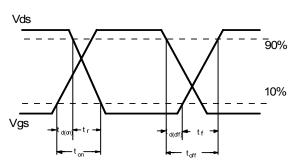
Operating Area (Note E)

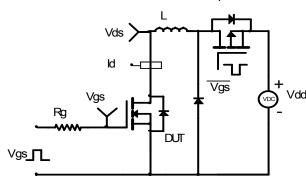

10 $D=T_{on}/T$ In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse $T_{J,PK}=T_A+P_{DM}.Z_{\theta JA}.R_{\theta JA}$ Z_{eJA} Normalized Transient _{θJA}=75°C/W Thermal Resistance 0.1 0.01 Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 10 100 1000 Pulse Width (s)

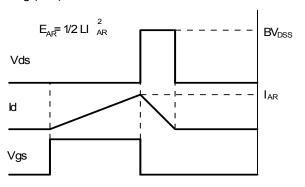

Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)

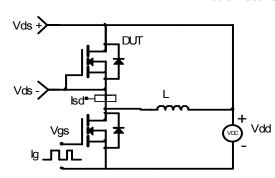
(

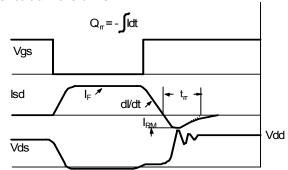

to-Ambient (Note E)


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

