捷多邦，专业PCB打样工厂，24小时加急出货

General Description

The AP3015／A are Pulse Frequency Modulation （PFM）DC／DC converters．These two devices are func－ tionally equivalent except the switching current limit． The AP3015 is designed for higher power systems with 350 mA current limit，and the AP3015A is for lower power systems with 100 mA current limit．

The AP3015／A feature a wide input voltage．The oper－ ation voltage is ranged from 1.2 V to $12 \mathrm{~V}(1 \mathrm{~V}$ to 12 V for AP3015A）．A current limited，fixed off－time con－ trol scheme conserves operating current，resulting in high efficiency over a broad range of load current． They also feature low quiescent current，switching cur－ rent limiting，low temperature coefficient，etc．

Fewer tiny external components are required in the applications to save space and lower cost． Furthermore，to ease its use in differnet systems，a dis－ able terminal is designed to turn on or turn off the chip．

The AP3015／A are available in SOT－23－5 package．

Features

－Low Quiescent Current

In Active Mode（Not Switching）：17 $\mu \mathrm{A}$ Typical

 In Shutdown Mode：$<1 \mu \mathrm{~A}$－Low Operating $\mathrm{V}_{\text {IN }}$
1．2V Typical for AP3015
1．0V Typical for AP3015A
－Low $\mathrm{V}_{\text {CESAT }}$ Switch
200mV Typical at 300 mA for AP3015
70 mV Typical at 70mA for AP3015A
－High Output Voltage：up to 34V
－Fixed Off－Time Control
－Switching Current Limiting 350mA Typical for AP3015 100mA Typical for AP3015A
－Operating Temperature Range：$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Applications

－MP3，MP4
－Battery Power Supply System
－LCD／OLED Bias Supply
－Handheld Device
－Portable Communication Device

Figure 1．Package Type of AP3015／A

Pin Configuration

K Package

(SOT-23-5)

Figure 2. Pin Configuration of AP3015/A (Top View)

Pin Description

Pin Number	Pin Name	Function
1	SW	Switch Pin. This is the collector of the internal NPN power switch. Minimize the trace area connected to this Pin to minimize EMI
2	GND	Ground Pin. GND should be tied directly to ground plane for best performance
3	FB	Feedback Pin. Set the output voltage through this pin. The formula is $\mathrm{V}_{\text {OUT }}=1.23 \mathrm{~V} *(1+\mathrm{R} 1 /$ R2). Keep the loop between Vout and FB as short as possible to minimize the ripple and noise, which is beneficial to the stability and output ripple
4	$\overline{\text { SHDN }}$	Shutdown Control Pin. Tie this pin above 0.9 V to enable the device. Tie below 0.25 V to turn off the device
5	$\mathrm{~V}_{\text {IN }}$	Supply Input Pin. Bypass this pin with a capacitor as close to the device as possible

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3015/A

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SOT-23-5	-40 to $85^{\circ} \mathrm{C}$	AP3015KTR-E1	E6E	Tape \& Reel
		AP3015AKTR-E1	E6F	Tape \& Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

MICRO POWER STEP-UP DC-DC CONVERTER

AP3015/A

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	15	V
SW Voltage	$\mathrm{V}_{\text {SW }}$	36	V
FB Voltage	V_{FB}	$\mathrm{V}_{\text {IN }}$	V
SHDN Pin Voltage	$\mathrm{V}_{\text {SHDN }}$	15	V
Thermal Resistance (Junction to Ambient, no Heat sink)	$\mathrm{R}_{\theta \mathrm{JA}}$	265	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)	$\mathrm{T}_{\text {LEAD }}$	260	${ }^{\circ} \mathrm{C}$
ESD (Human Body Model)		3000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol		Min	Max	Unit
Input Voltage	V_{IN}	AP 3105	1.2	12	V
		AP 3105 A	1.0	12	
Operating Temperature	T_{A}			-40	85
${ }^{\circ} \mathrm{C}$					

MICRO POWER STEP-UP DC-DC CONVERTER

AP3015/A

Electrical Characteristics

($\mathrm{V}_{\mathrm{IN}}=\mathrm{V} \overline{\mathrm{SHDN}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	AP3015	1.2		12	V
		AP3015A	1.0		12	
Quiescent Current	I_{Q}	Not Switching		17	30	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$			1	
Feedback Voltage	V_{FB}		1.205	1.23	1.255	V
FB Comparator Hysteresis	$\mathrm{V}_{\text {FBH }}$			8		mV
FB Pin Bias Current	I_{FB}	$\mathrm{V}_{\mathrm{FB}}=1.23 \mathrm{~V}$		30	80	nA
Output Voltage Line Regulation	L_{NR}	$1.2 \mathrm{~V}<\mathrm{V}_{\text {IN }}<12 \mathrm{~V}$		0.05	0.1	\%/V
Switching Current Limit	I_{L}	AP3015	300	350	400	mA
		AP3015A	75	100	125	
Switch Saturation Voltage	$\mathrm{V}_{\text {CESAT }}$	AP3015, $\mathrm{I}_{\text {SW }}=300 \mathrm{~mA}$		200	300	mV
		AP3015A, $\mathrm{I}_{\text {SW }}=70 \mathrm{~mA}$		70	120	
Switch Off Time	$\mathrm{T}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{FB}}>1 \mathrm{~V}$		400		nS
		$\mathrm{V}_{\mathrm{FB}}<0.6 \mathrm{~V}$		1.5		$\mu \mathrm{S}$
$\overline{\text { SHDN }}$ Input Threshold High	$\mathrm{V}_{\text {TH }}$		0.9			V
SHDN Input Threshold Low	$\mathrm{V}_{\text {TL }}$				0.25	
$\overline{\text { SHDN Pin Current }}$	$\mathrm{I}_{\overline{\text { SHDN }}}$	$\mathrm{V}_{\text {SHDN }}=1.2 \mathrm{~V}$		2	3	$\mu \mathrm{A}$
		$\mathrm{V} \overline{\text { SHDN }}=5 \mathrm{~V}$		8	12	
Switch Leakage Current	$\mathrm{I}_{\text {SWL }}$	Switch Off, $\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$		0.01	5	$\mu \mathrm{A}$

Typical Performance Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$

Figure 4. Quiescent Current vs. Junction Temperature

Figure 6. Switch Off Time vs. Junction Temperature

Figure 5. Feedback Voltage vs. Junction Temperature

Figure 7. Shutdown Pin Current vs. Shutdown Pin Voltage

Typical Performance Characteristics (Continued)

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$

Figure 8. Switch Current Limit vs. Junction Temperature
Figure 9. Switch Current Limit vs. Junction Temperature

Figure 10. Saturation Voltage vs. Junction Temperature
Figure 11. Saturation Voltage vs. Junction Temperature

Typical Performance Characteristics (Continued)
Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$

Figure 12. Efficiency

Application Information

Operating Principles

AP3015/A feature a constant off-time control scheme. Refer to Figure 3, the bandgap voltage $\mathrm{V}_{\text {REF }}$ (1.23 V typical) is used to control the output voltage.

When the voltage at the FB pin drops below the lower hysteresis point of Feedback Comparator (typical hysteresis is 8 mV), the Feedback Comparator enables the chip and the NPN power switch is turned on, the current in the inductor begins to ramp up and store energy in the coil while the load current is supplied by the output capacitor. Once the current in the inductor reaches the current limit, the Current-Limit Comparator resets the 400ns One-Shot which turns off the NPN switch for 400 ns . The SW voltage rises to the output voltage plus a diode drop and the inductor current begins to ramp down. During this time the energy stored in the inductor is transferred to $\mathrm{C}_{\text {OUT }}$ and the load. After the 400ns off-time, the NPN switch is turned on and energy will be stored in the inductor again.

This cycle will continue until the voltage at FB pin reaches 1.23 V , the Feedback Comparator disables the

Figure 13. Efficiency
chip and turns off the NPN switch. The load current is then supplied solely by output capacitor and the output voltage will decrease. When the FB pin voltage drops below the lower hysteresis point of Feedback Comparator, the Feedback Comparator enables the device and repeats the cycle described previously. Under not switching condition, the I_{Q} of the device is about $17 \mu \mathrm{~A}$.

The AP3015/A contain additional circuitry to provide protection during start-up or under short-circuit conditions. When the FB pin voltage is lower than approximately 0.6 V , the switch off-time is increased to $1.5 \mu \mathrm{~s}$ and the current limit is reduced to about 250 mA (70 mA for AP3015A). This reduces the average inductor current and helps to minimize the power dissipation in the AP3015/A power switch, in the external inductor and in the diode.

The $\overline{\text { SHDN }}$ pin can be used to turn off the AP3015/A and reduce the I_{Q} to less than $1 \mu \mathrm{~A}$. In shutdown mode the output voltage will be a diode drop below the input voltage.

Typical Application

C1, C2: X5R or X7R Ceramic Capacitor
L1: SUMIDA CDRH4D16FB/NP-100MC or Equivalent

Figure 14. AP3015 Typical Application in LCD/OLED Bias Supply

C1, C2, C3: X5R or X7R Ceramic Capacitor
L1: SUMIDA CDRH4D16FB/NP-100MC or Equivalent

Figure 15. AP3015A Typical Application in 1 or 2 Cells to 3.3V Boost Converter

Advanced Analog Circuits

Mechanical Dimensions

SOT-23-5
Unit: mm(inch)

BC

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited

Wafer Fab

- Whanghai SIM-BCD Semiconductor Manufacturing Limited

800, Yi Shan Road, Shanghai 200233, China
Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office
Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office
Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China Tel: +86-755-8826 7951, Fax: +86-755-8826 7865

BCD Semiconductor Manufacturing Limited

IC Design Group

Advanced Analog Circuits (Shanghai) Corporation
8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China
Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,
Taiwan
Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office
BCD Semiconductor Corporation 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A

