

APT41F100J

1000V, 41A, 0.21 Ω Max, $t_{rr} \leq$ 400ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- $\bullet\,$ Ultra low ${\rm C}_{\rm rss}$ for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	41	
'D	Continuous Drain Current @ T _C = 100°C	26	Α
I _{DM}	Pulsed Drain Current ^①	260	
V _{GS}	Gate-Source Voltage	±30	٧
E _{AS}	Single Pulse Avalanche Energy®	4075	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	33	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			960	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.13	°C/M	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15		°C/W	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
VIsolation	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Darkers Weight		1.03		OZ	
	Package Weight		29.2		g	
表 PDI	Tamerical and Maunting Cayous		·	10	in∙lbf	
orque				1.1	N·m	

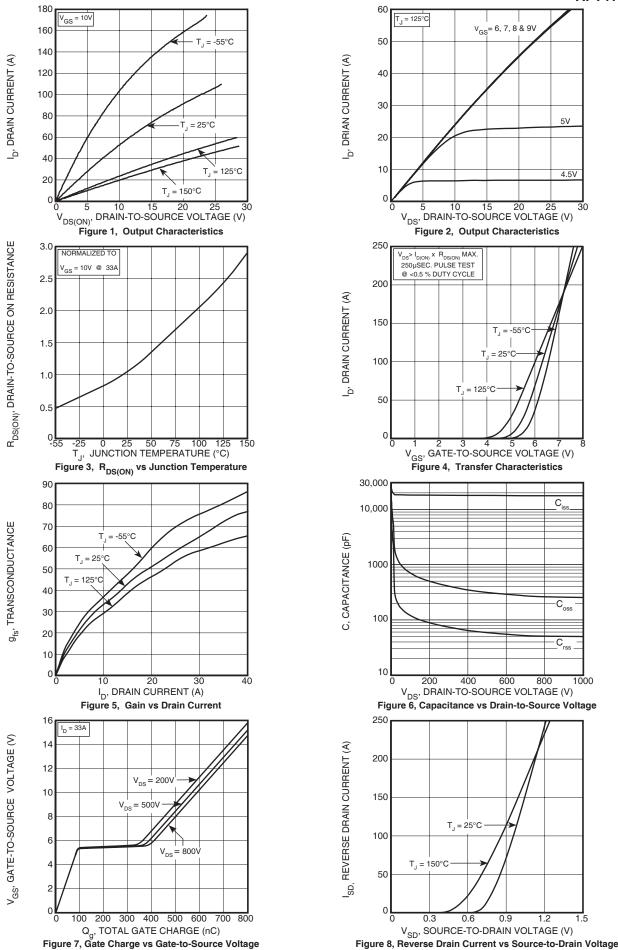
Static Characteristics

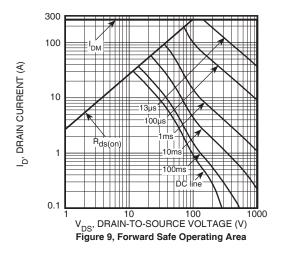
$T_J = 25^{\circ}C$ unless otherwise specified

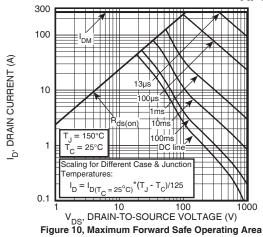
APT41F100J

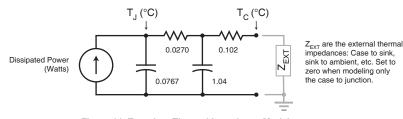
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		1000			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	V _{GS} = 10V, I _D = 33A			0.19	0.21	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 5mA$		3	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1000V	$T_J = 25^{\circ}C$			250	μA
		$V_{GS} = 0V$	T _J = 125°C			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			·	±100	nA

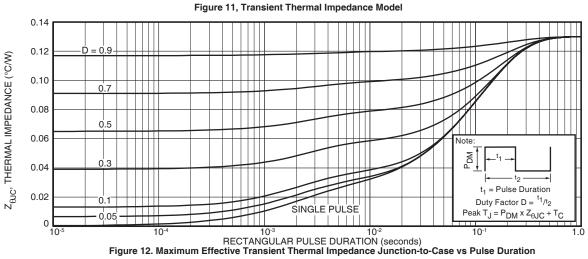
Dynamic Characteristics

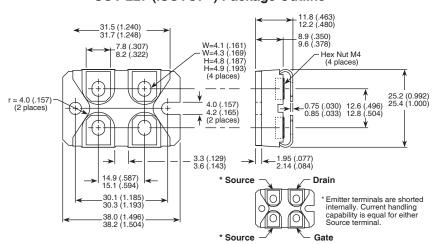

$T_{.1} = 25^{\circ}C$ unless otherwise specified


- J = 25 G almost Ghormag								
Symbol	Parameter	Test Conditions Min T		Тур	Max	Unit		
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 33A$		75		S		
C _{iss}	Input Capacitance	V 0V V 05V		18500				
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		245				
C _{oss}	Output Capacitance	1 - 11/11/12		1555				
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	V 0V V 0V to 507V		635		pF		
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V$, $V_{DS} = 0V$ to 667V		325				
Q _g	Total Gate Charge	V 0 t- 40V I 00A		570				
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 33A,$		100		nC		
Q _{gd}	Gate-Drain Charge	$V_{DS} = 500V$		270				
t _{d(on)}	Turn-On Delay Time	Resistive Switching		55				
t _r	Current Rise Time	V _{DD} = 667V, I _D = 33A		55		ne		
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\odot}, V_{GG} = 15V$		235		ns		
t _f	Current Fall Time			55				


Source-Drain Diode Characteristics


Symbol	Parameter	Test Condi	Min	Тур	Max	Unit	
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the				41	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	G S			260	A
V _{SD}	Diode Forward Voltage	$I_{SD} = 33A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.0	V
t _{rr}	Reverse Recovery Time		T _J = 25°C			400	no
rr		Γ	T _J = 125°C			800	ns
0	Reverse Recovery Charge	I _{SD} = 33A ^③	T _J = 25°C		3.3		μС
Q_{rr}		V _{DD} = 100V	T _J = 125°C		8.0		
I _{rrm}	Reverse Recovery Current	di _{SD} /dt = 100A/μs	T _J = 25°C		17.2		۸
		T _J = 125°C			24.6		Α
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 33A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$, $T_J = 125^{\circ}C$				25	V/ns


- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_1 = 25$ °C, L = 7.48mH, $R_G = 2.2\Omega$, $I_{AS} = 33$ A.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- $\begin{array}{l} \textcircled{4} \quad \textbf{C}_{o(cr)} \text{ is defined as a fixed capacitance with the same stored charge as } \textbf{C}_{OSS} \text{ with } \textbf{V}_{DS} = 67\% \text{ of } \textbf{V}_{(BR)DSS}. \\ \textcircled{5} \quad \textbf{C}_{o(er)} \text{ is defined as a fixed capacitance with the same stored energy as } \textbf{C}_{OSS} \text{ with } \textbf{V}_{DS} = 67\% \text{ of } \textbf{V}_{(BR)DSS}. \\ \textbf{To calculate } \textbf{C}_{o(er)} \text{ for any value of } \textbf{V}_{DS} \text{ less than } \textbf{V}_{(BR)DSS}, \text{ use this equation: } \textbf{C}_{o(er)} = -5.37\text{E}-7/\text{V}_{DS}^2 + 9.48\text{E}-8/\text{V}_{DS} + 1.83\text{E}-10. \\ \end{array}$
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)



SOT-227 (ISOTOP®) Package Outline

