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Preface

This preface introduces the ARM940T and its reference documentation. It contains the
following sections:

. About this document on page viii
. Further reading on page xii
. Feedback on page xiii.
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Preface

About this document

Intended audience

Using this manual

This document is the technical reference manual for the ARM940T.

This document has been written for hardware and software engineers who want to
design or develop products based upon the ARM940T processor. It assumes no prior
knowledge of ARM products.

This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for a functional description of the ARM940T.

Chapter 2 Programmer’s Model
Read this chapter to learn how to program the ARM940T system control
registers to configure operation of the macrocell.
Chapter 3 Protection Unit
Read this chapter to learn how to use the protection unit and the memory
interface to partition memory and set individual partition attributes.
Chapter 4 Caches and Write Buffer

Read this chapter to learn how to use the instruction and data caches and
the write buffer.

Chapter 5 Clock Modes
Read this chapter to learn how to use the Fastbus, Synchronous, and
Asynchronous processor clock modes to connect to memory using the
AMBA ASB bus.
Chapter 6 Bus Interface Unit
Read this chapter to learn how to use the bus interface unit and the
AMBA ASB and AHB interface to handle single and burst transfers.
Chapter 7 Coprocessor Interface

Read this chapter to learn how to interface the ARM940T to an off-chip
coprocessor, and how to execute coprocessor instructions.

viii
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Chapter 8 Debug Support
Read this chapter to learn how to use the debug interface to implement a
debugging system using scan chains and the EmbeddedICE unit.
Chapter 9 TrackingICE
Read this chapter to learn how to connect a second external ARM9TDMI
to precisely track the inputs to the ARM940T using TrackingICE mode.
Chapter 10 Test Support
Read this chapter to learn how to use the test support provided by the
ARMO940T for the ARMI9TDMI core and the ARM940T macrocell.
Chapter 11 Instruction Cycle Summary
Read this chapter for details of instruction cycle times. This chapter
contains timing diagrams for interlock timing.
Chapter 12 AC Characteristics
Read this chapter for a description of the timing parameters used in the
ARM940T.
Appendix A Signal Descriptions

Read this chapter for a detailed description of the signals used in the
ARMY40T.

ARM DDI 0144B
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Preface

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights ARM processor signal names, and interface elements, such as
menu names and buttons. Also used for terms in descriptive lists, where
appropriate.

italic Highlights special terminology, cross-references, and citations.

typewriter  Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter  Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands or functions, where the argument is to
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code.

X Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B
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Timing diagram conventions

This manual contains a number of timing diagrams. Figure P-1 on page xi explains the
components used in these diagrams. Any variations are clearly labeled when they occur.
Therefore, you must not attach any additional meaning unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

AN

Valid (correct) sampling point

Figure P-1 Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

ARM DDI 0144B Copyright © 1999, 2000 ARM Limited. All rights reserved. Xi
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Further reading
This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact info@rm.com or visit our web site at
http://www.arm.com.

ARM publications

This document contains information that is specific to the ARM940T. Refer to the
following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)
. ARMI9TDMI Data Sheet (ARM DDI 0029)

. AMBA Specification (ARM IHI 0011)

. Application Note 41 TrackinglCE (ARM DAI 0041).

Other publications

This section lists relevant documents published by third parties:

D IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan
Architecture.

Xii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B
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Feedback

ARM Limited welcomes feedback both on the ARM940T, and on the documentation.

Feedback on the ARM940T

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on the ARM940T Technical Reference Manual

If you have any comments about this document, please send email to errata@arm.com

giving:

. the document title

. the document number

. the page number(s) to which your comments refer
. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DDI 0144B Copyright © 1999, 2000 ARM Limited. All rights reserved. xiii
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Chapter 1
Introduction

This chapter introduces the ARM940T processor. It contains the following sections:
. About the ARM940T on page 1-2
. Processor functional block diagram on page 1-3.

ARM DDI 0144B Copyright © 1999, 2000 ARM Limited. All rights reserved.
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Introduction

1.1 About the ARM940T

The ARM940T is a member of the ARMITDMI family of general-purpose
microprocessors. This family includes:

o ARMOITDMLI, the core
. ARM940T, the core plus cache and protection unit
o ARMO20T, the core plus cache and MMU.

The ARMI9TDMI processor core is a Harvard architecture device implemented using a
five-stage pipeline consisting of Fetch, Decode, Execute, Memory, and Write stages. It
can be provided as a standalone core that can be embedded into more complex devices.
The standalone core has a simple bus interface that allows you to design your own
caches and memory systems around it.

The ARM9TDMI family of microprocessors supports both the 32-bit ARM and 16-bit
Thumb instruction sets, allowing you to trade off between high performance and high
code density.

The ARM940T processor has a Harvard cache architecture with separate 4KB

instruction and 4KB data caches, each with a 4-word line length. A protection unit

allows you to define eight regions of memory for data and eight regions for instructions,

each with individual cache and write buffer configurations and access permissions. The

cache system is software configurable to provide highest average performance or to

meet the requirements of real-time systems. Software configurable options include:

. random or round-robin replacement algorithm

. write-through or write-back cache operation (independently selectable for each
memory region)

. cache locking with granularity 1/64th of cache size.

The cache and write buffers improve CPU performance and minimize accesses to the
AMBA bus and to any off-chip memory, reducing overall system power consumption.

The ARMO940T supports the ARM debug architecture and includes logic to assist in
both hardware and software debug. The ARM940T also includes support for
coprocessors, providing access to the instruction and data buses and handshaking
signals.

The ARM940T interface to the rest of the system is over unified address and data buses.
This interface enables implementation of either an Advanced Microcontroller Bus
Architecture (AMBA) Advanced System Bus (ASB) or Advanced High-performance
Bus (AHB) bus scheme with the ARM940T ASB to AHB bridge block available from
ARM Ltd. You can implement an ASB scheme either as a fully-compliant AMBA bus
master, or as a slave for production test. The ARM920T also has a Tracking ICE mode
that allows an approach similar to a conventional ICE mode of operation.

1-2
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Introduction

1.2 Processor functional block diagram
Figure 1-1 on page 1-3 shows the functional block diagram of the ARM940T.

CPDIN[31:0]
CPID[31:0] T l TCPDOUT[31:0]
1a[31:0] [P P —
[31:0] > Coprocessor DA[31:0]
ID[31:0] interface <
> DDI[31:0]
Protection unit
h 4 » <— h 4
ICache » < DCache
control > CP15 control
Instruction |« P Data
cache ARMOTDMI cache
4K = processor core — 4K
P (integral EmbeddedICE) |«
JTAG
interface 4
[4:0] —p <4+ Vv
AMBA interface Write
' buffer

>
BA[31:0]l l ¢BD[31:0]

Bcontrol

Figure 1-1 ARM940T functional block diagram

The blocks shown in Figure 1-1 on page 1-3 are described as follows:

The ARM9TDMI is described in the ARM9TDMI Technical Reference Manual.

Coprocessor 15 is described in Chapter 2 Programmer’s Model.

ARM DDI 0144B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3
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o The coprocessor interface, and instruction and data cache control are described in
Chapter 7 Coprocessor Interface.

. The protection unit is described in Chapter 3 Protection Unit.
o The instruction cache, data cache, and write buffer are described in Chapter 4
Caches and Write Buffer.

. The AMBA interface is described in Chapter 6 Bus Interface Unit

1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



Chapter 2

Programmer’s Model

This chapter describes the programmer’s model for the ARM940T. It contains the
following sections:

. About the programmer’s model on page 2-2
. About the ARM9TDMI programmer’s model on page 2-3
. CP15 register map summary on page 2-5.

ARM DDI 0144B
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Programmer’s Model

2.1

About the programmer’s model

The ARM940T cached processor macrocell includes the ARM9TDMI microprocessor
core, instruction and data caches, a write buffer, and a protection unit for defining the
attributes of regions of memory.

The programmer’s model of the ARM940T consists of the programmer’s model of the
ARMOITDMI (see About the ARM9TDMI programmer’s model on page 2-3) with the
following additions and modifications:

. The ARMO940T incorporates two coprocessors:

—  CP14, which allows software access to the debug communications channel.
You can access the registers defined in CP14 using MCR and MRC instructions.
These are described in Accessing CP15 registers on page 2-6.

—  CP15, the system control coprocessor, which provides additional registers
that are used to configure and control the caches, protection unit, and other
system options of the ARM940T, such as big or little-endian operation. You
can access the registers defined in CP15 using MCR and MRC instructions.
These are described in Accessing CP15 registers on page 2-6.

. The ARM940T also features an external coprocessor interface that allows the
attachment of a closely-coupled coprocessor on the same chip, for example, a
floating point unit. You can access registers and operations provided by any
coprocessors attached to the external coprocessor interface using appropriate
coprocessor instructions.

D Memory accesses for instruction fetches, and data loads and stores can be cached
or buffered. Cache and write buffer configuration and operation is described in
detail in Chapter 4 Caches and Write Buffer.

2-2
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Programmer’s Model

2.2 About the ARM9TDMI programmer’s model

The ARM9TDMI processor core implements the ARM architecture v4T and executes
the ARM 32-bit instruction set and the compressed Thumb 16-bit instruction set. The
ARMITDMI programmer’s model is fully described in the ARM Architecture
Reference Manual. The ARM9TDMI Technical Reference Manual gives
implementation details, including instruction execution cycle times.

ARMVAT specifies a small number of implementation options. The options selected in
the ARM9TDMI implementation are listed in Table 2-1 on page 2-3. For comparison,
the options selected for the ARM7TDMI implementation are also shown.

Table 2-1 ARM9TDMI implementation option

ARM Value stored by direct

Processor core . Data abort model STR, STRT, and STM
architecture

of PC
ARMT7TDMI v4T Base updated Address of Inst + 12
ARMOTDMI V4T Base restored Address of Inst + 12

The ARMI9TDMI is code-compatible with the ARM7TDMI, with two exceptions:

. the ARM9TDMI implements the base restored data abort model, which
significantly simplifies the software Data Abort handler

. the ARM9TDMI fully implements the instruction set extension spaces added to
the ARM (32-bit) instruction set in ARMv4 and ARMv4T.

These differences are explained in more detail in the following sections:

. Data Abort model on page 2-3
. Instruction set extension spaces on page 2-4.

2.2.1 Data Abort model

The base restored data abort model differs from the base updated data abort model
implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating
system code, the Data Abort handler. It does not affect user code. With the base restored
data abort model, when a Data Abort exception occurs during the execution of a
memory access instruction, the base register is always restored by the processor

ARM DDI 0144B
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Programmer’s Model

hardware to the value the register contained before the instruction is executed. This
removes the requirement for the Data Abort handler to unwind any base register update
that might have been specified by the aborted instruction.

2.2.2 Instruction set extension spaces
All ARM processors implement the undefined instruction space as one of the entry
mechanisms for the undefined instruction exception. That is, ARM instructions with
opcode[27:25] = 0b011 and opcode[4] = 1 are undefined on all ARM processors
including the ARM9TDMI and ARM7TDML.
ARMv4 and ARMVAT also introduce a number of instruction set extension spaces to
the ARM instruction set. These are:
. arithmetic instruction extension space
. control instruction extension space
. coprocessor instruction extension space
. load/store instruction extension space.
Instructions in these spaces are undefined, and cause an undefined instruction
exception. The ARM9TDMI fully implements all the instruction set extension spaces
defined in ARMvAT as undefined instructions, allowing emulation of future instruction
set additions.

2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



2.3 CP15 register map summary

Programmer’s Model

CP15 defines 16 registers. The register map for CP15 is shown in Table 2-2 on

page 2-5.
Table 2-2 CP15 register map

Register Read Write
0 ID code 2 Unpredictable
0 Cache type 2 Unpredictable
1 Control Control
2 Cachable 2 Cachable 2
3 Write buffer control Write buffer control
4 Reserved Reserved
5 Protection region access permissions 2 Protection region access permissions 2
6 Protection region base and size control 2  Protection region base and size control 2
7 Unpredictable Cache operations
8 Reserved Reserved
9 Cache lockdown Cache lockdown
10-14 Reserved Reserved
15 Test b Test b

a. Register locations 0, 2, 5, and 6 each provide access to more than one register. The register accessed
depends on the value of the opcode_2 field.
b. Not accessed in normal operations

ARM DDI 0144B
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Programmer’s Model

2.3.1 Accessing CP15 registers

The terms and abbreviations shown in Table 2-3 on page 2-6 are used throughout this

section.
Table 2-3 CP15 abbreviations

Term Abbreviation  Description

Unpredictable ~ UNP For reads, the data returned when reading from this
location is unpredictable. It can have any value.
For writes, writing to this location causes unpredictable
behavior, or an unpredictable change in device
configuration.

Should be zero  SBZ When writing to this location, all bits of this field should
be 0.

In all cases, reading from, or writing any data values to any CP15 registers, including
those fields specified as unpredictable or should be zero, does not cause any permanent
damage.

All CP15 register bits that are defined and contain state, are set to zero by BnRES
except the V bit in register 1, which takes the value of macrocell input VINITHI when
BnRES is asserted.

You can only access CP15 registers with MRC and MCR instructions in a privileged mode.
The instruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1 on
page 2-6. The assembler for these instructions is:

MCR/MRC{cond} P15,opcode_1,Rd,CRn,CRm,opcode_2

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

111/1|0 1111111 1

\_v_/ \_v_/ \_v_/\ / \_v_/ \_v_/
Rd

Cond opcode_1 CRn opcode_2 CRm

Figure 2-1 CP15 MRC and MCR bit pattern

2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



Programmer’s Model

Instructions CDP, LDC, and STC, together with unprivileged MRC and MCR instructions to
CP15, cause the undefined instruction trap to be taken. The CRn field of MRC and MCR
instructions specifies the coprocessor register to access. The CRm field and opcode_2

fields specify a particular action when addressing registers. The L bit distinguishes

between an MRC (L=1) and an MCR (L=0).

Note
Attempting to read from a nonreadable register, or to write to a nonwritable register
causes unpredictable results.

The opcode_1, opcode_2, and CRm fields should be zero, except when the values specified
are used to select the desired operations, in all instructions that access CP15. Using
other values results in unpredictable behavior.

2.3.2 Register 0, ID code

This is a read-only register that returns a 32-bit device ID code. You can access the ID
code register by reading CP15 register 0 with the opcode_2 field set to any value other
than 1. For example:

MRC cpl5, @, rd, c@, c0,{0,2-7}; returns ID register
The contents of the ID code are shown in Table 2-4 on page 2-7.

Table 2-4 ID code register

Register bits  Function Value

31:12 Implementer 0x41 (identifies ARM)
23:16 Architecture version ~ 0x2

15:4 Part number 0x940

3:0 Layout revision Revision

2.3.3 Register 0, cache type

This is a read-only register that contains information about the size and architecture of
the Instruction Cache (ICache) and Data Cache (DCache), allowing operating systems
to establish how to perform such operations as cache cleaning and lockdown. All
ARMV4T and later cached processors contain this register, allowing RTOS vendors to
produce future-proof versions of their operating systems.

ARM DDI 0144B
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Programmer’s Model

You can access the cache type register by reading CP15 register O with the opcode_2
field set to 1. For example:

MRC cpl5, 0, rd, c@, c@, 1; returns cache details

The register contains information about the size and architecture of the caches. The
format of the register is shown in Figure 2-2 on page 2-8.

31302928 2524 23 1211 0

0/0|0 ctype S Dsize Isize

Figure 2-2 Cache type register format

ctype The ctype field determines the cache type.

S bit Specifies if the cache is a unified cache or separate ICache and DCache.
Dsize Specifies the size, line length, and associativity of the DCache.

Isize Specifies the size, line length, and associativity of the ICache.

The Dsize and Isize fields in the cache type register have the same format. This is shown
in Figure 2-3 on page 2-8

1109 8 76 543210

0/0|0]| size assoc |M] len

2322212019181716 151413 12

Figure 2-3 Dsize and Isize field format

size The size field determines the cache size in conjunction with the M bit.

assoc The assoc field determines the cache associativity in conjunction with the
M bit.

M bit The multiplier bit. Determines the cache size and cache associativity

values in conjunction with the size and assoc fields.

len The len field determines the line length of the cache.

2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



Programmer’s Model

The register values for the ARM920T cache type register are listed in Table 2-5 on

page 2-9.

Table 2-5 Cache type register format

Function Register bits  Value
Reserved 31:29 0b000
ctype 28:25 0b0111
S 24 Obl = Harvard cache
Dsize  Reserved  23:21 0b000
size 20:18 0b011 = 4KB
assoc 17:15 0b110 = 64 way
M 14 0b0 = 1x base parameters
len 13:12 0b01 = 4 words per line
Isize Reserved 11:9 0b000
size 8:6 0b011 =4KB
assoc 5:3 0b110 = 64 way
M 2 0b0 = 1x base parameters
len 1:0 0b01 =4 words per line

The size of the cache is determined by the size field and the M bit. The M bit is O for
the data and instruction caches. Bits [20:18] for the Data Cache (DCache) and bits [8:6]
for the Instruction Cache (ICache) are the size field. Table 2-6 on page 2-9 shows the

cache size encoding.

Table 2-6 Cache size encoding (M=0)

size field Cache size

0b000 512B
0b001 1KB
0b010 2KB
0b011 4KB

ARM DDI 0144B
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Programmer’s Model

Table 2-6 Cache size encoding (M=0) (continued)

size field Cache size

0b100 8KB

0b101 16KB
0b110 32KB
Obl111 64KB

The associativity of the cache is determined by the assoc field and the M bit. The M bit
is O for the data and instruction caches. Bits [17:15] for the DCache and bits [5:3] for
the ICache are the assoc field. Table 2-7 on page 2-10 shows the cache associativity

encoding.

Table 2-7 Cache associativity encoding (M=0)

assoc field Associativity

0b000 Direct mapped
0b001 2-way

0b010 4-way

0b011 8-way

0b100 16-way

0b101 32-way

Obl110 64-way

Obl111 128-way

2-10
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Programmer’s Model

The line length of the cache is determined by the len field. Bits [13:12] for the DCache
and bits [1:0] for the ICache are the len field. Table 2-8 on page 2-11 shows the line
length encoding.

Table 2-8 Line length encoding

len field Cache line length

00 2 words (8 bytes)
01 4 words (16 bytes)
10 8 words (32 bytes)
11 16 words (64 bytes)

2.3.4 Register 1, control register

This contains the global control bits of the ARM940T. All reserved bits must either be
written with zero or one, as indicated, or written using read-modify-write. The reserved
bits have an unpredictable value when read. The format of CP15 register 1 is shown in

Table 2-9.
Table 2-9 CP15 register 1
R_eglster Name Function Value
bits
31 iA bit Asynchronous clocking select ~ See Table 2-10 on page 2-12.
30 nFbit  nFastBus select See Table 2-10 on page 2-12.
29:14 - Reserved Read = Unpredictable.
Write = Should be zero.
13 V bit Base location of exception 0 = Low addresses = 0x00000000.
registers 1 = High addresses = 0xFFFF0000.
This bit is cleared to O at reset.
12 I bit ICache enable bit 0 = ICache disabled.
1 = ICache enabled. See Enabling
and disabling the ICache on
page 4-5.
11:8 - Reserved Should be zero.
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Table 2-9 CP15 register 1 (continued)

R_eglster Name Function Value
bits
7 B bit Big-end bit 0 = Little-endian operation.
1 = Big-endian operation.
This bit is cleared to O at reset.
6:3 - Reserved Should be one.
2 C bit DCache enable bit 0 = DCache disabled.
1 = DCache enabled.
See Enabling and disabling the
DCache on page 4-8.
1 - Reserved Should be zero.
0 P bit Protection unit enable 0 = Protection unit disabled.

1 = Protection unit enabled.
See Enabling the protection unit on
page 3-3.

Register 1 bits [31:30] select the clocking mode of the ARM940T, as shown in
Table 2-10 on page 2-12. Clocking modes are described in Chapter 5 Clock Modes.

Table 2-10 Clocking modes

Clocking mode iA nF

FastBus mode 0 0
Synchronous 0 1
Reserved 1 0
Asynchronous 1 1
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2.3.5 Register 2, instruction and data cachable registers

This location provides access to two registers that contain the cachable attributes for
each of eight memory areas. The two registers provide individual control for the I and
D address spaces. The opcode_2 field determines if the instruction or data cachable
attributes are programmed:
. If the opcode_2 field = 0, the data cachable bits are programmed. For example:
MCR p15,0,Rd,c2,c0,0; Write data cachable bits
MRC p15,0,Rd,c2,c0,0; Read data cachable bits
. If the opcode_2 field = 1 the instruction cachable bits are programmed. For
example:
MCR p15,0,Rd,c2,c0,1; Write instruction cachable bits
MRC p15,0,Rd,c2,c0,1; Read instruction cachable bits
The format of the data and instruction cachable bits are the same, as shown in

Table 2-11 on page 2-13. Setting a bit makes an area cachable, clearing it makes it
noncachable.

Table 2-11 Cachable register format

Register bit Function

7 Cachable bit (C_7) for area 7
6 Cachable bit (C_6) for area 6
5 Cachable bit (C_5) for area 5
4 Cachable bit (C_4) for area 4
3 Cachable bit (C_3) for area 3
2 Cachable bit (C_2) for area 2
1 Cachable bit (C_1) for area 1
0 Cachable bit (C_0) for area 0

The use of register 2 is described in Chapter 3 Protection Unit.
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2.3.6  BRegister 3, write buffer control register

This register contains a write buffer control (bufferable) attribute bit for each of the
eight areas of memory. Each bit is used in conjunction with the cachable bit to control
write buffer operation. For a description of buffer behavior, see The write buffer on
page 4-12.

Setting a bit makes an area bufferable, clearing a bit makes an area unbuffered. For
example:

MCR p15,0,Rd,c3,c0,0 ; Write data bufferable bits
MRC p15,0,Rd,c3,c0,0 ; Read data bufferable bits
Note

The opcode_2 field should be 0 because the write buffer only operates on data regions.
The following table, therefore, only applies to the DCache.

The format of the write buffer control register is shown in Table 2-12 on page 2-14.

Table 2-12 Write buffer control register

Register bit Function

7 Write buffer control bit (B_d7) for data area 7
6 ‘Write buffer control bit (B_d6) for data area 6
5 ‘Write buffer control bit (B_d5) for data area 5
4 ‘Write buffer control bit (B_d4) for data area 4
3 ‘Write buffer control bit (B_d3) for data area 3
2 Write buffer control bit (B_d2) for data area 2
1 Write buffer control bit (B_d1) for data area 1
0 Write buffer control bit (B_dO) for data area 0

The use of register 3 is described in Chapter 3 Protection Unit.

23.7 Register 4, reserved

You must not access (read or write) this register because it causes unpredictable
behavior.

2-14
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2.3.8 Register 5, instruction and data space protection registers

These registers contain the access permission bits for the instruction and data protection
regions. The opcode_2 field determines if the instruction or data access permissions are
programmed:

. If the opcode_2 field = 0O, the data space bits are programmed. For example:
MCR p15,0,Rd,c5,co,0 ; Write data space access permissions
MRC p15,0,Rd,c5,co,0 ; Read data space access permissions
. If the opcode_2 field =1, the instruction space bits are programmed. For example:
MCR p15,0,Rd,c5,co,1 ; Write instruction space access permissions
MRC p15,0,Rd,c5,co,1 ; Read instruction space access permissions

Each register contains the access permission bits, apn[1:0], for the eight areas of
instruction or data memory, as shown in Table 2-13 on page 2-15.

Table 2-13 Protection space register format

Register bit Function

15:14 ap7[1:0] bits of area 7
13:12 ap6[1:0] bits of area 6
11:10 ap5[1:0] bits of area 5
9:8 ap4[1:0] bits of area 4
7:6 ap3[1:0] bits of area 3
5:4 ap2[1:0] bits of area 2
3:2 ap1[1:0] bits of area 1
1:0 ap0[1:0] bits of area 0

The values of the Iapn[1:0] and Dapn[1:0] bits define the access permission for each
area of memory. The access encoding is shown in Table 2-14 on page 2-16.

Note

On reset, the values of the Iapn[1:0] and Dapn[1:0] bits for all areas are undefined.
However, on reset, the protection unit is disabled and all areas are effectively set to no
access. Therefore, you must program the protection space registers before you enable
the protection unit.
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Table 2-14 Permission encoding

I/Dapn[1:0] Permission

00 No access

01 Privileged mode access only

10 Privileged mode full access, User mode read only
11 Full access

The use of register 5 is described in Chapter 3 Protection Unit.

2.3.9 Register 6, protection region base and size registers

This register allows you to define 16 programmable regions in memory, made up of
eight instruction and eight data regions. Individual control is provided for the
instruction and data memory regions. These registers define the base and size of each
of the eight areas of memory. The values are ignored when the protection unit is
disabled.

On reset, only the region enable bit for each region is reset to 0, all other bits are
undefined. You must program at least one instruction and data memory region before
you enable the protection unit.

The opcode_2 field defines if the data or instruction protection regions are to be
programmed. The CRm field selects the region number. Table 2-15 on page 2-16 shows
the data protection region registers.

Table 2-15 CP15 data protection region registers

ARM instruction Protection region register

MCR/MRC p15, @, Rd, c6, c7, @ Data memory region 7

MCR/MRC p15, @, Rd, c6, c6, @ Data memory region 6

MCR/MRC p15, @, Rd, c6, c5, @ Data memory region 5

MCR/MRC p15, @, Rd, c6, c4, @ Data memory region 4

MCR/MRC p15, @, Rd, c6, c3, @ Data memory region 3

2-16
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Table 2-15 CP15 data protection region registers (continued)

ARM instruction

Protection region register

MCR/MRC p15, 0, Rd, c6, c2, @ Data memory region 2

MCR/MRC p15, @, Rd, c6, cl, @ Data memory region 1

MCR/MRC p15, 0, Rd, c6, c0, @ Data memory region 0

Table 2-16 on page 2-17 shows the instruction protection region registers.

Table 2-16 CP15 instruction protection region registers

ARM instruction

Protection region register

MCR/MRC p15, @, Rd, c6, c7, 1  Instruction memory region 7
MCR/MRC p15, @, Rd, c6, c6, 1  Instruction memory region 6
MCR/MRC p15, @, Rd, c6, ¢5, 1  Instruction memory region 5
MCR/MRC p15, @, Rd, c6, c4, 1  Instruction memory region 4
MCR/MRC p15, @, Rd, c6, ¢3, 1  Instruction memory region 3
MCR/MRC p15, @, Rd, c6, c2, 1  Instruction memory region 2
MCR/MRC p15, @, Rd, c6, c1, 1  Instruction memory region 1
MCR/MRC p15, @, Rd, c6, c@, 1  Instruction memory region O

Each protection region register has the format shown in Table 2-17 on page 2-17.

Table 2-17 CP15 protection region register format

Register bit

Function

31:12 Base address
11:6 Unused
5:1 Area size (See Table 2-18 on
page 2-18)
0 Region enable. Reset to disable (0)
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The region base must be aligned to an area size boundary, where the area

size is defined

in its respective protection region register. The behavior is undefined if this is not the

case. Area sizes are given in Table 2-18 on page 2-18.

Table 2-18 Area size encoding

Bit encoding Area size
0b00000 to 0b01010  Reserved
0b01011 4KB
0b01100 8KB
0b01101 16KB
0b01110 32KB
0bO1111 64KB
0b10000 128KB
0b10001 256KB
0b10010 512KB
0b10011 IMB
0b10100 2MB
0b10101 4MB
0b10110 SMB
0b10111 16MB
0b11000 32MB
0b11001 64MB
0b11010 128MB
0Ob11011 256MB
Ob11100 512MB
Obl11101 1GB
ObI1110 2GB
Obl11111 4GB
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Register 6 is described in Chapter 3 Protection Unit.

Example base setting

An 8KB size region aligned to the 8KB boundary at 0x00002000 (covering the address
range 0x00002000-0X00003FFF) would be programmed to 9x00002019.

2.3.10 Register 7, cache operations register

Register 7 is a write-only register used to manage the ICache and DCache. A write to
this register can be used to perform the following operations:

flush ICache and DCache
prefetch an ICache line
wait for interrupt

drain the write buffer

clean and flush the DCache.

The ARMO940T uses a subset of the ARMv4 functions, as defined in the ARM
Architecture Reference Manual. The available operations are summarized in Table 2-19
on page 2-19.

Table 2-19 Cache operations writing to register 7

ARM instruction Data Function

MCR p15, 0, Rd, c7, c5, 0 Should be zero  Flush ICache

MCR p15, 0, Rd, c7, c5, 2 Index/segment  Flush ICache single entry

MCR p15, 0, Rd, c7, c6, 0 Should be zero  Flush DCache

MCR p15, 0, Rd, c7, c6, 2 Index/segment  Flush DCache single entry

MCR pl5, @, Rd, c7, c10, 2 Index/segment Clean DCache single entry

MCR p15, @, Rd, c7, c13, 1  Address Prefetch ICache line

MCR p15, @, Rd, c7, c14, 2 Index/segment Clean and flush DCache single entry

MCR p15, 0, Rd, c7, c8, 2 Should be zero ~ Wait for interrupt

MCR p15, 0, Rd, c7, c10, 4 Should be zero  Drain write buffer

Should be zero means the value transferred in the Rd.

A read from this register returns an unpredictable value.
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Index/segment format

Where the required value is an index/segment, the format is shown in Figure 2-4 on
page 2-20.

31 26 25 6 543 0

Index SBz Seg SBzZ

Figure 2-4 Index/segment format for cache operations

ICache prefetch data format

For the ICache prefetch operation, the data format is shown in Figure 2-5 on page 2-20.

31 6 54 3 0

Address bits [31:6] Seg SBz

Figure 2-5 Address format for ICache prefetch operations

The use of register 7 is described in Chapter 4 Caches and Write Buffer.

Wait for interrupt

Wait for interrupt allows you to place the ARM940T in a low-power standby mode.
When the operation is invoked, all clocks in the processor are frozen until either an
interrupt or a debug request occurs. This function is invoked by a write to register 7. The
following ARM instruction causes this to occur:

MCR p15, @, Rd, c7, c0, 4

The following instruction causes the same affect and has been added for backward
compatibility with StrongARM SA-1:

MCR pl5, @, Rd, c15, c8, 2

This stalls the processor, with internal clocks held HIGH from the time that this
instruction is executed until one of the signals nFIQ, nIRQ, or EDBGRQ) is asserted.
Also, if the debugger sets the debug request bit in the EmbeddedICE unit control
register, the wait-for-interrupt condition is terminated.
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In the case of nFIQ and nIRQ, the processor is woken up regardless of whether the
interrupts are enabled or disabled (that is, independent of the I and F bits in the
processor CPSR). The debug-related waking only occurs if DBGEN is HIGH, that is,
only when debug is enabled.

If the interrupts are enabled, the ARM core is guaranteed to take the interrupt before
executing the instruction after the wait-for-interrupt. If you use debug request to wake
up the system, the processor enters debug-state before executing any more instructions.

Drain write buffer

This CP15 operation causes instruction execution to be stalled until the write buffer is
emptied. This operation is useful in real-time applications where the processor has to be
sure that a write to a peripheral has completed before program execution continues. An
example is where a peripheral in a bufferable region is the source of an interrupt. When
the interrupt has been serviced, the request must be removed before interrupts can be
re-enabled. This can be ensured if a drain write buffer operation separates the store to
the peripheral and the enable interrupt functions.

The drain write buffer function is invoked by a write to CP15 register 7 using the
following ARM instruction:

MCR p15, @, Rd, c7, clo, 4

This stalls the processor core, with CPnWAIT asserted until any outstanding accesses
in the write buffer have been completed, that is, until all data has been written to
memory.

2.3.11 Register 8, reserved

You must not access (read or write) this register because it causes unpredictable
behavior.

2.3.12 Register 9, instruction and data lockdown registers

These registers allow regions of the cache to be locked down. The opcode_2 field
determines if the instruction or data caches are programmed:

. If the opcode_2 field = 0, the data lockdown bits are programmed. For example:
MCR/MRC p15, @, Rd, c9, c0, 0 ; data Tockdown control

. If the opcode_2 field = 1, the instruction lockdown bits are programmed. For
example:
MCR/MRC p15, 0, Rd, c9, c0, 1 ; instruction Tockdown control
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The format of the registers, Rd, transferred during this operation, is shown in Table 2-20

on page 2-22.
Table 2-20 Lockdown register format
Register bit Function
31 Load bit
30:6 Reserved
5:0 Cache index
Note

The segment number is not specified because cache lines are locked down across all
four segments (16-word granularity).

The use of register 9 is described in Chapter 4 Caches and Write Buffer.

2.3.13 Registers 10 to 14, reserved
You must not access (read or write) these registers because it causes unpredictable
behavior.

2.3.14 Register 15, test/debug register

The DTRRobin and ITRRobin bits set the respective caches into a pseudo round-robin
replacement mode. The format of register 15 is shown in Table 2-21 on page 2-22.

Table 2-21 CP15 register 15

Register bit  Function

31:4 Reserved

3 ITRRobin
2 DTRRobin
1:0 Reserved
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Chapter 3
Protection Unit

This chapter describes the ARM940T protection unit. It contains the following sections:
. About the protection unit on page 3-2

. Enabling the protection unit on page 3-3

. Memory regions on page 3-4

. Overlapping regions on page 3-7.
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3.1 About the protection unit
The protection unit is used to partition memory and set individual protection attributes
for each partition. The instruction address space and the data address space can each be
divided into up to eight regions of variable size.
Figure 3-1 on page 3-2 shows how the protection unit functions.
Address comparators Attribute registers
hit Priority
encoder
Abort Attributes
Address from ARMOTDMI
Figure 3-1 ARM940T protection unit
The protection unit is programmed using CP15 registers 1, 2, 3, 5, and 6.
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3.2 Enabling the protection unit

Before the protection unit is enabled, you must program at least one valid data and
instruction protection region. If they are not programmed, the ARM940T can enter a
state that is recoverable only by reset. Setting bit 0 of CP15 register 1, the control
register, enables the protection unit.

When the protection unit is disabled, all instruction fetches are noncachable and all data
accesses are noncachable and nonbufferable.
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3.3 Memory regions

The instruction and data address spaces can both be partitioned into a maximum of eight
regions. Each region is specified by the following:

. Region base address on page 3-4

. Region size on page 3-5

. cache and write buffer configuration
. read and write access permissions.

The ARM architecture uses constants known as inline literals to perform address
calculations. These constants are automatically generated by the assembler and
compiler and are stored with the instruction. To ensure correct operation, you must
define an area of memory from where code is to be executed for both the instruction and
data address spaces.

The base address and size properties are programmed using CP15 register 6. Table 3-1
on page 3-4 shows the format of the protection register.

Table 3-1 Protection register format

Register bit Function

31:12 Region base address
11:6 Unused

5:1 Region size

0 Region enable

Reset to disable (0)

3.3.1 Region base address

The base address defines the start of the memory region. This must be aligned to a
region-sized boundary. For example, if a region size of 8KB is programmed for a given
region, the base address must be a multiple of 8KB.

If the region is not aligned correctly, this results in unpredictable behavior.

3-4
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Protection Unit

The region size is specified as a 5-bit value, encoding a range of values from 4KB to
4GB. The encoding is shown in Table 3-2 on page 3-5.

Table 3-2 Region size encoding

Bit encoding Area size
0b00000 to 0b01010  Reserved
0b01011 4KB
0b01100 8KB
0b01101 16KB
0b01110 32KB
0bO1111 64KB
0b10000 128KB
0b10001 256KB
0b10010 512KB
0b10011 IMB
0b10100 2MB
0b10101 4MB
0b10110 8MB
0b10111 16MB
0b11000 32MB
0b11001 64MB
0b11010 128MB
0b11011 256MB
Ob11100 512MB
Ob11101 1GB
ObI1110 2GB
Obl11111 4GB
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3.3.3

Note
Any value less than 0b01011 programmed in Rd[5:1] results in unpredictable behavior.

Partition attributes

Each region has a number of attributes associated with it. These control how a memory
access is performed when the processor core issues an address that falls within a given
region. The attributes are:

. cachable

. bufferable (for data regions only)

. read/write permissions.

This information is specified by programming CP15 registers 2, 3, and 5 (see Chapter 2
Programmer’s Model). If an access fails its protection check (for example, if a User
mode application attempts to access a privileged-mode access only region), a memory
abort occurs. The processor enters the abort exception mode, branching to the Data
Abort or Prefetch Abort vector accordingly.

The cachable and bufferable bits in CP15 registers 2 and 3 are together used to select
one of four cache and write buffer configurations. These are described in Write buffer
operation on page 4-12.
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3.4 Overlapping regions

The protection unit can be programmed with two or more overlapping regions. When
overlapping regions are programmed, a fixed priority scheme is applied to determine
the region attributes that are applied to the memory access.

Attributes for region 7 take highest priority. Attributes for region O take lowest priority.
For example:

. Data region 2 is programmed to be 4KB in size, starting from address 0x3000 with
Dap[1:0]=10 (Privileged mode full access, User mode read only).

. Data region 1 is programmed to be 16KB in size, starting from address 0x@ with
Dap[1:0]=01 (Privileged mode access only).

When the processor performs a data load from address 0x3010 while in User mode, the
address falls into both region 1 and region 2, as shown in Figure 3-2 on page 3-7.
Because there is a clash, the attributes associated with region 2 are applied. In this case,
the load does not abort.

0x4000

+ I Region 2
— b
0x3010 0x3000
Region 1
0x0 v

Figure 3-2 Overlapping memory regions

341 Background regions

Overlapping regions increase the flexibility of mapping the eight regions onto physical
memory devices in the system. You can also use the overlapping properties to specify a
background region. For example, there might be a number of physical memory areas
sparsely distributed across the 4GB address space. If a programming error occurs
therefore, it might be possible for the processor to issue an address that does not fall into
any defined region.
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If the address issued by the processor falls outside any of the defined regions, the
ARMO940T protection unit is hard-wired to abort the access. This behavior can be
overridden by programming region 0 to be a 4GB background region. In this way, if the
address does not fall into any of the other seven regions, the access is controlled by the
attributes specified for region 0.

3-8
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Chapter 4

Caches and Write Buffer

This chapter describes the Instruction Cache (ICache), Data Cache (DCache), and the
write buffer. It contains the following sections:

Cache architecture on page 4-2
ICache on page 4-5

DCache on page 4-8

The write buffer on page 4-12
Cache lockdown on page 4-16.
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4.1 Cache architecture

The ARMO940T has a 4KB Instruction Cache (ICache), a 4KB Data Cache (DCache),
and an 8-word write buffer. The ICache and DCache have similar architectures, as
shown in Figure 4-1 on page 4-2.

31 Address 6543210
TAG Seg |Word| Byte
Decoder
[
. | ]
04 SEG 0! 3
0
TAG WO | [ w3
Cache line/index CAM RAM

1KB RAM = 64 lines x 4 words -
63V -

32

i SEG 0 select

RDATA[31:0]

Figure 4-1 4KB cache used for the instruction and data caches
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Each cache comprises four fully-associative 1KB segments that support single-cycle
reads, and either one or two-cycle writes depending on the sequentiality of the access.

Each cache segment consists of 64 Content Addressable Memory (CAM) rows that each
select one of 64 RAM four-word long lines. During a cache access, a segment is
selected and the access address is compared with the 64 TAGs in the CAM. If a match
occurs (or a hit), the matched line is enabled and the data can be accessed. If none of the
TAGs match (a miss), then external memory must be accessed, unless the access is a
buffered write, when the write buffer is used.

If a read access from a cachable memory region misses, new data is loaded into one of
the 64 row lines of the selected segment. This is an allocate on read-miss replacement
policy. Selection is performed by a randomly clocked target row counter.

Critical or frequently-accessed instructions or data can be locked into the cache by
restricting the range of the target counter. Locked lines cannot be replaced and remain
in the cache until they are unlocked or flushed.

The CAM allows 64 address TAGs to be stored for an address that selects a given
segment (64-way associativity). This reduces the chance of an address sequence in, for
example, a program loop that constantly selects the same segment, from replacing data
that is required again in a later iteration of the loop. The overhead for high associativity
is the requirement to store a larger TAG. In the case of the ARM940T, this is 26 bits per
line.

Figure 4-2 on page 4-3 shows how the 4KB ICache and 4KB DCache are addressed.

31 6 543210

Address TAG in CAM Seg |Word| SBZ

Figure 4-2 ARM940T Instruction/data cache addressing
The address bits are assigned as follows:
Bits 31:6 Select an address tag in CAM.
Bits 5:4 Selects one of the four cache segments.

Bits 3:2 Selects a word in the cache line.
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Two additional bits are used on each segment row line:

Valid bit This is set when the cache line has been written with valid data. Only a
valid line can return a hit during a CAM lookup. On reset, all the valid
bits are cleared.

Dirty bit This is associated with write operations in the DCache and is used to
indicate that a cache line contains data that differs from data stored at the
address in external memory. Data can only be marked dirty if it resides in
a writeback protection region.
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Caches and Write Buffer

The ARM940T has a 4KB ICache comprising four 64-way associative segments of 16
bytes per line per segment. The ICache uses the physical address generated by the
processor core. It uses a policy of allocate on read-miss and is always reloaded one
cache line (four words) at a time, through the external interface.

The ICache is always disabled on reset.

421 Enabling and disabling the ICache

You can enable the ICache by setting bit 12 of the CP15 control register. You must only
enable the cache if you have already enabled the protection unit, or if you enable them
simultaneously. When the ICache is enabled, a cachable read-miss causes lines to be
placed in the ICache.

You can enable the ICache and protection unit simultaneously with a single write to the
CP15 control register, although you must have programmed at least one protection
region before you enable the protection unit. You can lock critical or
frequently-accessed instructions into the ICache with a granularity of 64 bytes.

Note

Instructions in this lockdown region are not replaced and remain in the ICache although
they are not immune to being flushed.

4.2.2 ICache operation

When enabled, the ICache operation is also controlled by the Gated Cachable
instruction (GCi) bit stored in the protection unit. This selectively enables or disables
caching for different memory regions. The GCi bit affects ICache operation as follows:

. Successful cache read:

Data is returned to the core regardless of the state of the GCi bit.

o Unsuccessful cache read:

If the GCi bit is 1, a cachable code area and protection unit are enabled, and a
linefetch of four words is performed. The data is written into a randomly chosen
line in the ICache. If the GCi bit is 0, a single-word external access is performed
to fetch the requested instruction. The cache is not updated.

Locked down code is always found on ICache searches. Lines containing locked down
code cannot be selected for replacement during a linefetch.

ARM DDI 0144B

Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5



Caches and Write Buffer

4.2.3

You can disable the ICache by clearing bit 12 of the CP15 control register. This has the
effect of preventing all ICache look-ups and linefills, and forces all instruction fetches
to be performed by single external accesses.

ICache validity

The ARM940T does not support external memory snooping. Therefore, if
self-modifying code is written, the instructions in the ICache might become invalid.
Similarly, if the instruction protection regions are reprogrammed, code might exist in
the cache that should be in a noncachable region. In either of these cases, the ICache
must be flushed by the programmer.

You can flush the entire ICache by software in one operation, or you can flush it one
line at a time by writing to the CP15 cache operations register (register 7). The ICache
is automatically flushed during reset. The ICache never has to be cleaned because its
only source of data is from external memory. The processor only ever performs reads
from the ICache.

Flushing the entire cache

As shown in Table 2-19 on page 2-19, you can flush the entire ICache using an MCR
instruction. In this case, the contents of the ARM register transferred to CP15 should be
zero. The code segment shown below can be used. The use of r0 is arbitrary:

MOV ro,#0 ; Clear ro@
MCR p15,r@,c7,c5,0 ; Flush entire ICache

Flushing the entire cache also flushes any locked down code. If the ICache contains
locked down code, the programmer must flush lines individually, avoiding the lines
used for the locked down code.

Flushing a single cache line

Single cache lines can be flushed. To do this, the cache line must be specified in Rd. The
ARMO940T ICache comprises four segments, each with 64 lines, which means that both
the segment and line number index must be specified.

4-6
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The format of Rd for this operation is shown in Table 4-1 on page 4-7.

Table 4-1 CP15 register 7

Rd bit position Function
31:26 Index

25:6 Should be zero
5:4 Segment

3:0 Should be zero

For example, the following code sequence can be used to flush line 25 of segment 2 in
the ICache:

MOV ro,#0x64000000
ORR r0,r0,#0x20

Specify Tine 25

Specify cache segment 2,
ro=0x64000020

Flush the ICache Tine

MCR p15,0,r0,c7,c5,1

ARM DDI 0144B
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4.3

4.3.1

DCache

The ARM940T has a 4KB DCache comprising 256 lines of 16 bytes (four words),
arranged as four 64-way associative segments. The DCache uses the physical address
generated by the processor core. It uses an allocate on read-miss policy, and is always
reloaded a cache line (four words) at a time through the external interface.

The DCache supports both Write-Back (WB) and Write-Through (WT) modes. For data
stores that hit in the DCache, in WB mode the cache line is updated, and an additional
dirty bit associated with the cache line is set. This indicates that the internal version of
the data differs from that in the external memory. In WT mode, a store that hits in the
DCache causes the cache line to be updated but not marked as dirty, because the data
store is also written to the write buffer to keep the external memory consistent. In both
WB and WT modes, a store that misses in the cache is sent to the write buffer. When a
line fetch causes a cache line to be evicted from the DCache, the dirty bit for the victim
line is read and if the line contains valid and dirty data, it is written back to the write
buffer before the linefill replaces it.

The GCd bit and the GBd bit control the DCache behavior. For this reason the
protection unit must be enabled when the DCache is enabled.

Enabling and disabling the DCache

You can enable the DCache by writing to bit 2 of the CP15 control register. You must
only enable the cache if you have already enabled the protection unit, or if you enable
them simultaneously. You can enable the DCache and protection unit simultaneously
with a single write to the CP15 control register.

You can disable the DCache by clearing bit 2 of the CP15 control register.
The DCache is automatically disabled and flushed on reset.

When the DCache is disabled, DCache searches are prevented. This has the effect of

making all data accesses noncachable and forcing the ARM940T to perform external

accesses. The write buffer control is still decoded from the GBd and the GCd bit. The
GCd bit is forced to O (noncachable).

Note

When the caches are disabled their contents are preserved. This means that if a write to
an address that was held in the data cache occurs while the data cache is disabled, the
update does not affect the data cache. If the data cache is then switched back on, it still
holds the out of date version of the data, which appears valid. This results in
unrecoverable data corruption. To prevent this, you are recommended to always clean
and flush the data cache before you disable it

4-8
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4.3.2 Operation of the GCd bit and GBd bit

The GCd bit determines if data being read must be placed in the DCache and used for
subsequent reads. Typically, main memory is marked as cachable to reduce memory
access time and therefore increase system performance. It is usual to mark I/O space as
noncachable. For example, if a processor is polling a memory-mapped register in I/O
space, it is important that the processor is forced to read data direct from the external
peripheral, and not from a copy of initial data held in the DCache.

The GBd and GCd bits affect writes that both hit and miss in the DCache. For details of
the ways these bits are decoded to perform different types of writes, see The write buffer
on page 4-12.

4.3.3 DCache operation

When the DCache is enabled, it is searched when the processor performs a data load or
store. If the cache hits on a load, data is returned to the core regardless of the state of
the GCd bit. If the cache read misses, the GCd bit is examined:

J If the GCd bit is 1, the cachable data area and protection unit are enabled. A
linefill of four words is performed, and the data is written into a randomly chosen
line in the DCache.

. If the GCd bit is 0, a single or multiple external access is performed and the cache
is not updated.

Stores that hit in the cache always update the cache line, regardless of the GCd bit.
Stores that miss the cache use the GCd and GBd bits to determine if the write is buffered
(see The write buffer on page 4-12). A write miss is not loaded into the cache as a result
of that miss.

Noncachable load multiples and NonCachable NonBufferable (NCNB) store multiples
are broken up on 4KB boundaries (the minimum protection region size), allowing a
protection check to be performed in case the Load Multiple (LDM) or Store Multiple (STM)
crosses into a region with different protection properties.

DCache lockdown is supported with 16-word granularity. Data that is locked down
always hits on DCache searches, and lines containing locked down data cannot be
selected for replacement during a linefill.

Back-to-back stores from adjacent store instructions to the same segment within the
DCache cause a cache stall, requiring two cycles for the cache write. A burst of stores
from a single store multiple instruction does not cause stalls and allows one write per
cycle to be performed. Single back-to-back stores to different segments are also
performed without a stall, allowing one write per cycle.

ARM DDI 0144B
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4.3.4 DCache validity

The ARM940T does not support memory translation so the data in the DCache can
always be considered valid within the context of the ARM940T. However, if external
memory translation is used, and the mappings are changed, the DCache data is no
longer consistent with external memory, and the DCache must be flushed by the
programmer.

The ARM940T does not support external memory snooping. Any shared data memory
space therefore, must not be cachable. Additionally, if the data protection regions are
reprogrammed, data already in the cache might now be in a noncachable region, and the
cache must be flushed.

4.3.5 DCache clean and flush

The DCache has flexible cleaning and flushing utilities that allow the following
operations:

. The whole DCache can be invalidated (flush DCache) in one operation without
writing back dirty data.

. Individual lines can be invalidated without writing back any dirty data (flush
DCache single entry).
. Cleaning can be performed on a line-by-line basis. The data is only written back

through the write buffer when a dirty line is encountered, and the cleaned line
remains in the cache (clean DCache single entry).

. Individual lines can be cleaned and flushed in one operation (clean and flush
DCache single entry).

Note

Flushing the entire DCache also flushes any locked down code, without resetting the
victim counter range.

The cleaning and flushing utilities are performed using CP15 register 7, in a similar
manner to that described in /Cache on page 4-5 for ICache. The format of Rd
transferred to CP15 is as shown in Figure 4-2 on page 4-3 for all register 7 operations.

It is usual for the cache to be cleaned before being flushed, so that external memory is
updated with any dirty data. Example 4-1 on page 4-11 shows how the entire cache can
be cleaned and flushed:

4-10
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Example 4-1 Clean and flush the entire DCache

MOV rl,#0
outer_Toop
MOV ro,#0
inner_loop
ORR r2,rl,r0
MCR p15,0,r2,c7,cl4,2
ADD r@,r0,#0x10
CMP rQ,#0x40
BNE inner_loop
ADD rl1,rl,#0x04000000
CMP rl1,#0x0
BNE outer_Toop

Initialize line counter, rl
Initialize segment counter, r@

Make segment and Tine address
Clean and flush that line
Increment segment counter
Complete all 4 segments?

If not, branch back to inner_Toop
Increment 1ine counter

Complete all Tines?

If not, branch back to outer_Toop

ARM DDI 0144B
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4.4 The write buffer

The ARM940T provides a write buffer to improve system performance. The write
buffer can buffer up to eight words of data at up to four nonsequential addresses. The
write buffer is used for memory that is marked as one of the following:

. NCB
. WB
. WT.

Write buffer behavior is controlled by the protection region attributes of the store being
performed and the DCache and control bits (GCd and GBd) from the protection unit.
These control bits are generated as follows:

GCd bit The GCd bit is generated from the cachable attribute of the
protection region AND the DCache enable AND the protection
unit enable.

GBd bit The GBd bit is generated from the bufferable attribute for the
protection region AND the protection unit enable.

All accesses are initially noncachable and nonbufferable until the protection unit has
been programmed and enabled. It follows that the write buffer cannot be used while the
protection unit is disabled.

On reset, the buffer is flushed.

441 Write buffer operation

The write buffer is used when the DCache hits and/or misses, depending on the mode
of operation. Table 4-2 on page 4-12 shows how the GCd and GBd bits control the
behavior of the write buffer.

Table 4-2 Data write modes

GCd GBd Access mode

0 0 NCNB (Noncachable, nonbufferable).

Reads and writes are not cached. They always perform accesses on the AMBA ASB
interface.

Writes are not buffered. The CPU halts until the write is completed on the AMBA
ASB interface.

Reads and writes can be externally aborted.
Cache hits never occur under normal operation.
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Table 4-2 Data write modes (continued)

GCd GBd Access mode

0 1 NCB (Noncachable, bufferable).
Reads and writes are not cached. They always perform accesses on the AMBA ASB
interface.
Writes are placed in the write buffer and appear on the AMBA ASB interface. The
CPU continues execution as soon as the write is placed in the write buffer.
Reads can be externally aborted. Writes cannot be externally aborted.
Cache hits never occur under normal operation. If the DCache hits for this type of
access, there has been a programming error. This error is treated like a write-through
in that the DCache line is updated and the data is buffered.
Swap instruction operations on data in an NCB region are made to perform NCNB
type accesses and are not buffered.

1 0 WT (Write-through).

Reads that hit in the cache read the data from the cache and do not perform an access
on the AMBA ASB interface.
Reads that miss in the cache cause a linefill.

Writes that hit in the cache update the cache but do not mark the cache line as dirty.

All writes are placed in the write buffer and appear on the AMBA ASB interface.
The CPU continues execution as soon as the write is placed in the write buffer.

Reads and writes cannot be externally aborted.

1 1 WB (Write-back).

Reads that hit in the cache read the data from the cache and do not perform an access
on the AMBA ASB interface.
Reads that miss in the cache cause a linefill.

Writes that hit in the cache update the cache and mark the appropriate half of the
cache line as dirty. They do not cause an AMBA ASB interface access.

Writes that miss in the cache are placed in the write buffer and appear on the AMBA
ASB interface. The CPU continues execution as soon as the write is placed in the
write buffer.

Cache write-backs are buffered.
Reads, writes, and write-backs cannot be externally aborted.

4.4.2 Enabling and disabling the write buffer

You cannot directly enable or disable the write buffer. However, setting the properties
of a memory region to be NCNB or disabling the protection unit prevents the write
buffer from being used.
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443

Buffered writes

ARMITDMI
DD[31:0]

ARMITDMI
DA[31:0]

The write buffer is non-merging, so even if two separate buffered external memory
writes are performed that are sequentially related, they still take two address locations
within the buffer, and are treated as nonsequential accesses. This is also true for
non-word writes to the same word address. In this instance two address and two data
locations are used in the write buffer.

The write buffer splits any accesses caused by an STM instruction on 4-word boundaries.
Each set of words uses one address location in the write buffer. This mechanism allows
privileges to be rechecked in the case where the access crosses a memory region and the
memory region privileges might change, therefore protecting any regions of reserved
memory.

Figure 4-3 on page 4-14 shows the write buffer behavior for the following code
sequence:

Mov rll, #0x1l0c ; set pointer
MoV ri2, #0x20c ; set pointer
STMIA  r11, {r0-r5} ; store 6 registers
STMIA  r12, {r6-rl0} ; store 5 registers

Data register

v

mptyf R6 | R5 | R4 | R3 | R2 [ R1 | RO > BD[31:0]
y A

Address BA[31:0]

v

0x20C | 0x120 | 0x110 | ox1oC >
Address register

incrementer

Figure 4-3 Write buffer allocation

In this code, a pointer has been set to address 0x10C. A store multiple of six registers is
then executed. This instruction uses six data registers, and three address registers within
the write buffer. Another store to address 0x20c is then executed using the remaining
address location. The internal ARM9TDMI is then stalled until an address register
becomes free.

Note

When a cache line is evicted from the DCache to the write buffer, it only uses one
address register, because cache lines are aligned to 4-word boundaries.
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Drain write buffer

You can drain the write buffer under software control, so that additional instructions are
not executed until the write buffer is drained, using the following methods:

. store to nonbufferable memory
. load from noncachable memory
. MCR drain write buffer:

MCR p15, @, Rd, c7, cl0, 4
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4.5 Cache lockdown

To provide predictable code behavior in embedded systems, a mechanism for locking
code and data into the ICache and DCache respectively is provided. For example, this
feature can be used to hold high-priority interrupt routines where there is a hard
real-time constraint, or to hold the coefficients of a DSP filter routine to reduce external
bus traffic.

Locking down a region of the ICache or DCache is achieved by executing a short
software routine, taking note of these requirements:

. the program must be held in a noncachable area of memory

. the cache must be enabled and interrupts must be disabled

. software must ensure that the code or data to be locked down is not already in the
cache

o if the caches have been used after the last reset, the software must ensure that the

cache in question is cleaned, if appropriate, and then flushed.

Lockdown in the DCache is achieved through use of CP15 register 9. ICache lockdown
uses both CP15 registers 7 and 9.

As described in Cache architecture on page 4-2, the ARM940T ICache and DCache
each comprise four segments. Each cache segment comprises 64 lines of four words.
Each segment is 1KB in size. Lockdown can be performed with a granularity of one line
across each of the four segments. The smallest space that can be locked down is 16
words. Lockdown starts at line zero, and can continue until up to 63 of the 64 lines are
locked.

4.5.1 Locking down the caches

The procedures for locking down a line in the ICache and in the DCache are slightly
different. In both cases:

1. The cache must be put into lockdown mode by programming register 9.
2. A linefill must be forced.
3. The corresponding data must be locked in the cache.

If more than one line is to be locked, a software loop must repeat this procedure.

4-16
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Data cache lockdown

For the DCache, the procedure is as follows:

1.
2.

6.
7.

Write to CP15 register 9, setting DL=1 and Dindex=0.
Initialize the pointer to the first of the 16 words to be locked.

Execute an LDR from that location. This forces a linefill from that location, and the
resulting four words are captured by the cache.

Increment the pointer by 16 to select cache segment 1.

Execute an LDR from that location. The resulting linefill is captured in cache
segment 2.

Repeat steps 1 to 5 for cache segments 3 and 4.

Write to CP15 register 9, setting DL=0 and Dindex=1.

If there is more data to lockdown, at the final step, step 7, the DL bit must be left HIGH,
Dindex incremented by 1 line, and the process repeated. The DL bit must only be set
LOW when all the lockdown data has been loaded.

Instruction cache lockdown

For the ICache, this procedure is as follows:

1.
2.

bl

6.
7.

Write to CP15 register 9, setting IL=1 and Iindex=0.

Initialize the pointer to the first of the sixteen words to lockdown.
Force a linefill from that location by writing to CP15 register 7.
Increment the pointer by 16 to select cache segment 1.

Force a linefill from that location by writing to CP15 register 7. The resulting
linefill is captured in segment 1.

Repeat for cache segments 3 and 4.

Write to CP15 register 9, setting IL=0 and Iindex=1.

If there is more data to lockdown, at the final step 7, the IL bit must be left HIGH, lindex
incremented by 1 line, and the process repeated. The IL bit must be set LOW when all
the lockdown data has been loaded.

ARM DDI 0144B
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The only significant difference between the sequence of operations for the Dcache and
ICache is that an MCR instruction must be used to force the linefill in the ICache, instead
of an LDR. This is because of the Harvard nature of the processor. During the MCR, the
value set up in the pointer register is output on the instruction address bus, and a
memory access is forced. Because this misses in the cache, as a result of earlier flushing,
a linefill occurs.

The rest of the sequence of operations is exactly the same as for DCache lockdown.
The MCR to perform the ICache lookup is a CP15 register 7 operation:

MCR p15,0,Rd,c7,c13,1

A subroutine used to lockdown code in the instruction cache is given in Example 4-2

on page 4-18.

Example 4-2 ICache lockdown subroutine

; Subroutine lock_i_cache
; rl contains start address of code to be Tocked down

; The subroutine performs a Tock-down of instructions in the
;I Cache. It first reads the current Tock_down index and then
; Tlocks down the number of lines requested.

; Note that this subroutine must be located in a noncachable
; region of memory to work, or these instructions

; themselves will be Tocked into the cache. Interrupts must
; also be disabled.

; The subroutine must be called using the ‘BL’ instruction.

; This subroutine returns the next free cache 1line number in
; r@, or @ in r@ if an error occurs.

Tock_i_cache

STMFD r13!, {rl-r3} ; save corrupted registers

BIC rl1, rl, #0x3f ; align address to cache Tine

MRC p15, @, r3, c9, c0, 1 ; get current instruction cache index
AND r2, r2, #0x3f ; mask off unwanted bits

ADD r3, r2, ro ; Check to see if current index

CMP r3, #0x3f ; plus Tine count is greater than 63

; If so, branch to error as
; more Tines are being locked down
; than permitted
BGT error
ORR r2, r2, #0x80000000 ; set lock bit, r2 contains the cache
; Tine number to lockdown

4-18
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Tock_Toop

MCR
MCR

ADD
MCR
ADD
MCR

ADD
MCR

ADD
ADD

pl5, 0,
pl5, 0,

rl, rl,
pl5, 0,
rl, rl,
pl5, 0,

rl, rl,
pl5, 0,

rl, R1,
r2, r2,

r2,
ri,

#16
ri,
#16
ri,

#16
ri,

#16

#0x1

c9,
c7,

c7,

c7,

c7,

SUBS r@, r@, #0x1
BNE Tock_loop
BIC r@, r2, #0x830000000

0, 1
cl3, 1

c13, 1

13, 1

cl3, 1

MCR p15, 0, ro, c9, c0, 1

LDMFD r13!, {rl-r3}

MOV

error
LDR

LDMFD r13!, {rl-r3}

MOV

PC, LR

rg, =0

PC, LR

Caches and Write Buffer

write lockdown register

; force Tine fetch from external

memory
add 4 words to address

force 1ine fetch from external memory
add 4 words to address

force 1line fetch from external
memory

add 4 words to address

force 1ine fetch from external
memory

add 4 words to address

increment cache Tline in Tockdown
register

decrement Tline count & set flags
if r@! = 0 then branch round
clear Tock bit in Tockdown
register

restrict victim counter to Tines
rg to 63

restore corrupted registers and
return

ro contains the first free cache
Tine number

make r@ = @ to indicate error
restore corrupted registers and
return

ARM DDI 0144B
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Chapter 5
Clock Modes

This chapter describes the different clock modes available on the ARM940T. It contains
the following sections:

. About ARM940T clocking on page 5-2
. FastBus mode on page 5-3

. Synchronous mode on page 5-4

. Asynchronous mode on page 5-6.
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5.1 About ARM940T clocking

The ARM940T has two functional clock inputs, BCLK and FCLK. Internally, the
ARMO940T is clocked by GCLK. You can see this on the CPCLK output as shown in
Figure 5-1 on page 5-2. GCLK can be sourced from either BCLK or FCLK depending
on the clocking mode, selected using nF bit and iA bit in CP15 register 1 (see Register
1, control register on page 2-11), and external memory access. The three clocking
modes are:

. FastBus mode on page 5-3

. Synchronous mode on page 5-4

. Asynchronous mode on page 5-6.

The ARM940T is a static design and you can stop both clocks indefinitely without loss
of state. Figure 5-1 on page 5-2 shows that some of the ARM940T macrocell signals
have timing specified with relation to GCLK. This can be either FCLK or BCLK
depending on the clocking mode.

BCLK CPCLK  ARM940T l/O
Y
ASB AMBA > GCLK
P Bus —— Rest of ARM940T
Interface >
A
nF,iA
FCLK

Figure 5-1 ARM940T clocking

5-2
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5.2 FastBus mode

In FastBus mode GCLK is sourced from BCLK.

In this mode of operation the BCLK input is used to control:
. the internal ARM9TDMI

. cache operations

. the AMBA bus interface.

This mode is typically used in systems with high-speed memory.

The FCLK input is ignored. This means that BCLK is used to control the AMBA ASB
interface and the internal ARM940T processor core.

On reset, the ARM940T is put into FastBus mode and operates using BCLK. A typical
use for FastBus mode is to execute startup code while configuring a PLL under software
control to produce FCLK at a higher frequency. When the PLL has stabilized and
locked, you can switch the ARM940T to synchronous or asynchronous clocking using
FCLK for normal operation.

ARM DDI 0144B
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5.3 Synchronous mode

This mode is typically used in systems with low-speed memory. In this mode both the
BCLK and FCLK inputs are used. In this mode of operation GCLK is sourced from
BCLK or FCLK. There are three restrictions that apply to BCLK and FCLK:

. FCLK must have a higher frequency than BCLK
. FCLK must be an integer multiple of the BCLK frequency
. FCLK must be HIGH whenever there is a BCLK transition.

BCLK is used to control the AMBA ASB interface, and FCLK is used to control the
internal ARM940T processor core and any cache operations. When an external memory
access is required the core either continues to clock using FCLK or is switched to
BCLK, as shown in Table 5-1 on page 5-4. This is the same as for asynchronous mode.

Table 5-1 Clock selection for external memory accesses

External memory access operation GCLK =

Buffered write FCLK

Nonbuffered write BCLK

Cachable read (linefill), noncachable read BCLK

The penalty in switching from FCLK to BCLK and from BCLK to FCLK is
symmetric, from zero to one phase of the clock to which the core is re-synchronizing.
That is, switching from FCLK to BCLK has a penalty of between zero and one BCLK
phase, and switching back from BCLK to FCLK has a penalty of between zero and one
FCLK phase.

Figure 5-2 on page 5-5 shows an example zero BCLK phase delay when switching
from FCLK to BCLK in synchronous mode.

5-4
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FnB

Figure 5-2 Synchronous mode FCLK to BCLK zero phase delay

Figure 5-3 on page 5-5 shows an example one BCLK phase delay when switching from
FCLK to BCLK in synchronous mode.

FnB

Figure 5-3 Synchronous mode FCLK to BCLK one phase delay
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5.4 Asynchronous mode

This mode is typically used in systems with low-speed memory. In this mode of
operation GCLK is sourced from BCLK or FCLK. FCLK and BCLK can be
completely asynchronous to one another, with the one restriction that FCLK must have
a higher frequency than BCLK.

BCLK is used to control the AMBA ASB interface, and FCLK is used to control the
internal ARM940T processor core and any cache operations. When an external memory
access is required the core either continues to clock using FCLK or is switched to
BCLK. This is the same as for synchronous mode.

The penalty in switching from FCLK to BCLK and from BCLK to FCLK is
symmetric, from zero to one cycle of the clock to which the core is resynchronizing.
That is, switching from FCLK to BCLK has a penalty of between zero and one BCLK
cycle, and switching back from BCLK to FCLK has a penalty of between zero and one
FCLK cycle.

Figure 5-4 on page 5-6 shows an example zero BCLK cycle delay when switching from
FCLK to BCLK in asynchronous mode.

FnB

Figure 5-4 Asynchronous mode FCLK to BCLK zero cycle delay

Figure 5-5 on page 5-7 shows an example one BCLK cycle delay when switching from
FCLK to BCLK in asynchronous mode.
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AR A

Figure 5-5 Asynchronous mode FCLK to BCLK one cycle delay
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Chapter 6
Bus Interface Unit

The ARM940T has an Advanced Microprocessor Bus Architecture (AMBA) interface.
This chapter describes the operation of this interface. It contains the following sections:

. ASB transfers on page 6-3

. Noncached LDM crossing a 4KB boundary on page 6-7
. NCNB STM crossing a 4KB boundary on page 6-10

. External aborts on page 6-17

. Memory access order on page 6-18.

For more details of AMBA, see the AMBA Specification.
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6.1 About the ARM940T bus interface

The AMBA Specification (REV 2.0) defines two high-performance system buses:
. the Advanced High-performance Bus (AHB)
o the Advanced System Bus (ASB).

The ARM940T has been designed with a bidirectional ASB interface, plus the
necessary extra control signals to enable efficient implementation of both the AHB and
ASB interface. The ARM940T implements a fully-compliant ASB interface, either as
an ASB bus master, or as a slave for production test. With the addition of a synthesizable
wrapper, the ARM940T implements a full AHB interface, either as an AHB bus master,
or as a slave for production test.

In this section the following abbreviations are used:

NCNB Noncachable and nonbufferable
NCB Noncachable and bufferable
NC Noncachable

WT Cachable and write-through
WB Cachable and write-back.
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6.2 ASB transfers

The AMBA ASB specification describes three transfer types that are encoded in
BTRANI[1:0]. Table 6-1 on page 6-3 shows these transfer types.

Table 6-1 AMBA ASB transfer types

BTRAN[1:0] Transfer type Description

00 Address-only Used when no data movement is required. The three
(A-TRAN) main uses for address-only transfers are:
. for IDLE cycles
. for bus handover cycles
. for speculative address decoding without

committing to a data transfer.

01 - Reserved.
10 Nonsequential Used for single transfers or the first transfer of a burst.
(N-TRAN) The address of the transfer is unrelated to the previous
bus access.
11 Sequential Used for successive transfers in burst. The address of a
(S-TRAN) SEQUENTIAL transfer is always related to the

previous transfer.

The output signals ASTB, BURST[1:0], NCMAHB, and BUFFSTRAHB have been
added to the ARM940T bus interface. These are necessary to support the AMBA AHB
wrapper, but can also be used to provide optimized accesses in an AMBA ASB system:

ASTB This signal distinguishes between an IDLE cycle and the A-TRAN cycle
of a nonsequential transfer. It is asserted with the same timing as
AOUT[31:0], changing in phase 2. Usually a memory controller only
commits to a transfer when it sees the S-TRAN cycle, perhaps only
decoding the address during the A-TRAN cycle. ASTB is asserted in the
preceding A-TRAN cycle, indicating that the current A-TRAN is
followed by an S-TRAN, providing AGNT is HIGH on the next rising
edge of BCLK.

BURST[1:0] Burst transfers are used for cache linefills, and for buffered writes caused
by cache lines that have been evicted or cleaned. In each case, a transfer
of four words takes place.
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NCMAHB

These signals indicate a sequential burst, as shown in Table 6-2 on
page 6-4.

Table 6-2 Burst transfers

BURST[1:0] Transfer

00 No sequential information available (default)
01 Reserved
10 Current access is part of a four-word transfer
11 Reserved

The BURST][1:0] signals change in phase 2 and are asserted in the phase
when ASTB is asserted. BURST[1:0] then remain unchanged until the
next transfer.

BURST][1:0] only indicates a four-word transfer when either a cache
linefill takes place, or when a dirty line within a write back protection
region has been evicted. In all other circumstances, BURST[1:0]
indicates single word transfers. This is true for LDM and STM instructions,
regardless of the number of registers being transferred.

BURST][1:0] can be factored into both the arbiter and decoder of the
AMBA system, and can be used to prevent a new bus master taking
control of the ASB, giving a more efficient transfer.

This signal indicates for noncached load multiples and store multiples
whether more words are requested as part of the current burst transfer.
When HIGH this indicates more words are requested. When LOW, on the
last S-TRAN of the burst, this indicates that the current transfer is the last
word of the burst. It is asserted in phase 2 and is only valid if AGNT
remains asserted throughout the transfer.

BUFFSTRAHB

This signal indicates when the NCMAHB signal is set but not valid. This
can happen when some buffered stores are occuring.

6-4
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The following timing diagrams show the types of transfer that can be initiated by the
ARM940T rev1:

. Example LDR from address Ox108 on page 6-6

. Example LDM of 5 words from Ox108 on page 6-7
. Example nonbuffered STR on page 6-9

. Example STM on page 6-10

. Example linefill from 0x100 on page 6-12

. Cache linefill and write back on page 6-13

. Example 4-word data eviction on page 6-14

. Example swap operation on page 6-15.

The AREQ and AGNT signals and the responses from the ASB slave are not shown in
these diagrams. It is assumed that AGNT is asserted and the ASB slave response is
DONE.

Different slave responses and bus master handover are covered in the AMBA
Specification (Rev 2.0). It is assumed that you are using the ARM940T macrocell within
a multi-master ASB system, so unidirectional ASB timing diagrams are not provided.

6.2.1 Noncached LDRs and noncached fetches

The only difference between these noncached LDRs and noncached fetches is the
BPROT][1:0] information, as shown in Table 6-3 on page 6-5.

Table 6-3 Noncached LDR and fetch

BPROT[0] Transfer

0 Opcode fetch

1 Data access

The address is word-aligned for an LDR and fetch. An example LDR is shown in
Figure 6-1 on page 6-6.

ARM DDI 0144B
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BCLK [ [

BA[31:0] | 0x108 |
BD[31:0] [ Word 1 )—
BWRITE [

T ey ) )

JHEL

BURST[1:0] 00 = No sequential information available
ASTB )
NCMAHB
BUFFSTRAHB

Figure 6-1 Example LDR from address 0x108

6.2.2 Noncached LDM
For a noncached LDM the BURST[1:0] information is always:
00 No sequential information available.

The NCMAHB signal gives one cycle advance warning of the end of the burst transfer
if AGNT remains asserted throughout the burst transfer. The address is word-aligned.
An example LDM is shown in Figure 6-2 on page 6-7.
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-

S I T O T O O O O O

BA[31:0] 0x108 X 04104 X 04108 X 0x10C X 0x110 X
-GG
BWRITE ] /7 B
srantey —( I | | -
A-TRA| S-TRA| S-TRAN S-TRA S-TRAN S-TRA A-TRAN
BURST[1;0] o 00 = No sequential information available
ASTB [ \
NCMAHB / \

BUFFSTRAHB

Figure 6-2 Example LDM of 5 words from 0x108

6.2.3 Noncached LDM crossing a 4KB boundary

An LDM instruction can transfer all 16 general-purpose registers in one instruction. If this
instruction is executed, and the address being accessed lies in a noncachable region of
memory, a 16-word sequential load takes place on the AMBA interface. If the access
crosses a 4KB boundary, it is split. This allows the region properties to be checked in
the case where there is a transition between memory protection regions. Figure 6-3 on
page 6-8 shows an LDM operation crossing a 4KB boundary.
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BCLK /

BURST[1:0]

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWRITE

WAV ENENEWENE

:

3
I

= Word transfer

00 = WQqrd transfer XX [

S-TR|

AN, S-TRAN,; A-TRAN A-TRAN A-TRAN A-TRAN; S-TRAN S-TRAN S-TRAN; S-TRE\1>>

0x09998 X 0x0999C Xi:X 0x10000 X 0x10004 X 0x10008

I

| WA

Figure 6-3 LDM operation crossing a 4KB boundary

Note

In Figure 6-3 the BURST[1:0] bus is only indicating word transfers during the LDM
operation.

As the LDM transfer takes place on the ASB, the time taken to complete the operation is
dependent on the BCLK frequency, any bus arbitration, and the speed of the slave being
accessed. An LDM instruction must therefore be completed before an interrupt can be
serviced.

6.2.4 Buffered and nonbuffered STR

For a buffered or nonbuffered STR the BURST[1:0] information is:
10 Current access is part of a four-word transfer
00 No sequential information available.

The address is word-aligned. An example STR is shown in Figure 6-4 on page 6-9.

6-8
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BCLK

BA[31:0]

BD[31:0]

BWRITE

BTRAN[1:0]

BURST[1:0]

ASTB

NCMAHB

BUFFSTRAHB

6.2.5 Buffered and nonbuffered STM

For a buffered or nonbuffered STM the BURST[1:0] information is:

Bus Interface Unit

108

A-TRAN

00 = No sequential infq|

rmation available

S

Figure 6-4 Example nonbuffered STR

10 Current access is part of a four-word transfer

00 No sequential information available.

The address is word aligned. An example STM is shown in Figure 6-5 on page 6-10.
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S R U A T A O O L O B O A O

BA[31:0] 0x108 X 0x10C X 0x110 X ox114 X 0x118 X
I A A A A
BWRITE ] \—_

S Y W Y Y e Y o A
BTRA"“-‘“{/\/\l\_\/\/\F

A-TRA| S-TRA| S-TRAN S-TRAN S-TRA S-TRA| A-TRA

BURST[1:0] 00 = No sequential information available

ASTB ~

NCMAHB / \

BUFFSTRAHB L
(buffered) —

BUFFSTRAHB
(nonbuffered)

Figure 6-5 Example STM

6.2.6 NCNB STM crossing a 4KB boundary

An STMinstruction can transfer all 16 general-purpose registers in one instruction. If this
instruction is executed, and the address being accessed lies in an NCNB region of
memory, a 16-word sequential write takes place on the AMBA interface. If the access
crosses a 4KB boundary, the access is split. This allows the region properties to be
checked in the case where there is a transition between memory regions. Figure 6-6 on
page 6-11 show an STM operation crossing a 4KB boundary.

6-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



BCLK /

BURST[1:0]

BTRAN[1:0]

BA[31:0]

BD[31:0]

BWRITE

Bus Interface Unit

3

= Word transfer

00 = Wqrd transfer XX [«

S-TR|

AN, S-TRAN, A-TRAN A-TRAN A-TRAN] A-TRAN; S-TRAN; S-TRAN,; S-TRAN| S-TR%

—

0x3998 X 0x399C Xi:X 0x4000 X 0x4004 X 0x4008

N

Figure 6-6 STM operation crossing a 4KB boundary

Note

In Figure 6-6 on page 6-11 BURST[1:0] bus is only indicating word transfers during
the STM operation.

6.2.7 Cached LDR, cached LDM, and cached fetch

A cached LDR or LDM, and a cached fetch, are equivalent to a linefill operation. The
BURST][1:0] information is always:

10 4 words.

The address is word-aligned and increases from the lowest address. The lowest five bits
always increase from 0x00 to 0x1C. An example linefill is shown in Figure 6-7 on
page 6-12.

ARM DDI 0144B
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BCLK

BA[31:0]

BD[31:0]

BWRITE

BTRAN[1:0]

BURST[1:0]

ASTB

NCMAHB
BUFFSTRAHB
(buffered)

BUFFSTRAHB
(nonbuffered)

0x100

A-TRA|

N S-TRA

10 = 4 words

Figure 6-7 Example linefill from 0x100

Figure 6-8 on page 6-13 shows a cache linefill followed by a buffered write where a
cache line has been evicted and is being written back.
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se [ [

-

BURST[1:0]

BTRAN[1:0] A-TRAN] S-TRHAN s-m@—(s-Em A-TRAN) A-TRAN S-TRAN S-TRAN s-m@»

1

10 = 4|word transfer X 10 = 4 word transfer

I (50 (0 (R (B (=8
) ENE

BWRITE \

Figure 6-8 Cache linefill and write back

Note

An evicted cache line is only written back to main memory from the DCache when a
protection region is marked as a write back area, and the dirty bit of the line has been set.

Cache linefills are performed by reading four words of data aligned to a four-word
boundary. The word of data aligned onto the four-word boundary is always fetched first.
The ARM940T supports streaming, so when the addressed word is fetched, it is
transferred to the cache and to the ARM9TDMI simultaneously. If the next access is
sequential, subsequent words can also be streamed to the ARM9TDMI.

6.2.8 Dirty data eviction, write-back of 4 words

Dirty data is evicted from a cache line as all four words of the cache line. The address
is word-aligned and increases from the lowest address. BURST[1:0] = 10. The lowest
five bits of the address are 0x00 to @x1C. Figure 6-9 on page 6-14 shows an example
four-word dirty data eviction of a cache line.
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BCLK

BA[31:0]

BD[31:0]

BWRITE

BTRAN[1:0]

BURST[1:0]

ASTB

NCMAHB
BUFFSTRAHB
(buffered)

BUFFSTRAHB
(nonbuffered)

6.29 Swap

The Swap (SWP) operation is implemented as a single read transfer followed by a single
write transfer. The BLOK signal is asserted so that the write transfer is locked to the

0x110 X 0X114 X 0X118 X 0x11C X
1 X 2 X 3 4
L
-
A-TRAN S-TRA S-TRA S-TRAN S-TRAN A-TRAN
o] 10 = 4 words

Figure 6-9 Example 4-word data eviction

preceding read transfer. This must be used by the arbiter to ensure that no other bus

master is given access to the bus between the read and write transfers. An example swap

operation is shown in Figure 6-10 on page 6-15.
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BCLK

BA[31:0]

BD[31:0]

BWRITE

BTRAN[1:0]

BLOK

BURST[1:0]

ASTB

NCMAHB

AREQ

AGNT

BUFFSTRAHB

Bus Interface Unit

AL
|
/ -
By Sy Sy Ny
/ |

B

Figure 6-10 Example swap operation
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When a SWP instruction is executed on the ARM940T, the behavior is dependent on the
memory region being accessed, and it is up to the programmer to ensure correct
operation.

Typically for multi-master operations, the SWP instruction is used for passing
semaphores between the masters. For this type of operation, the semaphore must be
stored in an NCNB or NCB region of memory. When a SWP instruction is executed, any
cache linefills complete and the write buffer drains before the SWP instruction memory
accesses take place. During the SWP access, the BLOK signal goes HIGH to indicate that
the two memory accesses are indivisible.

For SWP instructions that access an NCB region of memory, any cache linefills complete,
and the write buffer drains before the read takes place. During the read, BLOK is driven
HIGH. The write operation then takes place as an unbuffered write. This is to allow
external aborts to be taken.

When a SWP instruction accesses a cachable region of memory, the access is protected as
a normal data access. The BLOK signal remains LOW throughout this operation.

If a region of memory is changed from being cachable to noncachable and the cache is
not flushed, it is possible for a cache hit to occur for the read access of the SWP
instruction. This is a programming error that must be avoided.

6.2.10 AMBA ASB slave transfers

You can test the ARM940T as an individual module within an AMBA system,
responding only to transfers from the AMBA ASB. In this mode of operation the
ARMO940T is never granted the ASB as a bus master, and responds as an ASB slave,
detecting the assertion of DSEL. This is described in detail in the AMBA Specification
(REV 2.0).

6-16
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6.3 External aborts

External aborts are ignored for buffered write operations or for cache linefills. In all
other cases, the external abort causes the abort exception to be taken.

ARM DDI 0144B
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6.4 Memory access order

If a simultaneous data access and instruction fetch both cause cache misses, the data
access takes precedence and is completed first. Typically, instructions tend to require
frequent sequential accesses and data requires infrequent nonsequential accesses. This
type of behavior results in more efficient ASB usage, and improves the chances of
streaming linefill words to the ARM9TDMI core.

Figure 6-11 on page 6-18 shows how misses in both the ICache and DCache result in
external accesses, with the data access taking place first, followed by the instruction
fetch.

BCLK

-

BTRAN[1:0] A-TRHAN A-TRAN A-TRAN A»TPH

AN, S-TRAN A-TRAN

-

BROT[1:0]

11 5 Data operation

BA[31:0] 0x1168 (x4098C

L L

:X 10 = Opcode fetch

= 7=

BD[31:0]

IATA

e

[/

o

BWRITE

——

Figure 6-11 Simultaneous cache misses
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Chapter 7

Coprocessor Interface

This chapter describes the ARM940T coprocessor interface. It contains the following
sections:

About the coprocessor interface on page 7-2
LDC or STC on page 7-5

MCR/MRC on page 7-9

Interlocked MCR on page 7-11

CDP on page 7-13

Privileged instructions on page 7-15
Busy-waiting and interrupts on page 7-17.
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7.1 About the coprocessor interface

The ARM940T coprocessor interface allows you to attach specially designed
coprocessor hardware to the ARM940T. Uses include:

. attachment of accelerators for floating point math
. DSP

. 3-D graphics

. encryption

. decryption.

The ARM instruction set supports the connection of up to 16 coprocessors, numbered
0 to 15, to an ARM processor.

7.1.1 User-assignable coprocessor numbers

The ARM940T contains two internal coprocessors:
. CP14 for debug control
D CP15 for cache, protection unit, and clocking mode control.

This means that external coprocessors cannot be assigned to coprocessor numbers 15 or
14. Other coprocessor numbers, allocated by ARM for internal usage, are listed in
Table 7-1 on page 7-2.

Table 7-1 Coprocessor availability

:gr:?:ressor Allocation

15 System control
14 Debug controller
13:8 Reserved

7:4 Available to users
3:0 Reserved

The register map of CP15 is described in CP15 register map summary on page 2-5. The
functionality of CP14 is described in Debug communications channel on page 8-48.
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7.1.2 External coprocessors

Coprocessors determine the instructions that they must execute by using a pipeline
follower in the coprocessor. As each instruction arrives from memory, it enters both the
ARM pipeline and the coprocessor pipeline. To avoid a critical path for the instruction
being latched by the coprocessor, the coprocessor pipeline must operate one clock phase
behind the ARM940T pipeline. The ARM940T then informs the coprocessor when
instructions move from Decode into Execute, and if the instruction has to be executed.

To enable coprocessors to continue execution of coprocessor data operations while the
ARMO940T pipeline is stalled (for example, waiting for a cache linefill to occur), the
coprocessor must monitor a clock CPCLK, and a clock stall signal nCPWAIT. If
nCPWAIT is LOW on the rising edge of CPCLK, the ARM940T pipeline is stalled
and the coprocessor pipeline must not advance.

Figure 7-1 on page 7-3 indicates the timing for these signals and when the coprocessor
pipeline can advance its state. In this diagram, Coproc clock shows the result of ORing
CPCLK with the inverse of nCPWAIT. This is one technique for generating a clock
that reflects the ARM940T pipeline advancing.

Advance Stall Advance

f
|

Coprocessor
pipeline

CPCLK

nCPWAIT

\

\

Coproc {
clock ‘

|

WL‘
T IC,
L JC

Figure 7-1 ARM940T coprocessor clocking

Coprocessor instructions
There are three classes of coprocessor instructions:

LDC or STC Load from coprocessor register to memory and store to
coprocessor register from memory.

MCR or MRC Register transfer between coprocessor and ARM processor core.

CDP Coprocessor data operation.

ARM DDI 0144B
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Examples of how a coprocessor must execute these instruction classes are given in:
. LDC or STC on page 7-5

. MCR/MRC on page 7-9

. Interlocked MCR on page 7-11

. CDP on page 7-13.
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7.2 LDC or STC

The cycle timings for LDC or STC operations are shown in Figure 7-2 on page 7-5. The
diagram assumes that the requested data is in the DCache and that the writes hit the

DCache.
ARM processor pipeline < Dedode > E)(((e;,ou)te < E?(e;gj)te > Ez(é%u)te < I?EZCSL#T > Memory > Write >
Coprocessor pipeline Dedode > E?ggj)te > E?g'gl)te > E?ggl)te > Iﬁ)—(zg#)e > Memory < Wiite >
CPCLK 4/—\ B
Y S Y W VY R NN S N S NN S WY S
nCPMREQ \ [\ // \
CPID[27:0] X LDC X / X
CPPASS \~>/ \
CPLATECANCEL \ /
CHSDE[1:0] X GO X
CHSEX[1:0] X GO X GO X LUAST X Ignored X
CPDOUT[31:0] X X X X X
LDC/MCR
CPDIN[31:0] I M
STC or MRC L B
DnMREQ
rioscy VI WAy AL A ]
internal)
DMORE
g A T A
internal)
DA[31:0]
(ARM940T X A X A+4 X A+8 X A+C X
internal)

Figure 7-2 ARM940T LDC/STC cycle timing
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In this example, four words of data are transferred. The number of words transferred is
determined by how the coprocessor drives the CHSDE[1:0] and CHSEX[1:0] buses.

As with all other instructions, the ARM940T processor core performs the main
instruction decode off the rising edge of the clock during the Decode stage. From this,
the core commits to executing the instruction, and so performs an instruction fetch. The
coprocessor instruction pipeline must keep in step with the ARM940T by monitoring
nCPMREQ, a latched copy of the ARM940T instruction memory request signal
InMREQ. Whenever nCPMREQ is LOW, an instruction fetch is occurring and CPID
is updated with the fetched instruction in the next cycle. This means that the instruction
currently on CPID must enter the Decode stage of the coprocessor pipeline, and that the
instruction in the Decode stage of the coprocessor pipeline must enter its Execute stage.

During the Execute stage, the condition codes are combined with the flags to determine
if the instruction must be executed or not. The output CPPASS is asserted (HIGH) if
the instruction in the Execute stage of the coprocessor pipeline:

. is a coprocessor instruction
. has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting,
CPPASS is driven LOW, and the coprocessor must stop execution of the coprocessor
instruction.

An additional output, CPLATECANCEL, is used to cancel a coprocessor instruction
when the instruction preceding it caused a Data Abort. This is valid on the rising edge
of CPCLK on the cycle after the first Execute cycle of the coprocessor instructions.
CPLATECANCEL is only asserted during the first Memory cycle of a coprocessor
instruction execution.

On the falling edge of the clock, the ARM940T processor core examines the
coprocessor handshake signals CHSDE[1:0] or CHSEX[1:0]:

. if a new instruction is entering the Execute stage in the next cycle, it examines
CHSDEI1:0]
. if the coprocessor instruction currently in Execute requires another Execute cycle,

it examines CHSEX|1:0].
The handshake signals encode one of four states:

ABSENT  If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM940T processor core takes the undefined instruction
exception.

7-6
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WAIT If there is a coprocessor attached that can execute the instruction but not
immediately, the coprocessor handshake signals must be driven to
indicate that the ARM940T processor core must stall until the
coprocessor can catch up. This is known as the busy-wait condition.

In this case, the ARM940T processor core loops in an IDLE state, waiting
for CHSEX[1:0] to be driven to another state, or for an interrupt to occur.
If CHSEX[1:0] changes to ABSENT, the undefined instruction
exception is taken. If CHSEX[1:0] changes to GO or LAST, the
instruction proceeds as described below.

If an interrupt occurs, the ARM940T processor core is forced out of the
busy-wait state. This is indicated to the coprocessor by the CPPASS
signal going LOW. The instruction is restarted later and so the
coprocessor must not commit to the instruction (change any of the
coprocessor states) until it has seen CPPASS go HIGH, and the
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARMO940T processor core and the coprocessor must also consider the
state of the CPPASS signal before actually committing to the instruction.
For an LDC or STC instruction, the coprocessor instruction must drive the
handshake signals with GO when two or more words still have to be
transferred. When only one more word is required, the coprocessor must
drive the handshake signals with the LAST condition.

In phase 2 of the Execute stage, the ARM940T processor core outputs the
address for the LDC/STC. Also in this phase, DnMREQ is driven LOW,

indicating to the memory system that a memory access is required at the
data end of the device. The timing for the data on CPDOUT[31:0] for an
LDC and CPDIN[31:0] for an STC is as shown in Figure 7-2 on page 7-5.

LAST An LDC or STC can be used for more than one item of data. If this is the
case, possibly after busy-waiting, the coprocessor must drive the
coprocessor handshake signals with a number of GO states, and in the
penultimate cycle LAST. The LAST indicating that the next transfer is
the final one. If there is only one transfer, the sequence is
[WAIT,[WAIT,...]],LAST.
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7.2.1 Coprocessor handshake encoding

Table 7-2 on page 7-8 shows how the handshake signals CHSDE[1:0] and
CHSEX]1:0] are encoded.

Table 7-2 Handshake encoding

[1:0] Meaning

00 WAIT

01 GO

10 ABSENT

11 LAST

If a coprocessor is not attached to the ARM940T, then the handshake signals must be
driven with ABSENT.

If you attach multiple coprocessors to the interface, the handshaking signals can be
combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors that have
handshaking signals CHSDE1, CHSEX1 and CHSDE2, CHSEX2 respectively:

CHSDE[1]<= CHSDE1[1] AND CHSDE2[1]
CHSDE[0]<= CHSDE1[0] OR CHSDE2[0]
CHSEX([1]<= CHSEX1[1] AND CHSEX2[1]
CHSEX[0]<= CHSEX1[0] OR CHSEX2[0]

Consequently, if the coprocessor does not recognize a coprocessor instruction, it must
drive CHSDE[1:0] and CHSEX]1:0] with ABSENT.
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7.3 MCR/MRC

These cycles look very similar to STC or LDC. An example, with a busy-wait state, is
shown in Figure 7-3 on page 7-9.

. . Decode Exeute Execute Mernory Wiite
ARM processor pipeline P —wam) P AST)

A
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Dedode Exepute Exeute Memory Wirite
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CPID[31:0] X %Fg X X

wowea | LT
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CPLATECANCEL \ /

CHSDE[1:0] X VAIT X

CHSEX[1:0] X LAST X gnoredX

CPDOUT[31:0]
LDC or MCR

CPDIN[31:0] [T\
STC or MRC [

Figure 7-3 ARM940T MCR/MRC transfer timing
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First nCPMREQ is driven LOW to denote that the instruction on CPID is entering the
Decode stage of the pipeline. This causes the coprocessor to decode the new instruction
and drive CHSDE[1:0] as required.

In the next cycle nCPMREQ is driven LOW to denote that the instruction has now been
issued to the Execute stage. If the condition codes pass, and the instruction is to be
executed, the CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is
examined (it is ignored in all other cases).

For any successive Execute cycles the CHSEX][1:0] handshake bus is examined. When
the LAST condition is observed, the instruction is committed. In the case of an MCR, the
CPDOUTT(31:0] bus is driven with the register data. In the case of an MRC,
CPDIN[31:0] is sampled at the end of the ARM940T Memory stage and written to the
destination register during the next cycle.

For an MCR or MRC with no busy-wait states, the coprocessor drives CHSDE[1:0] with
LAST. This commits the instruction for execution in the next cycle. The value on
CHSEX]1:0] is ignored.

7-10
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7.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM940T pipeline during its
first Decode cycle, the ARM940T pipeline interlocks for one or more cycles until the
data is available. An example of this is where the register being transferred is the
destination from a preceding LDR instruction. In this situation the MCR instruction enters
the Decode stage of the coprocessor pipeline, and remains there for a number of cycles
before entering the Execute stage. Figure 7-4 on page 7-11 gives an example of an
interlocked MCR.

. N Dedode Dedode Execute Exepute Merpory Write
ARM processor pipeline “*teiiock 1% > ATy P TAST) P e >
. . Dedode Dedode Exepute Exegute Merhory Wiite
Coprocessor pipeline > WA P AsT > > »

croLK J—\_/—\_/—\_/—\_/—\_/—\_/—\_/—L

CPID[31:0] X MoR/ X X

e [\ LTl

CPPASS / \

CPLATECANCEL \ /

nore:

CHSDE[1:0] X AIT/ X AIT X

CHSEX[1:0] X LAST X IgnoredX

CPDOUT[31:0] X X
LDC or MCR

CPDIN[31:0] [
STC or MRC |

]

Figure 7-4 ARM940T interlocked MCR
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In this example the MCR busy-waits the ARM9TDMI. When the instruction enters the
Decode stage of the coprocessor pipeline, the coprocessor drives CHSDE[1:0] with
WALIT. Due to an interlock in the ARM9TDMI, the instruction remains in Decode for
an extra cycle. This is signaled to the coprocessor by nCPMREQ going HIGH, holding
the instruction in the Decode stage of the coprocessor pipeline follower. The
coprocessor signals WAIT to the ARM9TDMI during its second Decode cycle. The
interlock in the ARM9TDMI resolves, nCPMREQ goes LOW, and the instruction
moves from Decode into Execute.
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CDPs normally execute in a single cycle. Like all the previous cycles, n\CPMREQ is
driven LOW to signal when an instruction is entering the Decode and then the Execute
stage of the pipeline:

. if the instruction is to be executed, the CPPASS signal is driven HIGH during
phase 2 of the Execute stage

. if the coprocessor can execute the instruction immediately it drives CHSDE[1:0]
with LAST
. if the instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0]

with WAIT and then CHSEX[1:0] with LAST.

Figure 7-5 on page 7-14 shows a (DP that is cancelled because the previous instruction
causes a Data Abort. The CDP instruction enters the Execute stage of the pipeline, and is
signalled to execute by CPPASS. In the following phase CPLATECANCEL is
asserted. This causes the coprocessor to terminate execution of the CDP instruction, and
ensures that the instruction does not cause any state changes in the coprocessor

ARM DDI 0144B
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Figure 7-5 ARM940T late-cancelled CDP
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7.6 Privileged instructions

The coprocessor restricts certain instructions for use in privileged modes only. To do
this, the coprocessor must track the nCPTRANS output. Figure 7-6 on page 7-15
shows how nCPTRANS changes after a mode change.
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Mode change <
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CPCLK‘/—\(—\{—\(—\{—\(—\(—\W

i
_
_
_
_
i
_

CPID[31:0] X CPRT X

pa— B |

nCPTRANS Old|mode X * X New mode
CPPASS / \
CPLATECANCEL / \
CHSDE[1:0] X Ighored X Ighored X LAST X

CHSEX[1:0]

=

gnored X

Figure 7-6 ARM940T privileged instructions

In Figure 7-6 on page 7-15 the mode change (marked with an asterisk) occurs as
follows:

. for mode changes that do not use an MSR, the mode changes after the first
Execute cycle

. for mode changes that use an MSR, the mode changes after the second Execute
cycle.
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Note

The first two CHSDE responses are ignored by the ARM940T because it is only the
final CHSDE response, as the instruction moves from Decode into Execute, that is
relevant. This allows the coprocessor to change its response as nCPTRANS changes.

7-16
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7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall (or busy-wait) the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction must
drive WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute
stage of the pipeline, the coprocessor can drive WAIT onto CHSEX]1:0] for as many
cycles as required to keep the instruction in the busy-wait loop.

For interrupt latency reasons, the coprocessor can be interrupted while busy-waiting
causing the instruction to be abandoned. Abandoning execution is done using CPPASS.
The coprocessor must monitor the state of CPPASS during every busy-wait cycle. If it
is HIGH, the instruction must still be executed. If it is LOW, the instruction must be
abandoned. Figure 7-7 on page 7-18 shows a busy-waited coprocessor instruction being
abandoned because of an interrupt.

ARM DDI 0144B
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Figure 7-7 ARM940T busy-waiting and interrupts
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Chapter 8

Debug Support

This chapter describes the debug support for the ARM940T. It contains the following
sections:

About debug support on page 8-2

Debug systems on page 8-3

Debug interface signals on page 8-5

Scan chains and JTAG interface on page 8-11

The JTAG state machine on page 8-12

Test data registers on page 8-18

ARM940T core clocks on page 8-27

Determining the core and system state on page 8-29
Exit from debug state on page 8-33

The behavior of the program counter during debug on page 8-36
EmbeddedICE unit on page 8-39

Vector catching on page 8-46

Single-stepping on page 8-47

Debug communications channel on page 8-48

The debugger view of the cache on page 8-52.
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8.1 About debug support

The ARM940T debug interface is based on IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture. See this standard for an explanation of
the terms used in this chapter and for a description of the TAP controller states.

The ARM940T contains hardware extensions for advanced debugging features to
simplify the development of application software, operating systems, and hardware.

The debug extensions allow the core to be stopped by one of the following:

. a given instruction fetch (breakpoint)
. a data access (watchpoint)
. asynchronously by a debug request.

When this happens, the ARM940T is said to be in debug state. At this point, the internal
state of the core and the external state of the system can be examined. When
examination is complete, the core and system state can be restored and program
execution resumed.

The ARMO940T is forced into debug state either by a request on one of the external
debug interface signals, or by an internal functional unit known as the EmbeddedICE
unit. In debug state, the core isolates itself from the memory system. The core can then
be examined while all other system activity continues as normal.

You can examine the internal state of the ARM940T using a JTAG-style serial interface.
This allows instructions to be serially inserted into the core pipeline without using the
external data bus. So, when in debug state, you can insert a Store Multiple (STM) into the
instruction pipeline to export the contents of the ARM9TDMI registers. This data can
be serially shifted out without affecting the rest of the system.

8-2
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8.2 Debug systems

The ARM940T forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARMY40T. A typical system is shown in Figure 8-1 on page 8-3.

Debug

host Host computer running armsd or ADW

N

Protocol

for example, Multi-ICE
converter

N

Debug

target Development system containing ARM940T

Figure 8-1 Typical debug system

Such a system typically has three parts:

. Debug host on page 8-3

. Protocol converter on page 8-3

. Debug target (ARM940T) on page 8-4.

8.2.1 Debug host

The debug host is a computer such as a PC, running a software debugger such as ADW.
The debug host allows you to issue high-level commands such as set breakpoint at
location XX, or examine the contents of memory from 0x0 to 0x100.

8.2.2 Protocol converter

The debug host is connected to the ARM940T development system using an interface
(an RS232 interface, for example). The messages broadcast over this connection must
be converted to the interface signals of the ARM940T, and this function is performed

by the protocol converter (for example, Multi-ICE).
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8.2.3

Debug target (ARM940T)

The ARM940T, with hardware extensions to support debugging, is the lowest level of
the system. The debug extensions allow you to

. stall the core from program execution
. examine its internal state and the state of the memory system
. resume program execution.

The debug host and the protocol converter are system-dependent.

8-4
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8.3 Debug interface signals
There are five primary external signals associated with the debug interface:

. IEBKPT, DEWPT, and EDBGRQ, that are used by system requests to cause the
ARMITDMI to enter debug state

. DBGACK, that is used by the ARM940T to flag back to the system when it is in
debug state

. DBGEN, that must be HIGH to allow the use of the EmbeddedICE unit debug
facilities.

8.3.1 Entry into debug state on breakpoint

Any instruction being fetched for memory is latched at the end of phase2. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
following phasel. This minimizes the set-up time, giving the EmbeddedICE unit an
entire phase to perform the comparison in. This is shown in Figure 8-2 on page 8-5.

Ddebug Edebug1 Edebug2
F1 D1 E1 1 w1
F2 D2 E2 M2 w2
Fl DI El Mi wi

GCLK J / / | wi / w2 / wi L

—

IA[31:0] X X

[l
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(o]
L]

o [} 2]

IEBKPT F_\

DBGACK

Figure 8-2 Breakpoint timing
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8.3.2

8.3.3

Breakpoints

Watchpoints

You can build external logic, such as additional breakpoint comparators, to extend the
functionality of the EmbeddedICE unit. You must apply the external logic output to the
IEBKPT input. This signal is ORed with the internally generated breakpoint signal
before being applied to the ARM9TDMI core control logic.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as a result of the instruction is prevented. All writes from previous
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the
breakpointed instruction. The latched breakpoint signal forces the processor to start the
debug sequence.

and exceptions

If a breakpointed instruction has a Prefetch Abort associated with it, the Prefetch Abort
takes priority and the breakpoint is ignored. (If there is a Prefetch Abort, instruction data
could be invalid, the breakpoint might have been data-dependent, and because the data
could be incorrect, the breakpoint might have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt (IRQ
or FIQ), the interrupt is taken and the breakpointed instruction is discarded. When the
interrupt has been serviced, the execution flow is returned to the original program. This
means that the instruction that previously breakpointed is fetched again, and if the
breakpoint is still set, the processor enters the debug state when it reaches the Execute
stage of the pipeline.

When the processor has entered debug state, it is important that additional interrupts do
not affect the instructions executed. For this reason, as soon as the processor enters the
debug state, interrupts are disabled, although the state of the I and F bits in the Program
Status Register (PSR) are not affected.

Entry into debug state following a watchpointed memory access is imprecise. This is
necessary because of the nature of the pipeline and the timing of the watchpoint signal.

8-6
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After a watchpointed access, the next instruction in the processor pipeline is always
allowed to complete execution. Where this instruction is a single-cycle data-processing
instruction, entry into debug state is delayed for one cycle until the instruction
completes. The timing of debug entry following a watchpointed load in this case is
shown in Figure 8-3 on page 8-7.

Ddebug Edebug1 Edebug2

F5 D5 E5 5 W5
FDp DDp EDp MDp WDp
FLDR DLDR ELDR MLDR WLDR
F2 D2 E2 M2 w2

D1 E1 M1 w1

GCLK J—\\_/—\\_/—\\_/—\\i/—\\w_z/—\ﬂ/—\\w_m’/'—\\w_s/—\i/—\ |
S U
gt —————{ 1 | 2 |—{toR—{ o} s o {7 He) /

DA[31:0] X X

DD[31:0] X X

DDIN[31:0]

[
[

Watchpoint /7 W

DBGACK

Figure 8-3 Watchpoint entry with data processing instruction

Note
Although instruction 5 enters the Execute state, it is not executed. Also, there is no state
update as a result of this instruction. When the debugging session is complete, normal
execution continues with a return to instruction 5, the next instruction in the code
sequence that has not yet been executed.
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The instruction following the instruction that generated the watchpoint might have
modified the Program Counter (PC). If this has happened, it is not possible to determine
the instruction that caused the watchpoint. A timing diagram showing debug entry after
a watchpoint where the next instruction is a branch is shown in Figure 8-4 on page 8-9.
However, you can always restart the processor.

When the processor has entered debug state, you can interrogate the ARM940T core to
determine its state. In the case of a watchpoint, the PC contains a value that is five
instructions on from the address of the next instruction to be executed. Therefore, if on
entry to debug state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and
the processor is restarted, execution flow returns to the next instruction in the code
sequence

8-8

Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



Debug Support

Ddebug Edebug1 Edebug2

I\
e
orsto) —fuorl—{ & }—{ x —{ x | 1 F—{r—{r2—{m) /

DT

FB DB EB WB

FLDR DLDR ELDR MLDR WL

oK J—\ \_/—\_/—\_/—\_/

]%W
-
o
-

InMREQ [\

T+C

== —
=
S
== —
=
&

AL A
A+4XXA+8U T

DA[31:0] X X

DD[31:0] X X

[
L

DDIN[31:0]

Watchpoint /7 W

//
m’
\-

Figure 8-4 Watchpoint entry with branch

DBGACK

8.3.4 Watchpoints and exceptions

If an abort occurs during a watchpointed data access, the watchpoint condition is
latched, the exception entry sequence performed, and then the processor enters debug
state. If there is an interrupt pending, again the ARM940T allows the exception entry

sequence to occur and then enters debug state.
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8.3.5 Debug request

A debug request can take place through the EmbeddedICE unit or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
enters debug state when the instruction at the Execution stage of the pipeline has
completely finished executing (when Memory and Write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more instructions
are issued to the Execute stage of the pipeline.

8.3.6  Actions of the ARM940T in debug state

When the ARM940T is in debug state, both memory interfaces indicate internal cycles.
Because the rest of the system continues operation, the ARM940T ignores aborts and
interrupts.
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8.4 Scan chains and JTAG interface

The ARM940T provides a JTAG-style Test Access Port (TAP) controller that supports
32 scan chains. Of these, scan chains O to 15 are reserved for use by ARM.

The ARM940T implements six internal scan chains, scan chains 0, 1, 2,4, 5, and 15,
that allow testing, debugging, and programming of the EmbeddedICE units. An
additional seventh scan chain (scan chain 3) can be implemented to provide an external
boundary scan chain around the pads of a packaged device.

External scan chains can be implemented in the remaining space (16-31). The signals
SCREG(4:0] indicate the external scan chain that is being accessed.

The active scan chain is selected by using the scan chain select register. For a complete
listing of the ARM940T scan chains, see Scan chain select register on page 8-19.

ARM DDI 0144B
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8.5

The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure 8-5 on page 8-12 shows the state transitions that occur in the TAP

controller. The state numbers shown on the diagram are output from the ARM940T on
the TAPSM[3:0] bits.
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Figure 8-5 Test access port (TAP) controller state transitions!

1. From IEEE Std 1149.1-1990. Copyright 2000 IEEE. All rights reserved.

Copyright © 1999, 2000 ARM Limited. All rights reserved.

ARM DDI 0144B



8.5.1 Reset

Debug Support

The JTAG interface includes a state-machine controller (the TAP controller). To force
the TAP controller into the correct state after power-up of the device, a reset pulse must
be applied to the n'TRST signal. If the JTAG interface is to be used, nTRST must be
driven LOW, and then HIGH again. If the boundary scan interface is not to be used, the
nTRST input can be tied permanently LOW.

Note
A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. The boundary scan chain cells do not intercept any of
the signals passing between the external system and the core.

2. TheIDCODE instruction is selected. If the TAP controller is put into the Shift-DR
state and TCK is pulsed, the contents of the ID register are clocked out of TDO.

8.5.2  Pull-up resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have internal pull-up
resistors. To minimize static current draw, these resistors are not fitted to the ARM940T.
Accordingly, the four inputs to the test interface (the TDO, TDI, and TMS signals plus
TCK) must all be driven to valid logic levels to achieve normal circuit operation.

8.5.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 0001.

8.5.4 Public instructions

Table 8-1 on page 8-13 shows the public instructions that are supported.

Table 8-1 Public instructions

Instruction Binary code
EXTEST 0000
SCAN_N 0010
INTEST 1100

ARM DDI 0144B
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Table 8-1 Public instructions (continued)

Instruction Binary code
IDCODE 1110
BYPASS 1111
CLAMP 0101
HIGHZ 0111
CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100

Note

The EXTEST, HIGHZ, and CLAMPZ instructions for scan chains 0-15 are reserved for
production test purpose only and must not be used.

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK
and all output transitions on TDO occur as a result of the falling edge of TCK.
EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output
scan cells to the system are captured by the scan cells.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain
using TDO, while new test data is shifted in using the TDI input. This data is applied
immediately to the system logic and system pins.

SCAN_N (0010)

This instruction connects the Scan Path Select register between TDI and TDO.

During the CAPTURE-DR state, the fixed value 10000 is loaded into the register.
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During the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

In the UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction
is issued. On reset, scan chain 3 is selected by default. The scan path select register is
five bits long in this implementation, although no finite length is specified.

INTEST (1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the input
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain
through the TDO pin, while new test data is shifted in using the TDI pin.
IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-bit register that allows the manufacturer,
part number and version of a component to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the scan cells
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID register.

In the SHIFT-DR state, the previously captured device identification code is shifted out
of the ID register using the TDO pin, while data is shifted in using the TDI pin into the
ID register.

In the UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the BYPASS register) between
TDI and TDO.
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When the BYPASS instruction is loaded into the instruction register, all the scan cells
are placed in their normal (System) mode of operation. This instruction has no effect on
the system pins.

In the CAPTURE-DR state, a logic O is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register using TDI and out
using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

The bypass register is not affected in the UPDATE-DR state.

Note
All unused instruction codes default to the BYPASS instruction.

CLAMP (0101)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and
TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all the
output signals is defined by the values previously loaded into the currently loaded scan
chain.

Note

This instruction must only be used when scan chain 0 is the currently selected scan
chain.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register using TDI and out
using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and
TDO.

When the HIGHZ instruction is loaded into the instruction register and scan chain 0 is
selected, all ARM9TDMI outputs are driven to the high-impedance state, and the
external HIGHZ signal is driven HIGH. This functions as if the ARM9TDMI signal
TBE had been driven LOW.
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In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the
SHIFT-DR state, test data is shifted into the bypass register using TDI and out using
TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

This instruction connects a 1-bit shift register (the BYPASS register) between TDI and
TDO.

When the CLAMPZ instruction is loaded into the instruction register and scan chain 0
is selected, all the tristate outputs (as described above) are placed in their inactive state,
but the data supplied to the outputs is derived from the scan cells. The purpose of this
instruction is to ensure that, during production test, each output can be disabled when
its data value is either a logic 0O or logic 1.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

In the SHIFT-DR state, test data is shifted into the bypass register using TDI and out
using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

The bypass register is not affected in the UPDATE-DR state.

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on
the rising edge of TCK. Normal system operation is unaffected.

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan using
the TDO pin, while new data is shifted in using the TDI pin to preload the boundary
scan parallel input latch. This data is not applied to the system logic or system pins
while the SAMPLE/PRELOAD instruction is active.

This instruction must be used to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

RESTART (0100)

This instruction is used to restart the processor on exit from debug state. The RESTART
instruction connects the bypass register between TDI and TDO and the TAP controller
behaves as if the BYPASS instruction had been loaded. The processor resynchronizes
back to the memory system when the RUN-TEST/IDLE state is entered.
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8.6 Test data registers

The following test data registers can be connected between TDI and TDO:

. Bypass register on page 8-18
. ARMO940T device identification (ID) code register on page 8-18
. Instruction register on page 8-19

. Scan chain select register on page 8-19
. Scan chains 0, 1, 2, 3, 4, 5, and 15 on page 8-21.

8.6.1 Bypass register

Purpose

Length

Operating mode

Bypasses the device during scan testing by providing a path
between TDI and TDO.

1 bit

When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in
the SHIFT-DR state with a delay of one TCK cycle. There is no
parallel output from the bypass register. A logic 0 is loaded from
the parallel input of the bypass register in CAPTURE-DR state.

8.6.2 ARM940T device identification (ID) code register

Purpose

Length

Operating mode

Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

32 bits

When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO. There is no
parallel output from the ID register. The 32-bit identification code
is loaded into the register from its parallel inputs of the input bus
TAPID[31:0] during the CAPTURE-DR state.
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The IEEE format of the ID register is as follows:

Table 8-2 ID code register

Bits Contents Value
31-28  Version number 0x2
27-12  Part number 0x0940

11-1 Manufacturer identity Default = 0b11110000111

0 IEEE standard specified 0Obl

The TAPID[31:0] pins allow this value to be set when the macrocell is instantiated in
a design.

8.6.3 Instruction register

Purpose Changes the current TAP instruction.
Length 4 bits

Operating mode  When in SHIFT-IR state, the instruction register is selected as the
serial path between TDI and TDO.

During the CAPTURE-IR state, the value O0b0001 is loaded into this register. This is
shifted out during SHIFT-IR (least significant bit first), while a new instruction is
shifted in (least significant bit first). During the UPDATE-IR state, the value in the
instruction register becomes the current instruction. On reset, IDCODE becomes the
current instruction.

8.6.4  Scan chain select register

Purpose Changes the current active scan chain.
Length 5 bits

Operating mode  After SCAN_N has been selected as the current instruction, when
in SHIFT-DR state, the scan chain select register is selected as the
serial path between TDI and TDO.

During the CAPTURE-DR state, the value 0b10000 is loaded into this register. This is
shifted out during SHIFT-DR (least significant bit first), while a new value is shifted in
(least significant bit first).
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During the UPDATE-DR state, the value in the register selects a scan chain to become
the currently active scan chain. All following instructions such as INTEST then apply
to that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[4:0] output
bus. The TAP controller can be used to drive external scan chains in addition to those
within the ARM940T macrocell. The external scan chain must be assigned a number
and control signals for it, and can be derived from SCREG[4:0], IR[3:0],
TAPSM[3:0], TCK1, and TCK2.

The list of scan chain numbers allocated by ARM is shown in Table 8-3 on page 8-20.
An external scan chain can take any other number. The serial data stream applied to the
external scan chain is made present on SDINBS. The serial data back from the scan
chain must be presented to the TAP controller on the SDOUTBS input.

The scan chain present between SDINBS and SDOUTBS is connected between TDI
and TDO whenever scan chain 3 is selected, or when any of the unassigned scan chain
numbers is selected. If there is more than one external scan chain, a multiplexor must
be built externally to apply the desired scan chain output to SDOUTBS. The
multiplexor can be controlled by decoding SCREG[4:0].

Table 8-3 Scan chain number allocation

Scan chain .

number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE unit programming
3 External boundary scan
4 ICache CAM

5 DCache CAM

6-14 Reserved

15 Control coprocessor
16-31 Unassigned
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8.6.5 Scanchains0,1,2,3,4,5,and 15

These allow serial access to the core logic, and to the EmbeddedICE unit for
programming purposes. Each scan cell can perform two basic functions, capture and
shift.

Scan chain 0

Purpose Primarily for inter-device testing (EXTEST), and testing the
ARMOTDMI core (INTEST). Scan chain 0 is selected using the
SCAN_N instruction.

Length 184 bits

INTEST allows serial testing of the ARM9TDMI core. The TAP controller must be
placed in the INTEST mode after scan chain O has been selected.

During CAPTURE-DR, the current outputs from the core logic are captured in the
output cells.

During SHIFT-DR, this captured data is shifted out while a new serial test pattern is
scanned in. This ensures that known stimuli are applied to the inputs.

During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller only
spends one cycle in RUN-TEST/IDLE. The whole operation can then be repeated.

EXTEST can be used to drive the outputs of the ARM9TDMI core and to capture its
inputs. It exists on the ARM940T to aid diagnostic testing but in its embedded form is
of limited use.

Scan chain 1

Purpose Primarily for debugging. Scan chain 1 is selected using the
SCAN_N TAP controller instruction.

Length 67 bits
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This scan chain is 67 bits long, 32 bits for data values, 32 bits for instruction data, and
3 control bits, SYSSPEED, WPTANDBKPT, and DDEN. The three control bits serve
four different purposes:

Under normal INTEST test conditions, the DDEN signal can be captured and
examined.

During EXTEST test conditions, a known value can be scanned into DDEN to be
driven into the rest of the system. If a logic 1 is scanned into DDEN, the data data
bus DD[31:0] drives out the values stored in its scan cells. If a logic 0 is scanned
into DDEN, DD[31:0] captures the current input values.

While debugging, the value placed in the SYSSPEED control bit determines if the
ARMOITDMI synchronizes back to system speed before executing the instruction.

After the ARM9TDMI has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger if the core has entered
debug state in response to a breakpoint (SYSSPEED LOW), or a watchpoint
(SYSSPEED HIGH). If the instruction directly following one that causes a
watchpoint has a breakpoint set on it, then the WPTANDBKPT bit is set. This
situation does not effect how to restart the code.

Scan chain 2

Purpose Allows access to the EmbeddedICE unit registers. The order of
the scan chain from TDI to TDO is shown in Table 8-4 on
page 8-22.
Table 8-4 Scan chain 4 addressing mode bit order
Bits Contents
37 Read =0
Write = 1
36:32  EmbeddedICE register address
31:0 Data
Length 38 bits

To access this serial register, scan chain 2 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.
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During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify
the address of the EmbeddedICE unit register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read).

The EmbeddedICE register map is shown in Control registers on page 8-41.

Scan chain 3
Purpose Allows the ARM940T to control an external boundary scan chain.
Length User-defined

Scan chain 3 is provided so that an optional external boundary scan chain can be
controlled using the ARM940T. Typically this is used for a scan chain around the pad
ring of a packaged device. The following control signals are provided and are generated
only when scan chain 3 has been selected. These outputs are inactive at all other times:

DRIVEOUTBS This is used to switch the scan cells from system mode to test
mode. This signal is asserted whenever an INTEST, EXTEST,
CLAMP, or CLAMPZ instruction is selected.

PCLKBS This is the update clock, generated in the UPDATE-DR state.
Typically the value scanned into the chain is transferred to the cell
output on the rising edge of this signal.

ICAPCLKBS, ECAPCLKBS

These are the capture clocks used to sample data into the scan cells
during INTEST and EXTEST respectively. These clocks are
generated in the CAPTURE-DR state.

SHCLK1BS, SHCLK2BS

These are non-overlapping clocks generated in the SHIFT-DR
state that are used to clock the master and slave element of the
scan cells respectively. When the state machine is not in the
SHIFT-DR state, both these clocks are LOW.

RSTCLKBS This signal is used to reset the cells of the Boundary Scan Chain
when nTRST is asserted or the TAP controller state machine is in
the reset state.

In addition to these control outputs, SDINBS outputs and SDOUTBS inputs are
provided to support external scan chains. When an external scan chain is in use,
SDOUTBS must be connected to the serial data output of the external chain and
SDINBS must be connected to the serial data input of the external chain.
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Scan chain 4

Purpose Allows access to the ICache CAM array. The scan chain has two
modes of operation, addressing mode and reading mode.

In addressing mode, the order of the scan chain TDI to TDO is:

Table 8-5 Scan chain 4 addressing mode bit order

Bits Contents

28:22  CAM index

21:6 SBZ

5:0 Segment

In reading mode, the order of the scan chain TDI to TDO is:

Table 8-6 Scan chain 4 reading mode bit order

Bits Contents

28 Valid
27 Dirty
26:0 TAG

To access this serial register, scan chain 4 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial
register in the addressing mode format. Bits 5 to O define the cache segment and bits 28
to 22 the CAM index to be accessed. However, because the ARM940T has four
segments in the ICache, only bits 1 and 0 are required. Bits 5:2 should be zero.
Similarly, the 64 CAM indexes are selected with bits 27 to 22, and bit 28 should be zero.
The extra segment and index bits are reserved for future implementations.

During UPDATE-DR, the addressed CAM index data is transferred to the serial register
in the reading mode format.
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Scan chain 5

Purpose Allows access to the DCache CAM array. The scan chain has two
modes of operation. In addressing mode, the order of the scan
chain TDI to TDO is shown in Table 8-7 on page 8-25.

Table 8-7 Scan chain 5 addressing mode bit order

Bits Contents

28:22  CAM index

21:6 SBZ

5:0 Segment

In reading mode, the order of the scan chain TDI to TDO is shown
in Table 8-8 on page 8-25.

Table 8-8 Scan chain 5 reading mode bit order

Bits Contents

28 Valid
27  Dirty
26:0 TAG

To access this serial register, scan chain 5 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

During SHIFT-DR, a CAM index can be addressed by shifting data into the serial
register in the addressing mode format. Bits 5 to 0 define the cache segment and bits 28
to 22 the CAM index to be accessed. However, because the ARM940T has four
segments in the ICache, only bits 1 and 0 are required. Bits 5:2 should be zero.
Similarly, the 64 CAM indexes are selected with bits 27 to 22, and bit 28 should be zero.
The extra segment and index bits are reserved for future implementations.

During UPDATE-DR, the addressed CAM index data is transferred to the serial register
in the reading mode format.
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Scan chain 15

Purpose Allows access to the control coprocessor (CP15) registers. The
order of the scan chain TDI to TDO is shown in Table 8-9 on
page 8-26.

Table 8-9 Scan chain 4 addressing mode bit order

Bits Contents

38 Read =0
Write = 1

37:32  CP15 register address

31:0 Register value

Length 39 bits

To access this serial register, scan chain 15 must first be selected using the SCAN_N
TAP controller instruction. The TAP controller must then be placed in INTEST mode.

No action is taken during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 37 specify
the address of the CP15 register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 38 (0 = read).
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8.7 ARM940T core clocks

The source GCLK applied to the internal ARM9TDMI core is dependent on the current
selected clock mode and the operation being performed. See Clock Modes for more
details.

The ARM9TDMI core has two clocks, the memory clock GCLK, and an internally
TCK generated clock, DCLK. During normal operation, the core is clocked by GCLK,
and internal logic holds DCLK LOW. When the ARM940T is in the debug state, the
ARMOITDMI core is clocked by DCLK under control of the TAP state machine, and
GCLK can free run. The selected clock is output on the ECLK signal for use by the
external system.

Note
When the core is being debugged and is running from DCLK, nWAIT has no effect.

There are two cases where the clocks switch, during debug and during testing.

8.7.1 Clock switching during debug

When the ARM9TDMI core enters debug state, it must switch from GCLK to DCLK.
This is handled automatically by logic in the ARM9TDMI. On entry to debug state, the
ARMITDMI core asserts DBGACK in the HIGH phase of GCLK. The switch
between the two clocks occurs on the next falling edge of GCLK, see Figure 8-6 on
page 8-27.

GCLK _/

DBGACK

DCLK | _\
x| [ L

Figure 8-6 Clock switching on entry to debug state
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The ARMITDMI core is forced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be allowed to synchronize back to GCLK.
This must be done in the following sequence:

1. The final instruction of the debug sequence must be shifted into the instruction
data bus scan chain, and clocked in by asserting DCLK. At this point, RESTART
must be clocked into the TAP controller register.

2. The ARMI9TDMI automatically resynchronizes back to GCLK when the TAP
controller enters to the RUN-TEST/IDLE mode and starts fetching instructions
from memory at GCLK speed. For more information, see Exit from debug state
on page 8-33.

8.7.2  Clock switching during test

Under serial test conditions, when test patterns are being applied to the ARM9TDMI
core through the JTAG interface, the ARM9TDMI must be clocked using DCLK. Entry
into test is less automatic than debug and some care must be taken.

On entry into test, GCLK must be held LOW. The TAP controller can now be used to
perform serial testing on the ARMO9TDML. If scan chain 0 and INTEST are selected,
DCLK is generated while the state machine is in RUN-TEST/IDLE state.

During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, GCLK can be allowed to resume. After INTEST testing, care must be
taken to ensure that the core is in a sensible state before switching back. The safest way
to do this is to either select RESTART and then cause a system reset, or to insert

MOV PC,#@ into the instruction pipeline before switching back.
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8.8 Determining the core and system state

You can examine the core and system state when the ARM940T is in debug state. You
do this by forcing load and store multiples into the pipeline.

Before the core and system state can be examined, the debugger must first determine if
the processor has entered debug from Thumb or ARM state. This is achieved by
examining bit 4 of the EmbeddedICE unit debug status register. If this is HIGH, debug
has been entered from Thumb state.

8.8.1 Determining the core state

If the processor has entered debug state from Thumb state, the simplest course of action
is for the debugger to force the core back into ARM state. When this is done, the
debugger can always execute the same sequence of instructions to determine the
processor state.

To force the processor into ARM state, the following sequence of Thumb instructions
must be executed on the core:

STR r@, [r1] ; Save r@ before use
MOV r@, PC ; Copy PC into RO

STR r@, [r1] ; Save the PC in RO
BX PC ; Jump into ARM state
MOV r8, r8 ; NOP

MOV r8, r8 ; NOP

The above use of R1 as the base register for the stores is for illustration only. Any
register can be used.

Because all Thumb instructions are only 16 bits long, the simplest course of action when
shifting them into scan chain 1 is to repeat the instruction twice on the instruction data
bus bits. For example, the encoding for BX r@ is 0x4700. If 0x47004700 is shifted into the
32 bits of the instruction data bus of scan chain 1, then the debugger does not have to
keep track of the half of the bus that the processor expects to use to read instructions.

From this point on, the processor state can be determined by the sequences of ARM
instructions described below.

When the processor is in ARM state, typically the first instruction executed is:
STMIA r0, {r0-ri5}

This causes the contents of the registers to be made visible on the data data bus. These
values can then be sampled and shifted out.
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After determining the values in the current bank of registers, you might want to access
banked registers. This can only be done by changing mode. Normally, a mode change
can only occur if the core is already in a privileged mode. However, while in debug
state, a mode change from any mode into any other mode might occur.

Note
The debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the User
mode and FIQ mode registers, and debug state has been entered from supervisor mode.
The instruction sequence might be:

STMIA r0, {r0-r15} ; Save current registers

MRS r@, CPSR

STR  ro, {ro} ; Save CPSR to determine current mode
BIC r0,r0d, #0x1F ; Clear mode bits

ORR  r0,r0, #0x10 ; Select USER mode

MSR  CPSR_c, r@ ; Enter USER mode

STMIA r@, {rl3-rl4} ; Save registers not previously visible
ORR  r0,rd, #0x01 ; Select FIQ mode

MSR  CPSR_c, r@ ; Enter FIQ mode

STMIA r0, {r8-r14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower
than system speed. This is because 67 scan clocks occur between each core clock to
shift an instruction in, or shift data out. Executing instructions at debug speed presents
no problems for accessing the core state because the ARMITDMI core is fully static.
However, this method cannot be used for determining the state of the rest of the system.

While in debug state, you can only insert the following instructions into the instruction
pipeline for execution:

. all data processing operations
. all load, store, load multiple and store multiple instructions
. MSR and MRS.

8.8.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Therefore, the ARM9TDMI core must be
forced to synchronize back to system speed. The 33rd bit of scan chain 1, SYSSPEED,
controls this.
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A legal debug instruction can be placed in the instruction data bus of scan chain 1 with
bit 33 (the SYSSPEED bit) LOW. This instruction is then executed at debug speed. To
execute an instruction at system speed, a NOP (such as MOV R@, R@) must be scanned in
as the next instruction with bit 33 set HIGH.

After the system speed instructions have been scanned into the instruction data bus and
clocked into the pipeline, the RESTART instruction must be loaded into the TAP
controller. This causes the ARM9TDMI core to automatically resynchronize back to
GCLK when the TAP controller enters RUN-TEST/IDLE state, and execute the
instruction at system speed. Debug state is re-entered when the instruction completes
execution, when the processor switches itself back to the internally generated DCLK.
When the instruction has completed, DBGACK is HIGH. At this point INTEST can be
selected in the TAP controller, and debugging can resume.

Note

When performing system speed accesses, the caches operate as usual, for example,
performing cache lookups, linefills, and evicting lines. To prevent the contents of the
caches being altered, it is necessary to disable them first. However, when the caches are
disabled their contents are preserved. This means that if a write to an address that was
held in the data cache occurs while the data cache is disabled, the updatedoes not affect
the data cache. If the data cache is then switched back on, it still holds the out of date
version of the data, which appears valid. This results in unrecoverable data corruption.
To prevent this, you are recommended to always clean and flush the data cache before
you disable it.

To determine if a system speed instruction has completed, the debugger must look at
SYSCOMP (bit 3 of the debug status register). To access memory, the ARMITDMI
core must access memory through the data bus interface, as this access might be stalled
indefinitely by nWAIT. The only way to determine if the memory access has
completed, is to examine the SYSCOMP bit. When this bit is HIGH, the instruction has
completed.

By the use of system speed load multiples and debug store multiples, the state of the
system memory can be passed to the debug host.

8.8.3 Instructions that can have the SYSSPEED bit set

The only valid instructions that can have this bit set are:

. loads

. stores

. load multiple
. store multiple.
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When the ARM940T returns to debug state after a system speed access, the SYSSPEED
bit is set HIGH.
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8.9 Exit from debug state

Leaving debug state involves restoring the ARM940T internal state, causing a branch
to the next instruction to be executed, and synchronizing back to GCLK. After restoring
the internal state, a branch instruction must be loaded into the pipeline. For details on
calculating the branch, see The behavior of the program counter during debug on
page 8-36.

Bit 33 of scan chain 1 is used to force the ARM940T to resynchronize back to GCLK.
The penultimate instruction in the debug sequence is a branch to the instruction where
execution is to resume. This is scanned in with bit 33 set LOW. The core is then clocked
to load the branch into the pipeline. The final instruction to be scanned in is a NOP (such
as MOV r@, r@), with bit 33 set HIGH. The core is then clocked to load this instruction
into the pipeline, and the RESTART instruction is selected in the TAP controller. When
the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back to
system mode and clock resynchronization to GCLK occurs within the ARM940T.
Normal operation then resumes, with instructions being fetched from memory.

The delay, until the state machine is in RUN-TEST/IDLE state, allows conditions to be
set up in other devices in a multiprocessor system without taking immediate effect.
When RUN-TEST/IDLE state is subsequently entered, all the processors resume
operation simultaneously.

The function of DBGACK is to tell the rest of the system when the ARM940T is in
debug state. This can be used to inhibit peripherals such as watchdog timers that have
real time characteristics. DBGACK can also be used to mask out memory accesses that
are caused by the debugging process. For example, when the ARM940T enters debug
state after a breakpoint, the instruction pipeline contains the breakpointed instruction
plus two other instructions that have been prefetched. On entry to debug state, the
pipeline is flushed. On exit from debug state, the pipeline must then be refilled to its
previous state. Because of the debugging process, more memory accesses occur than
normally expected. Any system peripheral that might be sensitive to the number of
memory accesses can be inhibited with DBGACK.

Note

DBGACK can only be used in such a way using breakpoints. It does not mask the
correct number of memory accesses after a watchpoint.

For example, consider a peripheral that counts the number of instruction fetches. This
device must return the same answer after a program has run both with or without
debugging.
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Figure 8-7 on page 8-34 shows the behavior of the ARM940T on exit from debug state.

ECLK F /—\ /—\ /—\ \_/—\\_/—\ \_/—\\_/—\_/—\L

INMREQ
ISEQ Internal cycles X N X 5 X 5 X/ X

Ab X IAb+4 X IAb+8 X/ X
]

1A[31:1] X

ID[31:0]

:

[

DBGACK \P\

Figure 8-7 Debug exit sequence

Figure 8-8 on page 8-34 shows that two instructions are fetched after the one that
breakpoints. DBGACK masks the first three instruction fetches out of debug state,
corresponding to the breakpoint instruction and the two instructions prefetched after it.

e [ 1 1L [ L]V L[] |

Ianggg Memory cycles| X Internal cycl%s
1A[31:1] X X X X /
ID[31:0] —(:] [} [1] [2] [3] /

IEBKPT fw

DBGACK

Figure 8-8 Debug state entry
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Note

When a system speed access occurs DBGACK remains HIGH, masking any memory
access.
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8.10 The behavior of the program counter during debug

8.10.1 Breakpoint

8.10.2 Watchpoint

To force the ARM940T to branch back to the place where program flow has been
interrupted by debug, the debugger must keep track of what happens to the PC. There
are six cases:

. Breakpoint on page 8-36

. Watchpoint on page 8-36

. Watchpoint with another exception on page 8-37
. Watchpoint and breakpoint on page 8-37

. Debug request on page 8-37

. System speed accesses on page 8-38.

These cases are described below. In each case the same calculation is used to determine
where to resume execution. This is explained in Summary of return address calculations
on page 8-38.

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address. The normal way to exit from debug state after a
breakpoint is to remove the breakpoint, and branch back to the previously breakpointed
address.

For example, if the ARM940T entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of minus 7 addresses
must occur (four for debug entry, plus two for the instructions, plus one for the final
branch). The following sequence shows ARM instructions scanned into scan chain 1.
This is MSB first, and so the first digit represents the value to be scanned into the
SYSSPEED bit, followed by the instruction:

0 EAFFFFF9 ; B -7 addresses (two’s complement)
1 E1A00000 ; NOP (MOV r@, r@), SYSSPEED bit is set

For small branches, the final branch can be replaced with a subtract having the PC as
the destination (SUB PC,PC,#28 for ARM code in the above example).

Returning to the program execution after entering debug state from a watchpoint is done
in the same way as the procedure described in Breakpoint. Debug entry adds four
addresses to the PC, and every instruction adds one address. Because the instruction
after the one that caused the watchpoint has executed, instruction execution resumes at
the one after that.
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8.10.3 Watchpoint with another exception

If a watchpoint access simultaneously causes a Data Abort, the ARM940T enters debug
state in abort mode. Entry into debug is held off until the core has changed into abort
mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during
a watchpointed memory access. The ARM940T enters debug state in the same mode as
the exception, and the debugger must check that this happens by looking at the current
and previous mode (in the CPSR and SPSR), and the value of the PC. If an exception

takes place, you must be able to choose to service the exception before debugging.

For example, suppose an abort occurred on a watchpoint access and ten instructions had
been executed to determine this, the following sequence can be used to return program
execution:

0 EAFFFFFC ; B -15 addresses (two’s complement)
1 E1AQ00000 ; NOP (MOV r@, r@), SYSSPEED bit is set

This forces a branch back to the abort vector, causing the instructions at that location to
be refetched and executed. After the abort service routine, the instruction that caused
the abort and watchpoint is re-executed. This causes the watchpoint to be generated and
the ARM940T enters debug state again.

8.10.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously.
This can happen when the instruction causes a watchpoint, and the following instruction
has been breakpointed. The same calculation must be performed as for breakpoint (see
Breakpoint on page 8-36) to determine the address to resume at. In this case, it is at the
breakpoint instruction because this has not been executed.

8.10.5 Debug request

Entry into debug state from a debug request is similar to a breakpoint and, as for
breakpoint entry to debug state, adds four addresses to the PC. Every instruction
executed in debug state adds one.

For example, the following sequence handles a situation where you have invoked a
debug request, and decided to return to program execution immediately:

0 EAFFFFFD ; B -5 addresses (2’s complement)
1 E1AQ0000 ; NOP (MOV r@, r@), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.
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8.10.6 System speed accesses

If a system speed access is performed during debug state, the value of the PC is
increased by five addresses. Because system speed instructions access the memory
system, it is possible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM940T enters abort mode before returning to debug state.

This is similar to an aborted watchpoint. However, this occurrence is more difficult to
resolve, because the abort is not caused by an instruction in the main program, and the
PC does not point to the instruction that caused the abort. An abort handler usually looks
at the PC to determine the instruction that caused the abort, and so the abort address. In
this case, the value of the PC is invalid, but the debugger knows the address of the
location that is being accessed. Therefore, the debugger can be written to help the abort
handler fix the memory system.

8.10.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:

-(4 + N +5S)

where:

N Is the number of debug speed instructions executed (including the
final branch).

S Is the number of system speed instructions executed.
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8.11 EmbeddedICE unit

The EmbeddedICE unit is an integral component of the ARM9TDMI processor core. It
has two hardware breakpoint/watchpoint units that can be configured to monitor either
the instruction memory interface or the data memory interface. Each watchpoint unit
has a value and mask register, with an address, data and control field. The general
architecture of the EmbeddedICE unit is shown in Figure 8-9 on page 8-39.

TDI

Scan chain
register
> RW Update
4
5 | Address
Address "| decoder 37
0 Enable
31 >
g1 ¢§ g
Es = | Control e
oS o — O Breakpoint/
D Control :D watchpoint”
Data 32 > g g g Rangeout
o o INSTR[31:0] 5
DD[31:0]
> > - >
g oy g
] ] 1A[31:1] b
@ @ @
0 DA[31:0] @
Value Mask Comeparator
Registers
TDO

Figure 8-9 ARM940T EmbeddedICE unit

The ARM940T EmbeddedICE unit has logic that allows single-stepping through code.
This reduces the work required by an external debugger, and removes the requirement
to flush the instruction cache. There is also hardware to allow efficient trapping of
accesses to the exception vectors. These blocks of logic free the two general-purpose
hardware breakpoint/watchpoint units for use by the programmer or debugger.
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Because the ARMOTDMI processor core has a Harvard architecture, you must specify
if the watchpoint registers must examine the instruction memory interface or the data
memory interface. This is specified by bit 3 in the control field of the watchpoint
register, as follows:

o when bit 3 is set, the data must be examined

o when bit 3 is clear, the instruction must be examined.

There must not be a don 't care case for this bit because the comparators cannot compare
the values on both interfaces simultaneously. Therefore, bit 3 of the control mask
registers is always clear and cannot be programmed HIGH. Bit 3 also determines if the
IBREAKPT or DBREAKPT signal must be driven by the result of the comparison, as
shown in Figure 8-9 on page 8-39.

8.11.1 Register map

The EmbeddedICE unit register map is shown in Table 8-10 on page §-40.

Table 8-10 ARM940T EmbeddedICE unit register map

Address Width Function

0b00000 4 Debug control

0b00001 5 Debug status

0b00010 8 Vector catch control
0b00100 6 Debug comms control
0b00101 32 Debug comms data
0b01000 32 Watchpoint O address value
0b01001 32 Watchpoint 0 address mask
0b01010 32 Watchpoint 0 data value
0b01011 32 Watchpoint 0 data mask
0b01100 9 Watchpoint O control value
0b01101 8 Watchpoint 0 control mask
0b10000 32 Watchpoint 1 address value
0b10001 32 Watchpoint 1 address mask
0b10010 32 Watchpoint 1 data value
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Table 8-10 ARM940T EmbeddedICE unit register map (continued)

Address Width Function

0b10011 32 Watchpoint 1 data mask
0b10100 9 Watchpoint 1 control value
0b10101 8 Watchpoint 1 control mask

8.11.2 Using the mask register

For each value register, there is an associated mask register in the same format. Setting
a bit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

For example, if a watchpoint is requested at a particular memory location but the data
value is irrelevant, the data mask register can be programmed to @XFFFFFFFF (all bits set
to 1) so that the entire data bus is ignored.

8.11.3 Control registers

The format of the control registers depends on how bit 3 is programmed.

Bit 3 programmed to 1

The breakpoint comparators examine the data address, data, and control signals. In this
case, the format of the register is as shown in Figure 8-10 on page 8-41.

Note
Bit 8 and bit 3 cannot be masked.

ENABLE | RANGE CHAIN | EXTERN | DnTRANS 1 DMAS[1] | DMAS[0] | DnRW

Figure 8-10 Watchpoint control register for data comparison
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The control register bits have the functions for data comparison shown in Table 8-11 on

page 8-42.
Table 8-11 Watchpoint control register for data comparison
Bit Function
DnRW Compares with the data not read/write signal from the core to detect the

direction of the data bus activity. nRW is 0 for a read, and 1 for a write.

DMAS[1:0] Compares with the DMAS[1:0] signal from the core to detect the size of the
data bus activity.

DnTRANS Compares with the data not translate signal from the core to determine
between a User mode (DnTRANS = 0) data transfer, and a privileged mode
(DnTRANS = 1) transfer.

EXTERN Is an external input into the EmbeddedICE unit that allows the watchpoint to
be dependent on some external condition. The EXTERN input for watchpoint
0 is labeled EXTERNO, and the EXTERN input for watchpoint 1 is labeled
EXTERNI.

CHAIN Can be connected to the CHAIN output of another watchpoint to implement,
for example, debugger requests of the form breakpoint on address YYY only
when in process XXX.

In the ARM940T EmbeddedICE unit, the CHAINOUT output of watchpoint
1 is connected to the CHAIN input of watchpoint 0. The CHAINOUT output
is derived from a latch. The address/control field comparator drives the write
enable for the latch and the input to the latch is the value of the data field
comparator. The CHAINOUT latch is cleared when the control value register
is written or when nTRST is LOW.

RANGE Can be connected to the RANGE output of another watchpoint register. In the
ARM940T EmbeddedICE unit, the RANGEOUT output of watchpoint 1 is
connected to the RANGE input of watchpoint 0. This allows two watchpoints
to be coupled for detecting conditions that occur simultaneously, for example,
for range-checking.

ENABLE If a watchpoint match occurs, the IBREAKPT or DBREAKPT signal is only
asserted when the ENABLE bit is set. This bit only exists in the value register.
It cannot be masked.

Bit 3 programmed to 0

If bit 3 of the control register is programmed to 0, the comparators examine the
instruction address, instruction data, and instruction control buses. Bits [1:0] of the
mask register must be set to don't care (programmed to 11). The format of the register
in this case is as shown in Figure 8-11 on page 8-43.
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ENABLE

RANGE CHAIN | EXTERN | INTRANS 0 X ITBIT X

Figure 8-11 Watchpoint control register for instruction comparison

The control register bits have the functions shown in Table 8-12 on page 8-43 for
instruction comparison.

Table 8-12 Watchpoint control register for instruction comparison

Bit

Function

ITBIT

Compares against the Thumb state signal from the core to determine between a
Thumb (ITBIT = 1) instruction fetch or an ARM (ITBIT = 0) fetch.

InTRANS

Compares against the not translate signal from the core to determine between a
User mode (INTRANS = 0) instruction fetch, and a privileged mode
(InTRANS = 1) fetch.

EXTERN

Is an external input into the EmbeddedICE unit that allows the watchpoint to be
dependent on some external condition. The EXTERN input for watchpoint 0 is
labelled EXTERNO, and the EXTERN input for watchpoint 1 is labeled
EXTERNI1.

CHAIN

Can be connected to CHAIN output of another watchpoint to implement, for
example, debugger requests of the form breakpoint on address YYY only when
in process XXX.

In the ARM940T EmbeddedICE unit, the CHAINOUT output of watchpoint 1
is connected to the CHAIN input of watchpoint 0. The CHAINOUT output is
derived from a latch. The address/control field comparator drives the write
enable for the latch, and the input to the latch is the value of the data field
comparator. The CHAINOUT latch is cleared when the control value register
is written, or when nTRST is LOW.

RANGE

Can be connected to the range output of another watchpoint register. In the
ARM940T EmbeddedICE unit, the RANGEOUT output of watchpoint 1 is
connected to the RANGE input of watchpoint 0. This allows two watchpoints
to be coupled for detecting conditions that occur simultaneously, for example,
for range-checking.

ENABLE

If a watchpoint match occurs, the IBREAKPT or DBREAKPT signal is only
asserted when the ENABLE bit is set. This bit only exists in the value register.
It cannot be masked.
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8.11.4 Debug control register

The ARM940T debug control register is four bits wide and is shown in Figure 8-12 on
page 8-44. Bit 3 controls the single-step hardware. This is explained in more detail in
Single-stepping on page 8-47.

Single step INTDIS DBGRQ DBGACK

Figure 8-12 Debug control register

8.11.5 Debug status register

The debug status register is five bits wide. If it is accessed for a write (with the
read/write bit set HIGH), the status bits are written. If it is accessed for a read (with the
read/write bit LOW), the status bits are read. The format of the debug status register is
shown in Figure 8-13 on page 8§-44.

ITBIT SYSCOMP IFEN DBGRQ DBGACK

Figure 8-13 Debug status register

The function of each bit in this register is as follows:

Bits 1 and 0 Allow the values on the synchronized versions of DBGRQ and
DBGACK to be read.
Bit 2 Allows the state of the core interrupt enable signal (IFEN) to be

read. Because the capture clock for the scan chain can be
asynchronous to the processor clock, the DBGACK output from
the core is synchronized before being used to generate the IFEN
status bit.

Bit3 Allows the state of the SYCOMP signal from the core
(synchronized to TCK) to be read. This allows the debugger to
determine that a memory access from the debug state has
completed.
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Bit 4

Debug Support

Allows ITBIT to be read. This enables the debugger to determine
what state the processor is in, and the instructions to execute.

The ARM940T EmbeddedICE unit controls logic to enable accesses to the exception
vectors to be trapped in an efficient manner. This is controlled by the vector catch
register, as shown in Figure 8-14 on page 8-45. The functionality is described in Vector
catching on page 8-46.

FlQ

IRQ

Reserved

D_Abort

P_Abort

SWiI

Undefined

Reset

Figure 8-14 Vector catch register
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8.12 Vector catching

The ARM940T EmbeddedICE unit contains logic that allows efficient trapping of
fetches from the vectors during exceptions. This is controlled by the vector catch
register. If one of the bits in this register is set HIGH and the corresponding exception
occurs, the processor enters debug state as if a breakpoint has been set on an instruction
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the vector catch
register is set, the ARM940T fetches an instruction from location 0x8. The vector catch
hardware detects this access and forces the breakpoint signal HIGH into the ARM940T
control logic. This, in turn, forces the ARM940T to enter debug state.

The behavior of this hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the vector catch register
is set, the processor is not forced to enter debug state.
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8.13 Single-stepping

The ARM940T EmbeddedICE unit contains logic that allows efficient single-stepping
through code. This leaves the hardware watchpoint comparators free for general use.

This function is enabled by setting bit 3 of the debug control register. The state of this
bit must only be altered while the processor is in debug state. If the processor exits
debug state and this bit is HIGH, the processor fetches an instruction, executes it, and
then immediately re-enters debug state. This happens independently of the watchpoint
comparators. If a system speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.
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8.14 Debug communications channel

The ARM940T EmbeddedICE unit contains a communication channel for passing
information between the target and the host debugger. This is implemented as
coprocessor 14.

The communications channel consists of:

. a 32-bit comms data read register
. a 32-bit wide comms data write register
. a 6-bit comms control register for synchronized handshaking between the

processor and the asynchronous debugger.

These registers are placed in fixed locations in the EmbeddedICE unit register map (as
shown in Figure 8-1 on page 8-3) and are accessed from the processor using MCR and MRC
instructions to coprocessor 14.

8.14.1 Debug comms channel registers

The debug comms control register is read only. It controls synchronized handshaking
between the processor and the debugger. The format of the debug comms channel
registers is shown in Figure 8-15 on page 8-48.

3130292827 210

0/0/1]0 W|R

Figure 8-15 Debug comms control register

The function of each register bit is described below:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE unit
version number, in this case 0010.

Bits 27:2 Unused.

Bit1 Denotes if the comms data write register is free, as seen by the

processor. If, from the point of view of the processor, the comms
data write register is free (W=0), new data can be written. If it is
not free (W=1), the processor must poll until W=0. If, from the
point of view of the debugger, W=1, some new data has been
written that can then be scanned out.
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Bit 0 Denotes if there is some new data in the comms data read register.
If, from the point of view of the processor, R=1, there is some new
data that can be read using an MRC instruction. If, from the point of
view of the debugger, R=0, the comms data read register is free
and new data can be placed there through the scan chain. If R=1,
data previously placed there through the scan chain has not been
collected by the processor, and so the debugger must wait.

From the point of view of the debugger, the registers are accessed using the scan chain
in the usual way. From the processor, these registers are accessed using coprocessor
register transfer instructions. You can use the following instructions:

MRC pl4, 0, Rd, c0, c@

Returns the debug comms control register into Rd.

MCR pl4, 0, Rn, cl, c@

Writes the value in Rn to the comms data write register.
MRC pl4, 0, Rd, c1, c@

Returns the debug data read register into Rd.

Note

The Thumb instruction set does not support coprocessor instructions (to access the
debug comms channel, the core must be in ARM state).

8.14.2 Communication using the comms channel

Communication can take place over the debug comms channel by either an interrupt
driven mechanism or through software polling.

The interrupt driven mechanism requires the COMMTX and COMMRX signals to be
factored into an interrupt controller. The comms channel is only accessed therefore,
when the write channel has become free or the read channel has received data, allowing
efficient communication.

Software polling requires no external hardware configuration. The program must
examine the debug comms control register to determine if data has been received or if
the write channel has become empty. Only when such an event has occurred can the
debug comms write or read register be accessed.
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8.14.3 Software polling communication

Software polling communication is achieved by the processor sending messages to, and
receiving messages from, the debugger.

Sending a message to the debugger

Before sending a message to the debugger, the processor must first check that the
comms data write register is available by polling the W bit. The checking process is as
follows:

. If the W bit is set, previously written data has not been read by the debugger.

The processor must continue to poll the control register until the W bit is clear.
. If W bit is clear, the comms data write register is available.

When the W bit is clear, a message is written by a register transfer to coprocessor 14.
Because the data transfer occurs from the processor to the comms data write register,
the W bit is set in the debug comms control register.

The debugger sees a synchronized version of both the R and W bit when it polls the
debug comms control register through the JTAG interface. When the debugger sees that
the W bit is set, it can read the comms data write register, and scan the data out. The
action of reading this data register clears the debug comms control register W bit. At
this point, the communications process can begin again.

Receiving a message from the debugger

Message transfer from the debugger to the processor is similar to sending a message to
the debugger. In this case, the debugger polls the R bit of the debug comms control
register:

o if the R bit is LOW, the data read register is free, and data can be placed there for
the processor to read

. if the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there using the JTAG
interface. The action of this write sets the R bit in the debug comms control register.

When the processor polls this register, it sees a GCLK synchronized version. If the R
bit is set, there is data waiting to be collected. This data can be read using an MRC
instruction to coprocessor 14. The action of this load clears the R bit in the debug
comms control register. When the debugger polls this register and sees that the R bit is
clear, the data has been taken, and the process can be repeated.
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8.14.4 Interrupt driven communications

To implement interrupt driven communication, the signals COMMRX and COMMTX
must be factored into any interrupt controller being used. If no interrupt controller is
being used, the signals can be applied to a NOR gate with the output driving nIRQ.

When an interrupt occurs, the program must examine the debug comms control register
to determine if an event occurred. If the W bit is clear, new data can be written into the
debug comms write register. If the R bit is set, new data has been received and can be
read.

If the W bit is set and the R bit clear, the debug comms channel is not the source of the
interrupt.
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8.15 The debugger view of the cache

The debugger can access the caches and must be able to control them. This means that
the debugger must also access CP15 registers.

8.15.1 Scan access to the CP15 registers

When in debug state, the debugger is able to see the state of the memory system,
including the caches. The debugger has to be able to control the cache, consequently all
of CP15 registers are accessible through the scan chain. Scan chain 15 is reserved for
this use. This scan chain is 39 bits long, and has a structure similar to the EmbeddedICE
unit scan chain 2. The format of scan chain 15 is shown in Table 8-13 on page 8-52. An
access using this scan chain allows any of the CP15 registers to be read or written.

Table 8-13 Scan chain 15 format

Scan chain bit Function

38 R/W (Write=1)
37:32 Register address
31:0 Register value

On entry to debug state, the debugger must extract and save the state of CP15. It is
advisable to switch off the cache to prevent any debug accesses to memory from altering
the state of the caches. The mapping of the 6-bit address field to the CP15 register is as
shown in Table 8-14 on page 8-52. For CP register 6, CRm corresponds to the region
number.

Table 8-14 Scan access mapping to CP15 register

Register address CP15 register

37 36:33 32

0 0000 0 0

0 0001 0 1

0 0010 0 2 (Data)

0 0010 1 2 (Instruction)
0 0011 0 3

0 0101 0 5 (Data)
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Table 8-14 Scan access mapping to CP15 register (continued)

Register address CP15 register

37 36:33 32

0 0101 1 5 (Instruction)
0 1001 0 9 (Data)

0 1001 1 9 (Instruction)
0 1111 0 15

1 <CRm> 0 6 (Data)

1 <CRm> 1 6 (Instruction)

In addition, the flush ICache command implemented in CP15 register 7 can be
performed from the scan chain.

Flushing ICache during debug

It is possible for the debugger to flush the ICache without leaving debug state. Through
scan chain 15, the debugger can perform a write to a pseudo register that causes the
instruction cache to be flushed. This allows full debug without reliance on system
resources. The bit pattern given in Table 8-15 on page 8-54 must be scanned into scan
chain 15.

Note

In an earlier silicon version (Rev 0) it is impossible for the debugger to flush the
instruction cache using the scan interface while the processor is in debug state. This
means that whenever code is downloaded, the processor has to force a cache flush by
downloading a small flush routine into memory. The routine is then executed in system
state before continuing. The disadvantage of this method is that the debugger has to rely
on system resources.
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Table 8-15 Flush I-Cache

Register address CP15 register

38 37 36:33 32

1 0 0111 1 Flush ICache

0 0 0111 1 ICache flush status

Because of the asynchronous relationship between TCK and GCLK, the debugger
must check that the flush has occurred by performing a read from the same register. If
bit 31 of the returned data is clear, then the cache flush has happened. If bit 31 is set,
then the debugger must continue to poll the register until bit 31 is clear. This is only
necessary if TCK is significantly faster than FCLK.

8.15.2 Scan access to the caches
The content of the caches is determined by:
1. Extracting the contents of the CAMs.

2. Determining the contents of the RAMS using a system speed LDR.

The CAM arrays are read using scan chain 4 for the ICache, and scan chain 5 for the
DCache. The format of these scan chains is identical and has two modes:

Addressing The CAM index and segment are specified. The format of the scan
chain is as shown in Table 8-16 on page 8-55.

Reading The contents of the CAM entry are read back. The format of the
data read back is shown in Table 8-17 on page 8-55. When the
ICache CAM is read, the dirty bit is always read as zero.
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The addressing mode format, shown in Table 8-16 on page 8-55, is used when scanning
in data to address the CAM. After UPDATE-DR, the data read from the CAM array is
in the reading mode format, shown in Table 8-17 on page 8-55.

Table 8-16 Scan chain 4 and 5 addressing mode

Scan chain bit  Write function

28:22 CAM index
21:6 Should be zero
5:0 Segment

Table 8-17 Scan chains 4 and 5 reading mode

Scan chain bit Write function

28 Valid
27 Dirty
26:0 TAG

The debugger must index through all the entries in the CAM (0-63) to determine the
27-bit TAG addresses. When this information is extracted, the contents of the cache
RAM array can be determined.

DCache

This is achieved by taking each TAG address, padding the bottom four bits with zeros,
setting bits 5 and 6 to indicate the same segment that the TAG is scanned from, and
performing a system-speed four-word LDM to that address, with the cache switched on.
Because the TAG address is known, a cache hit occurs, and the four words in the RAM
line are returned.

If a system-speed access from a TAG address is performed with the cache switched off,
the external data corresponding to that address is returned. For cache lines that are
marked as valid and dirty therefore, it is possible to determine the value of the cached
data and the external data in main memory.

ARM DDI 0144B
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ICache

For the ICache, the system speed LDM must be performed with the DCache switched off.
This ensures that the external memory system is accessed. Because it is impossible for
the core to change the data in the instruction cache, the ICache and external memory are
guaranteed coherent. However, if self-modifying code has been produced and the
ICache has not been flushed, the ICache might contain an out of date copy of the
external memory code.
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Chapter 9
TrackingICE

This chapter describes how TrackingICE mode is used by the ARM940T. It contains the
following sections:

. About TrackingICE on page 9-2
. Timing requirements on page 9-3
. TrackingICE outputs on page 9-4.
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9.1 About TrackingICE

The principle of TrackingICE is described in ARM Technical Note AN41, TrackingICE.
The ARM940T can be switched into a mode that assists in producing a TrackingICE
system.

When in TrackingICE mode, a number of the ARM940T output signals are configured
to mimic the inputs to the embedded ARM9TDMI processor core. These signals can be
connected to a second external ARMO9TDMI to precisely monitor (or track) the inputs
to the embedded processor core. The outputs from the test chip are latched copies of the
outputs from the processor core that can be more easily monitored.

Figure 9-1 on page 9-2 gives an overview of how a tracking ARM9TDMI is attached to
an ARM940T.

ARMO940T L
» 0 >
Embedded Test
ARMOTDMI > 1 .| ARMITDMI
A A
- iy

4 4 1 TRACK

Figure 9-1 Using TrackingICE

The tracking ARM9TDMI operates one clock phase behind the actual ARM9TDMI (on
the inverted clock). All required inputs to the ARM9TDMI are latched inside the
ARMO940T and are then brought out on various pins. The tracking ARM9TDMI can be
directly attached to these outputs.

9-2
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9.2 Timing requirements

To enable the ARMI9TDMI processor core to be tracked correctly, all inputs must be
synchronous to the ARM9TDMI processor clock. These inputs include TCK, which in
tracking mode is latched on the falling edge of GCLK before it is driven onto the
ARMO940T tracking outputs. All other TCK relative signals, TDI, TMS, and
SDOUTBS, are latched on rising GCLK before they are driven onto the ARM940T
tracking outputs.

ARM DDI 0144B
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9.3 TrackingICE outputs

The ARM940T outputs shown in Table 9-1 on page 9-4 are re-used when the
ARM940T is in TrackingICE mode.

Table 9-1 ARM940T in TrackingICE

ARM940T output :tF::I(I::TtI;)I\ItIﬁsI;:‘tg
IR[3:2] CHSE[1:0]
IR[1:0] CHSDI[1:0]
SCREGI[4] nIRQ
SCREG(3] nFIQ
SCREG[2] DABORT
SCREG[1] TABORT
TAPSM]3] EXTERN1
TAPSM|2] EXTERNO
TAPSM[1] DEWPT
TAPSMI[0] IEBKPT
ICAPCLKBS HIVECS
ECAPCLKBS EDBGGQ
PCLKBS nWAIT
RSTCLKBS nRESET
SHCLKI1BS TDI
SHCLK2BS TMS
TCK1 GCLK
TCK2 TCK
SDIN SDOUTBS
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The remaining input connections to the ARM9TDMI are:
. ID bus attaches to the CPID bus

. DD bus attaches to the CPDOUT bus

. BIGEND input attaches to the BIGENDOUT.

These can still be attached to a coprocessor when the ARM940T is in tracking mode.
The only difference in behavior is that CPDOUT mirrors the ARM940T DD bus on
every cycle, not only for coprocessor data transfers. The following conditions apply:

. The ISYNC and nTRST inputs must be common between the ARM940T and the
tracking ARM9TDMI.

. IABE and DABE must be HIGH so that the address outputs of the tracking
ARMOITDMI can be observed.

. DDBE must be LOW to prevent a drive clash on the bidirectional DD bus. It is
not necessary for the tracking ARM9TDMI to drive the DD bus because
CPDOUT is driven with the data from all memory access cycles.

ARM DDI 0144B
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Chapter 10
Test Support

This chapter describes the test support for the ARM940T and lists the scan chain O
bit order. It contains the following sections:

. About test support on page 10-2
. Scan chain 0 bit order on page 10-4.
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10.1  About test support

The ARM940T test support comprises support for testing:
. ARMOYTDMI on page 10-2
. ARM940T macrocell on page 10-2.

10.1.1  ARMOTDMI

The ARM9TDMI processor core has a fully JTAG-compatible scan chain that intersects
all the inputs and outputs. This allows test patterns to be serialized and injected to test
the ARMI9TDMI core processor using the ARM940T JTAG interface.

10.1.2 ARM940T macrocell

The ARM940T supports parallel and AMBA test. The parallel test patterns are derived
from assembler ARM code programs written to achieve a high fault coverage.

To test the ARM940T macrocell in an embedded system, the AMBA Test Methodology
has been adopted. This allows the ARM940T to be tested in isolation from the rest of
the system. The methodology applies the external drive of 32-bit parallel vectors onto
the system data bus and their conversion to bus transfers. A low gate-count Test
Interface Controller (TIC) bus master is required in the system to perform this function.
The AMBA test methodology is illustrated in Figure 10-1 on page 10-2.

Arbiter
BD
TREQA —Pb Test
Interface ARM940T
TREQB Controller macrocell
TACK <4—— (T
Datapath 4 1 DSEL
control
A
BA, BD ASB
External
Bus
BAd > Interface BA
(EBI) A
Decoder

Figure 10-1 AMBA test methodology

10-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



TestSupport

The TIC uses a minimal three-wire handshake mechanism to control the application of
test vectors. In AMBA test mode, 32 bidirectional pins are required to transfer the test
data. These can be multiplexed for other uses in the normal operating mode of the chip.
The datapath of an external bus interface (EBI) or external memory interface is
commonly used to provide the 32-bit vector interface.

To support this method of test vector application, the ARM940T macrocell incorporates
dedicated test logic that allows the internal inputs to be driven and the internal outputs
to be monitored using transfers from the bus. The ARM940T is configured to act as an
AMBA slave during test mode because the test transfers are initiated by the TIC. A
simplified view of the test harness incorporated within the ARM940T is shown in
Figure 10-2 on page 10-3.

Inputs
Input ports
P Data In
Data Out
BD <« Outputs
BA
ARM940T

internal logic
BA

Outputs = ARM940T

Figure 10-2 ARM940T integrated test harness

The ARM940T AMBA test logic also provides a high level of controllability over the
caches. This allows you to test the caches independently of the ARM9TDMI processor
core. The TAG address in the CAM array, the CAM valid and dirty bits, and the RAM
data can all be read and written in the AMBA Cache Test mode.

The ARM940T macrocell is supplied with a full test vector suite that achieves a high
node toggle coverage. It is, therefore, not necessary for the system designer to write test
patterns for the macrocell but to provide a suitable environment in which the supplied
test vectors can be applied.

You must use system-level functional vectors to test connections between ARM940T
and other logic on the chip.

ARM DDI 0144B
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10.2 Scan chain 0 bit order

Table 10-1 on page 10-4 shows the scan chain 0 bit order.

Table 10-1 Scan chain 0 bit order

Number Signal Direction

1 ID[0] Input

2 ID[1] Input

3:31 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 WPTANDBKPT  Internal

35 DDEN Output

36 DD[31] Bidirectional
37 DDI[30] Bidirectional
38:66 DD[29:1] Bidirectional
67 DDJ[0] Bidirectional
68 DA[31] Output

69 DAJ30] Output

70:98 DA[29:1] Output

99 DA[0] Output

100 TA[31] Output

101 TA[30] Output
102:129  1A[29:2] Output

130 IA[1] Output

131 IEBKPT Input

132 DEWPT Input

133 EDBGRQ Input

134 EXTERNO Input

10-4 Copyright © 1999, 2000 ARM Limited. All rights reserved.
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Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
135 EXTERN1 Input
136 COMMRX Output
137 COMMTX Output
138 DBGACK Output
139 RANGEOUTO Output
140 RANGEOUT1 Output
141 DBGRQI Output
142 DDBE Input
143 InMREQ Output
144 DnMREQ Output
145 DnRW Output
146 DMASI1] Output
147 DMASI0] Output
148 PASS Output
149 LATECANCEL  Output
150 ITBIT Output
151 InTRANS Output
152 DnTRANS Output
153 nRESET Input
154 nWAIT Input
155 IABORT Input
156 IABE Input
157 DABORT Input
158 DABE Input
159 nFIQ Input
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Table 10-1 Scan chain 0 bit order (continued)

Number Signal Direction
160 nIRQ Input
161 ISYNC Input
162 BIGEND Input
163 HIVECS Input
164 CHSDI1] Input
165 CHSDI0] Input
166 CHSE[1] Input
167 CHSE[0] Input
168 UNIEN Input
169 ISEQ Output
170 InM[4] Output
171 InM[3] Output
172 InM][2] Output
173 InM[1] Output
174 InMJ[0] Output
175 DnM[4] Output
176 DnM][3] Output
177 DnM]|2] Output
178 DnM[1] Output
179 DnM[0] Output
180 DSEQ Output
181 DMORE Output
182 DLOCK Output
183 ECLK Output

10-6
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Chapter 11
Instruction Cycle Summary and Interlocks

This chapter gives the instruction cycle times and shows the timing diagrams for
interlock timing. It contains the following sections:

. About the instruction cycle summary on page 11-2
. Instruction cycle times on page 11-3
. Interlocks on page 11-6.
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11.1  About the instruction cycle summary

All signals quoted are ARM9TDMI signals and are internal to the ARM940T. In all
cases it is assumed that all accesses are from cached regions of memory.

If an instruction causes an external access, either when prefetching instructions or when
accessing data, the instruction takes more cycles to complete execution. The additional
number of cycles is dependent on the system implementation.
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11.2 Instruction cycle times
Table 11-1 on page 11-3 provides a key to the other tables in this chapter.

Table 11-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses

m Is in the range 1 to 4, depending on early termination (see
Figure 11-1 on page 11-7)

n The number of words transferred in an LDM/STM/LDC/STC
C Coprocessor register transfer (C-cycle)

1 Internal cycle (I-cycle)

N Non-sequential cycle (N-cycle)

Sequential cycle (S-cycle)

Table 11-2 on page 11-3 summarizes the ARM940T instruction cycle counts and bus
activity when executing the ARM instruction set.

Table 11-2 Instruction cycle bus times

Instruction Cycles Instruction bus Data bus Comment

Data Op 1 1S 11 Normal case, PC not destination

Data Op 2 1S+11 21 With register controlled shift, PC not destination

Data Op 3 2S + 1IN 31 PC destination register

Data Op 4 2S+ IN+ 11 41 With register controlled shift, PC destination
register

LDR 1 1S IN Normal case, not loading PC

LDR 2 1S+11 IN+11I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock)

LDR 3 1S+21 IN+21 Loaded byte, half-word, or unaligned word used by
following instruction (2 cycle load-use interlock)

LDR 5 2S+21+1N IN+41 PC is destination register

STR 1 1S IN All cases
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Table 11-2 Instruction cycle bus times (continued)

Instruction Cycles Instruction bus Data bus Comment

LDM 2 1S+11 1S+11 Loading 1 Register, not the PC

LDM n 1S+(n-1)I IN+(n-1)S Loading n registers, n > 1, not loading the PC

LDM n+4 2S+IN+(n+1)I IN+(n-1)S+41  Loading n registers including the PC, n > 0

STM 2 1S+11 IN+11 Storing 1 Register

STM n 1S+(n-DI IN+(n-1)S Storing n registers, n > 1

Swp 2 1S+11 2N Normal case

Swp 3 1S+21 2N+11 Loaded word used by following instruction

SWPB 3 1S+21 2N+11 All cases

B, BL, BX 3 2S+1IN 31 All cases

SWI, Undefined 3 2S+1IN 31 All cases

CbP b+1 1S+bl (1+b)I All cases

LDC, STC b+n 1S+(b+n-1)I bI+IN+(n-1)S  All cases

MCR b+1 1S+bl bl+1C All cases

MRC b+1 1S+bl bl+1C Normal case

MRC b+2 1S+(b+1)I (b+DI+1C Following instruction uses transferred data

MRS 1 1S 11 All cases

MSR 1 1S 11 If only flags are updated (mask_f)

MSR 3 1S + 21 31 If any bits other than the flags are updated (all masks
other than_f)

MUL, MLA 2+m 1S+(1+m)I (2+m)I All cases

SMULL, UMULL, 3+m 1S+(2+m)I (3+m)I All cases

SMLAL, UMLAL

Copyright © 1999, 2000 ARM Limited. All rights reserved.
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Table 11-3 on page 11-5 shows the instruction cycle times from the perspective of the
data bus.

Table 11-3 Data bus instruction times

Instruction Cycle time

LDR IN

STR IN

LDM,STM IN+(n-1)S
Swp IN+1S
LDC, STC IN+(n-1)S
MCR,MRC 1C

11.2.1 Multiplier cycle counts

The number of cycles that a multiply instruction takes to complete depends on which
instruction it is, and on the value of the multiplier-operand. The multiplier-operand is
the contents of the register specified by bits [11:8] of the ARM multiply instructions, or
bits [2:0] of the Thumb multiply instructions:
. For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1 if bits [31:8] of the multiplier operand are all zero or one

2 if bits [31:16] of the multiplier operand are all zero or one

3 if bits [31:24] of the multiplier operand are all zero or all one

4 otherwise.

. For ARM UMULL, UMLAL, m is:
1 if bits [31:8] of the multiplier operand are all zero
2 if bits [31:16] of the multiplier operand are all zero
3 if bits [31:24] of the multiplier operand are all zero

4 otherwise.
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11.3 Interlocks
Pipeline interlocks occur when the data required for an instruction is not available
because of the incomplete execution of an earlier instruction. When an interlock occurs,
instruction fetches stop on the instruction memory interface of the ARM940TDMI.
Four examples of this are given in:
. Single load interlock timing on page 11-7
. Two cycle load interlock on page 11-8
. LDM interlock on page 11-9
. LDM dependent interlock on page 11-10
Example 11-1 on page 11-6 shows a single load interlock code sequence.

Example 11-1 Single load interlock

In this example, the following code sequence is executed:
LDR ro, [r1]
ADD r2, ro, rl
The ADD instruction cannot start until the data is returned from the load. The ADD
instruction therefore, has to delay entering the Execute stage of the pipeline by one
cycle. The behavior on the instruction memory interface is shown in Figure 11-1 on
page 11-7.
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Instruction Cycle Summary and Interlocks

Midr Widr
Dadd Eadd Madd Wadd

XX A+4 XX A+8 XX A+C XX A+10 XX A+14 XX
e — (]

Figure 11-1 Single load interlock timing

Example 11-2 on page 11-7 shows a two cycle load interlock code sequence.

Example 11-2 Two cycle load interlock

In this example, the following code sequence is executed:

LDRB r@, [rl,#1]
ADD r2, ro, rl

Now, because a rotation must occur on the loaded data, there is a second interlock cycle.
The behavior on the instruction memory interface is shown in Figure 11-2 on page 11-8.
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Fldrb Didrb
Fadd

Eldrb
Dadd

Midrb
Dadd

Widrb
Dadd

Eadd

Madd

Wadd

cox [ ]

INMREQ /\ /\

IA[31:1] XX A+4 XX

ID[31:0] DR

A+8 XX A+C XX A+10 XX A+14 XX
eol—{ [ } L

Figure 11-2 Two cycle load interlock

Example 11-3 on page 11-8 shows an LDM interlock code sequence.

Example 11-3 LDM interlock

In this example, the following code sequence is executed:

LDMDB r12,{rl1-r3}

ADD r2, r2, rl

The LDM takes three cycles to execute in the memory stage of the pipeline. The ADD is
therefore delayed until the LDM begins its final memory fetch. The behavior of both the
instruction and data memory interface are shown in Figure 11-3 on page 11-9.

11-8 Copyright © 1999, 2000 ARM Limited. All rights reserved.

ARM DDI 0144B



Instruction Cycle Summary and Interlocks

oo [\ L L
S N N e R R
wsrn [ e | o | [ we [ e ||
o — (g —{ ] 0
S I R N
- [ on || owes || o |

Figure 11-3 LDM interlock

Example 11-4 on page 11-9 shows an LDM dependent code sequence.

Example 11-4 LDM dependent interlock

In this example, the following code sequence is executed:

LDMDB r12,{rl-r3}
ADD r4, r3, rl
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The code is the same code as in example 3, but in this instance the ADD instruction uses
3. Because of the nature of load multiples, the lowest register specified is transferred
first, and the highest specified register last. Because the ADD is dependent on 13, there
must be another cycle of interlock while r3 is loaded. The behavior on the instruction
and data memory interface is shown in Figure 11-4 on page 11-10.

Fldmb Dldmb Eldmb Midmb Midmb Midmb Widmb
Fadd Dadd Dadd Dadd Dadd Eadd Madd Wadd

S U 0 U Y Y O B
e S O
1A[31:1] XX IA+4 XX IA+8 XX IA+C XX IA+10 XX IA+14 XX

ID[31:0] (LDM) (ADD\ [T] [

oweea [ 1P L N AL ]V
DA[31:0] XXDA XXDA+4 XX DA+8XX

DDI[31:0] , R1 \ , R2 \ , R3 \

apnta

Figure 11-4 LDM dependent interlock
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Chapter 12
AC Characteristics

This chapter gives the timing diagrams and timing parameters for the ARM940T. It
contains the following sections:

. ARMOY40T timing diagrams on page 12-2
. ARM940T timing parameters on page 12-15.
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12.1 ARM940T timing diagrams

The AMBA bus interface of the ARM940T conforms to the AMBA Specification. See
this document for the relevant timing diagrams.

Figure 12-1 shows the FCLK timing parameters.

FCLK
Tfclkh Tclkl
|

Figure 12-1 FCLK
Figure 12-2 shows the BCLK timing parameters.

BCLK
Telkh Telkl
\ |

Figure 12-2 BCLK
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Figure 12-3 shows the FCLK timed coprocessor interface timing parameters.
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Figure 12-3 ARM940T FCLK timed coprocessor interface
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Figure 12-4 shows the BCLK timed coprocessor interface timing parameters.
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Figure 12-4 ARM940T BCLK timed coprocessor interface
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Figure 12-5 shows the FCLK related signal timing parameters.
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FCLK
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Figure 12-5 ARM940T FCLK related signal timing
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Figure 12-6 shows the BCLK related signal timing parameters.
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Figure 12-6 ARM940T BCLK related signal timing

Figure 12-7 shows the SDOUTBS to TDO timing relationship.
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Figure 12-7 ARM940T SDOUTBS to TDO relationship
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Figure 12-8 shows the nTRST to RSTCLKBS timing relationship.

nTRST

RSTCLKBS

« Thrst

Figure 12-8 ARM940T nTRST to RSTCLKBS relationship

Figure 12-9 on page 12-8 shows the JTAG output signal timing parameters.
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Figure 12-9 ARM940T JTAG output signal
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Figure 12-10 shows the JTAG input signal timing parameters.
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Figure 12-10 ARM940T JTAG input signal timing

Figure 12-11 shows the FCLK debug timing parameters.
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Figure 12-11 FCLK debug timing
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Figure 12-12 shows the BCLK debug timing parameters.
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Figure 12-12 BCLK debug timing
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Figure 12-13 shows the FCLK related debug output signal timing parameters.
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Figure 12-13 ARM940T FCLK related debug output timings
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Figure 12-14 shows the BCLK related debug output signal timing parameters.
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Figure 12-14 ARM940T BCLK related debug output timings
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Figure 12-15 shows the BCLK related AHB signal timing parameters.

BCLK
ASTB
Tovastb Tohastb
— f— —» ——————
NCMAHB
Thncamahbd ) Toncamahbh
BUFFSTRAHB
Thbstahbd ) Thbstahbh

Figure 12-15 AHB signal timings

Figure 12-16 shows the TCKrelated debug output signal timing parameters.

TCK

ECLK \

Ttekf Ttekr
—_—

DBGRQI @
~— Tdgid

~ Tdgih ~

Figure 12-16 ARM940T TCK related debug output timings

ARM DDI 0144B Copyright © 1999, 2000 ARM Limited. All rights reserved. 12-13



AC Characteristics

Figure 12-17 shows the nTRST to DBGRQI timing relationship.

nTRST

DBGRQI

« Tdqir
Figure 12-17 nTRST to DBGRAQI relationship
Figure 12-18 shows the EDBGRQ to DBGRQI timing relationship.

EDBGRQ

DBGRQI @
w— Tedqd

i Tedgh +

Figure 12-18 ARM940T EDBGRQ to DBGRAQI relationship

Figure 12-19 shows the DBGEN to output signal timing relationship.

DBGEN
RANGEOUTO
RANGEOUT1
« Trgen
DBGRAQI
- Tdgen +

Figure 12-19 ARM940T DBGEN to output relationship
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12.2 ARM940T timing parameters

Table 12-1 on page 12-15 lists the ARM940T timing parameters.

Table 12-1 ARM940T timing parameters

Parameter  Description

Tbbigd BIGENDOUT output delay from BCLK falling

Tbbigh BIGENDOUT output hold from BCLK falling

Tbbstahbd BUFFSTRAHB output delay from BCLK rising

Tbbstahbh BUFFSTRAHB output hold from BCLK rising

Tbcand CPLATECANCEL output delay from BCLK falling

Tbcanh CPLATECANCEL output hold from BCLK falling

Tbcdnh CPDIN[31:0] input hold from BCLK falling

Tbedns CPDIN[31:0] input setup to BCLK falling

Tbchsh CHSDE[1:0)/CHSEX][1:0] input hold from BCLK falling
Tbchss CHSDE[1:0)/CHSEX][1:0] input setup to BCLK falling
Tbcomd COMMTX/COMMRX output delay from BCLK rising
Tbcomh COMMTX/COMMRX output hold from BCLK rising
Tbepdd CPID[31:0[/CPDOUT[31:0] output delay from BCLK falling
Tbepdh CPID[31:0]/CPDOUT][31:0] output hold from BCLK falling
Tbepkf CPCLK falling output delay from BCLK falling

Tbepkr CPCLK rising output delay from BCLK rising

Tbctld CPnMREQ/nCPTRANS/CPTBIT output delay from BCLK falling
Tbctlh CPnMREQ/nCPTRANS/CPTBIT output hold from BCLK falling
Tbdbgh EDBGRQ input hold from BCLK falling

Tbdbgs EDBGRQ input setup to BCLK falling

Tbdckd DBGACK output delay from BCLK rising

Tbdckh DBGACK output hold from BCLK rising

Tbdwph DEWPT input hold from BCLK rising

ARM DDI 0144B
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Table 12-1 ARM940T timing parameters (continued)

Parameter

Description

Tbdwps

DEWPT input setup to BCLK rising

Tbekf

ECLK falling output delay from BCLK falling

Tbekr

ECLK rising output delay from BCLK rising

Tbexth

EXTERN(O/EXTERN1 input hold from BCLK falling

Tbexts

EXTERNO/EXTERNTI input setup to BCLK falling

Tbibkh

IEBKPT input hold from BCLK rising

Tbibks

IEBKPT input setup to BCLK rising

Tbinth

nFIQ/nIRQ input hold from BCLK falling

Tbints

nFIQ/nIRQ input setup to BCLK falling

Tbinxd

INSTREXEC output delay from BCLK falling

Tbinxh

INSTREXEC output hold from BCLK falling

Tbisyh

ISYNC hold from BCLK falling

Tbisys

ISYNC setup to BCLK falling

Tbncamahbd

NCMAHB output valid from BCLK rising

Tbncamahbh

NCMAHB output hold from BCLK rising

Tbnwtd

nCPWAIT output delay from BCLK rising

Tbnwth

nCPWAIT output hold from BCLK rising

Tbpasd

CPPASS output delay from BCLK rising

Tbpash

CPPASS output hold from BCLK rising

Tbrg0d

RANGEOUTO output delay from BCLK falling

TbrgOh

RANGEOUTO output hold from BCLK falling

Tbrglh

RANGEOUT1 output hold from BCLK falling

Tbrgld

RANGEOUT1 output delay from BCLK falling

Thbrst

RSTCLKBS rising delay from nTRST falling

Thbrtd

RSTCLKBS output delay from TCK falling
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Table 12-1 ARM940T timing parameters (continued)

Parameter

Description

Tbrth

RSTCLKBS hold from TCK falling

Tbtrakd

Tracking mode outputs (ICAPCLKBS/TAPSM[4:1)/IR[3:0[/SCREGI3:0]/
ECAPCLKBS/PCLKBS/RSTCLKBS/SDIN/SHCLK1BS/SHCLK2BS/
TCK?2) output delay from BCLK falling

Tbtrakh

Tracking mode outputs (ICAPCLKBS/TAPSM[4:1)/IR[3:0//SCREGI3:01/
ECAPCLKBS/PCLKBS/RSTCLKBS/SDIN/SHCLK1BS/SHCLK2BS/
TCK?2) hold from BCLK falling

Tbtrgkf

Tracking mode delay from BCLK falling to TCK1 falling

Tbtrgkr

Tracking mode delay from BCLK rising to TCK1 rising

Tbtrks

TRACK input setup to BCLK rising

Tbtrkh

TRACK input hold from BCLK rising

Tcapf

ECAPCLKBS/ICAPCLKBS/PCLKBS falling output delay from TCK
rising

Tcapr

ECAPCLKBS/ICAPCLKBS/PCLKBS rising output delay from TCK
rising

Tclkh

BCLK minimum width high phase

Tclkl

BCLK minimum width low phase

Tdebugd

DBGACK output delay from TCK transition
RANGEOUT(0/RANGEOUT1 output delay from TCK falling
COMMTX/COMMRX output delay from TCK rising

Tdebugh

DBGACK output hold from TCK transition
RANGEOUT0/RANGEOUT1 output hold from TCK falling
COMMTX/COMMRX output hold from TCK rising

Tdgid

DBGRQI output delay from TCK falling

Tdgih

DBGRQI output hold from TCK falling

Tdih

TDI/TMS input hold from TCK rising

Tdis

TDI/TMS input setup to TCK rising

Tdgen

Delay from DBGEN falling to DBGRQI falling

Tdqir

Delay from nTRST falling to DBGRQI falling
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Table 12-1 ARM940T timing parameters (continued)

Parameter  Description

Tdrbsd DRIVEOUTBS output delay from TCK falling

Tdrbsh DRIVEOUTBS output hold from TCK falling

Tedqd DBGRQI output delay from EDBGRQ falling

Tedgh DBGRQI output hold from EDBGRQ falling

Tend ENAMBADRV/ENBTRAN output delay from BCLK transition
Tenh ENAMBADRV/ENBTRAN output hold from BCLK transition
Tfbigd BIGENDOUT output delay from FCLK falling

Tfbigh BIGENDOUT output hold from FCLK falling

Tfcand CPLATECANCEL output delay from FCLK falling

Tfcanh CPLATECANCEL output hold from FCLK falling

Tfcdnh CPDIN[31:0] input hold from FCLK falling

Tfcdns CPDIN[31:0] input set up to FCLK falling

Tfchsh CHSDE[1:0]/CHSEX[1:0] input hold to FCLK falling

Tfchss CHSDE[1:0]/CHSEX][1:0] input setup to FCLK falling

Tfclkh FCLK minimum width high phase

Tfclkl FCLK minimum width low phase

Tfcomd COMMTX/COMMRKX output delay from FCLK rising
Tfcomh COMMTX/COMMRX output hold from FCLK rising

Tfcpdd CPID[31:0]/CPOUT[31:0] output delay from FCLK falling
Tfcpdh CPID[31:0]/CPOUT[31:0] output hold from FCLK falling
Tfcpkt CPCLK falling output delay from FCLK falling

Tfepkr CPCLK rising output delay from FCLK rising

Tfctld CPnMREQ/nCPTRANS/CPTBIT output delay from FCLK falling
Tfctlh CPnMREQ/nCPTRANS/CPTBIT output hold from FCLK falling
Tfdbgh EDBGRQ input hold from FCLK falling

12-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0144B



AC Characteristics

Table 12-1 ARM940T timing parameters (continued)

Parameter

Description

Tfdbgs

EDBGRQ input setup to FCLK falling

Tfdckd

DBGACK output delay from FCLK rising

Tfdckh

DBGACK output hold from FCLK rising

Tfdwph

DEWPT input hold from FCLK rising

Tfdwps

DEWPT input setup to FCLK rising

Tfekf

ECLK falling output delay from FCLK falling

Tfekr

ECLK rising output delay from FCLK rising

Tfexth

EXTERNO/EXTERNT1 input hold from FCLK falling

Tfexts

EXTERN(O/EXTERNT1 input setup to FCLK falling

Tetkf

FCLKOUT falling output delay from FCLK falling

Tifkr

FCLKOUT rising output delay from FCLK rising

Tfibkh

IEBKPT input hold from FCLK rising

Tfibks

IEBKPT input setup to FCLK rising

Tfinth

nFIQ/nIRQ hold from FCLK falling

Tfints

nFIQ/nIRQ setup to FCLK falling

Tfinxd

INSTREXEC output delay from FCLK falling

Tfinxh

INSTREXEC output hold from FCLK falling

Tfisyh

ISYNC input hold from FCLK falling

Tfisys

ISYNC input setup to FCLK falling

Tfnwtd

nCPWAIT output delay from FCLK rising

Tfnwth

nCPWAIT output hold from FCLK rising

Tfpasd

CPPASS output delay from FCLK rising

Tfpash

CPPASS output hold from FCLK rising

Tfrg0d

RANGEOUTO output delay from FCLK falling

TfrgOh

RANGEOUTO output hold from FCLK falling
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Table 12-1 ARM940T timing parameters (continued)

Parameter  Description

Tfrgld RANGEOUT1 output delay from FCLK falling
Tfrglh RANGEOUT1 output hold from FCLK falling
Tftrakd Tracking mode outputs ICAPCLKBS/TAPSM[4:1]/IR[3:0]/SCREG[3:01/

ECAPCLKBS/PCLKBS/RSTCLKBS/SDIN/SHCLK1BS/SHCLK2BS/
TCK?2) output delay from FCLK falling

Tftrakh Tracking mode outputs ICAPCLKBS/TAPSM[4:1)/IR[3:0]//SCREGI3:0]/
ECAPCLKBS/PCLKBS/RSTCLKBS/SDIN/SHCLK1BS/SHCLK2BS/
TCK?2) output hold from FCLK falling

Tftrght TCK1 falling tracking mode delay from FCLK falling

Tftghr TCK1 rising tracking mode delay from FCLK rising

Tftrkh TRACK input hold to FCLK rising

Tftrks TRACK input setup to FCLK rising

Thdt BD hold to BCLK falling (AMBA test mode)

Tihagnt AGNT hold to BCLK falling

Tihctl BWRITE hold to BCLK rising (AMBA test Mode)

Tihdr BD hold to BCLK falling (normal mode)

Tihdsel DSEL input hold to BCLK rising

Tihnres BnRES input hold to BCLK falling

Tihresp BWAIT/BERROR/BLAST hold to BCLK rising (normal mode)
Tirsd IREG[3:0)/SCREG[3:0] output delay from TCK falling

Tirsh IREGI[3:0[/SCREG]I3:0] hold from TCK falling

Tisagnt AGNT input setup to BCLK rising

Tisctl BWRITE setup to BCLK falling (AMBA test mode)

Tisdr BD setup to BCLK falling (normal mode)

Tisdsel DSEL input setup to BCLK falling

Tisnres BnRES input setup to BCLK rising

Tisresp BWAIT/BERROR/BLAST setup to BCLK rising (normal mode)
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Table 12-1 ARM940T timing parameters (continued)

Parameter

Description

Toha

Sequential BA output hold from BCLK rising

Tohareq

AREQ output hold from BCLK rising

Tohastb

ASTB output hold from BCLK rising

Tohctl

Sequential BLOK/BPROT[1:01/BSIZE[1:0/BWRITE output hold from
BCLK rising

Tohdt

BD output hold from BCLK transition (AMBA test mode)

Tohdws

Sequential BD output hold from BCLK falling

Tohlok

BLOK output hold from BCLK rising

Tohresp

BWAIT/BERROR/BLAST hold from BCLK rising (AMBA test mode)

Tohtr

BTRAN]J1:0] output hold from BCLK falling

Tova

Sequential BA output delay from BCLK rising

Tovaa

Bus handover Address-only BA output delay from BCLK falling

Tovareq

AREQ output delay from BCLK rising

Tovastb

ASTB output delay from BCLK rising

Tovctl

Sequential BLOK/BPROT[1:0)/BSIZE[1:0/BWRITE output delay from
BCLK rising

Tovctla

Bus handover Address-only BLOK/BPROT[1:0]/BSIZE[1:0]/BWRITE
output delay from BCLK falling

Tovdt

BD output delay from BCLK transition (AMBA test mode)

Tovdws

Sequential BD output delay from BCLK falling

Tovlok

BLOK output delay from BCLK rising

Tovresp

BWAIT/BERROR/BLAST output delay from BCLK falling (AMBA test
mode)

Tovtr

BTRAN output delay from BCLK rising

Trgen

RANGEOUT(0/RANGEOUT1 falling output delay from DBGEN falling

Tsdnd

SDIN output delay from TCK falling

Tsdnh

SDIN output hold from TCK falling
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Table 12-1 ARM940T timing parameters (continued)

Parameter

Description

Tsdt

BD setup to BCLK falling (AMBA test mode)

Tshkf

SHCLK1BS/SHCLK2BS falling output from TCK changing

Tshkr

SHCLK1BS/SHCLK2BS rising output from TCK changing

Ttckf

TCK1/TCK2 falling output from TCK changing

Ttckh

TCK minimum width high phase

Ttckl

TCK minimum width low phase

Ttckr

TCK1/TCK2 rising output from TCK changing

Ttdod

TDO output delay from TCK falling

Ttdoh

TDO output hold from TCK falling

Ttdsd

TDO output delay from SDOUTBS changing

Ttdsh

TDO output hold from SDOUTBS changing

Ttekf

ECLK falling output delay from TCK falling

Ttekr

ECLK rising output delay from TCK rising

Ttoed

nTDOEN output delay from TCK falling

Ttoeh

nTDOEN output hold from TCK falling

Ttpmd

TAPSM]3:0] output delay from TCK falling

Ttpmh

TAPSM[3:0] output hold from TCK falling
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Appendix A
ARM940T Signal Descriptions

This appendix lists and describes the ARM940T signals. It contains the following

sections:
. AMBA signals on page A-2
. Coprocessor interface signals on page A-4

. JTAG and TAP controller signals on page A-5
. Debug signals on page A-8
. Miscellaneous signals on page A-10.

ARM DDI 0144B Copyright © 199, 2000 ARM Limited. All rights reserved.

A-1



ARMY40T Signal Descriptions

A1 AMBA signals

Table A-1 on page A-2 describes the AMBA signals used by the ARM940T.

Table A-1 AMBA signals

Name Direction Description

AGNT Input Bus grant. A signal from the bus arbiter to a bus master that indicates the bus master
is granted the bus when BWAIT next goes LOW.

AREQ Output Bus request. A signal from the bus master to the bus arbiter that indicates that the
ARMO940T requires the bus.

ASTB Output Indicates a non-idle A-TRAN cycle.

BA[31:0] Output Address bus. The processor address bus driven by the active bus master.

BCLK Input Bus clock. This clock times all bus transfers. Both the LOW phase and HIGH phase
of BCLK are used to control transfers on the bus.

BD[31:0] Input/Output  Data bus. This is a bidirectional system data bus.

BERROR Input/Output  Error response. A transfer error is indicated by the selected bus slave using the
BERROR signal. When BERROR is HIGH, a transfer error has occurred, when
BERROR is LOW, the transfer is successful. This signal is also used in combination
with the BLAST signal to indicate a bus retract operation.

BLAST Input/Output  Lastresponse. This signal is driven by the selected bus slave to indicate if the current
transfer is the last of a burst sequence. When BLAST is HIGH, the decoder must
allow sufficient time for address decoding. When BLAST is LOW, the next transfer
can continue a burst sequence.

BLOK Output Locked transfers. When HIGH, this signal indicates that the current transfer, and the
next transfer, are to be indivisible, and that no other bus master must be given access
to the bus. This signal is used by the bus arbiter.

BnRES Input Reset. The bus reset signal is active LOW, and is used to reset the system and the bus.
This is the only active LOW AMBA signal.

BUFFSTRAHB  Output When HIGH, indicates that a buffered write is in progress and that NCMAHB is not
valid.

BPROT[1:0] Output Protection control. These signals provide additional information about a bus access
and are primarily intended for use by a bus decoder when acting as a basic protection
unit. The signals indicate if the transfer is an opcode fetch or data access. The signals
also indicate if it is a privileged mode or User mode transfer.
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Table A-1 AMBA signals (continued)

Name

Direction

Description

BSIZE[1:0]

Output

Transfer size. These signals indicate the size of the transfer:
00 = byte access

01 = halfword access

10 = word access

11 =reserved.

BTRAN][1:0]

Output

Transfer type. These signals indicate the type of the next transaction:
00 = an address-only transfer

01 = a nonsequential transfer

10 = reserved

11 = a sequential transfer.

BURST[1:0]

Output

Burst access. These signals indicate the length of a burst transfer:
00 = no sequential information available (default)

01 =reserved

10 = current access is part of a four-word transfer

11 =reserved.

BWAIT

Input/Output

Wait response. This signal is driven by the selected bus slave to indicate if the current
transfer can complete. If BWAIT is HIGH, another bus cycle is required, if BWAIT
is LOW, the transfer completes in the current bus cycle.

BWRITE

Input/Output

Transfer direction. When HIGH, this signal indicates a write transfer, when LOW, a
read transfer.

DSEL

Input

Slave select. This signal is used during test within the AMBA system and allows the
ARM940T to be selected and to have test vectors applied to it.

NCMAHB

Output

Early indication of further S-cycles in the current transfer.

A.1.1  AMBA bus specification

ARMO940T has an AMBA-compatible bus interface. See the AMBA Specification (Rev
2.0) for full details.

See also Chapter 6 Bus Interface Unit for details of the subset of AMBA bus
transactions that the ARM940T can initiate.

ARM DDI 0144B
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A.2  Coprocessor interface signals

Table A-2 on page A-4 describes the coprocessor interface signals.

Table A-2 Coprocessor interface signals

Name Direction Description

CHSDE[1:0] Input Coprocessor handshake decode. The handshake signals from the Decode stage of
the coprocessor pipeline follower.

CHSEX]1:0] Input Coprocessor handshake execute. The handshake signals from the Execute stage of
the coprocessor pipeline follower.

CPCLK Output Coprocessor clock. This clock controls the operation of the coprocessor interface.

CPDOUT[31:0] Output Coprocessor data out. The coprocessor data bus for transferring MCR and LDC data to
the coprocessor.

CPDIN[31:0] Input Coprocessor data in. The coprocessor data bus for transferring MRC and STC data from
the coprocessor to the ARM940T.

CPID[31:0] Output Coprocessor instruction data. This is the coprocessor instruction data bus that
instructions are transferred over to the pipeline follower in the coprocessor.

CPLATECANCEL  Output Coprocessor late cancel. When a coprocessor instruction is being executed, if this
signal is HIGH during the first memory cycle, the coprocessor instruction is
canceled without updating the coprocessor state.

nCPMREQ Output Not coprocessor memory request. When LOW on a rising CPCLK edge and
nCPWAIT LOW, the instruction on CPID enters the coprocessor pipeline follower
Decode stage. The second instruction previously in the pipeline follower Decode
stage enters its Execute stage.

CPPASS Output Coprocessor pass. This signal indicates that there is a coprocessor instruction in the
Execute stage of the pipeline, and it must be executed.

CPTBIT Output Coprocessor thumb bit. If HIGH, the coprocessor interface is in Thumb state.

nCPTRANS Output Not coprocessor translate. When HIGH, the coprocessor interface is in a
non-privileged mode. When LOW, the coprocessor interface is in a privileged
mode. The coprocessor samples this signal on every cycle when determining the
COProcessor response.

nCPWAIT Output Not coprocessor wait. The coprocessor clock CPCLK is qualified by nCPWAIT to
allow the ARM940T to control the transfer of data on the coprocessor interface.
nCPWAIT changes while CPCLK is HIGH.

For more information on the coprocessor interface see Chapter 7 Coprocessor
Interface.
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A.3 JTAG and TAP controller signals

Table A-3 on page A-5 describes the JTAG and TAP controller signals.

Table A-3 JTAG and TAP controller signals

Name

Direction

Description

DRIVEOUTBS

Output

Boundary scan cell enable. This signal is used to control the multiplexors in the
scan cells of an external boundary scan chain. This signal changes in the
UPDATE-IR state when scan chain 3 is selected, and either the INTEST, EXTEST,
CLAMP, or CLAMPZ instruction is loaded. When an external boundary scan
chain is not connected, this output must be left unconnected.

ECAPCLKBS

Output

EXTEST capture clock for boundary scan. This is a TCK2 wide pulse generated
when the TAP controller state machine is in the CAPTURE-DR state, the current
instruction is EXTEST, and scan chain 3 is selected. This signal is used to capture
the chip level inputs during EXTEST. When an external boundary scan chain is not
connected, this output must be left unconnected.

ICAPCLKBS

Output

INTEST capture clock. This is a TCK2 wide pulse generated when the TAP
controller state machine is in the CAPTURE-DR state, the current instruction is
INTEST, and scan chain 3 is selected. This signal is used to capture the chip level
outputs during INTEST. When an external boundary scan chain is not connected,
this output must be left unconnected.

IR[3:0]

Output

Tap controller instruction register. These four bits reflect the current instruction
loaded into the TAP controller instruction register. The bits change on the falling
edge of TCK when the state machine is in the UPDATE-IR state.

PCLKBS

Output

Boundary scan update clock. This is a TCK2 wide pulse generated when the TAP
controller state machine is in the UPDATE-DR state, and scan chain 3 is selected.
This signal is used by an external boundary scan chain as the update clock. When
an external boundary scan chain is not connected, this output must be left
unconnected.

RSTCLKBS

Output

Boundary scan reset clock. This signal denotes that either the TAP controller state
machine is in the RESET state, or that n'TRST has been asserted. This can be used
to reset external boundary scan cells.

SCREG([4:0]

Output

Scan chain register. These four bits reflect the ID number of the scan chain
currently selected by the TAP controller. These bits change on the falling edge of
TCK when the TAP state machine is in the UPDATE-DR state.

SDIN

Output

Boundary scan serial input data. This signal contains the serial data to be applied
to an external scan chain, and is valid around the falling edge of TCK.

ARM DDI 0144B
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Table A-3 JTAG and TAP controller signals (continued)

Name

Direction

Description

SDOUTBS

Input

Boundary scan serial output data. This is the serial data out of the boundary scan
chain (or other external scan chain). It must be set up to the rising edge of TCK.
When an external boundary scan chain is not connected, this input must be tied
LOW.

SHCLK1BS

Output

Boundary scan shift clock phase 1. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLKI1BS is used to clock the
master half of the external scan cells. When in the SHIFT-DR state of the state
machine and scan chain 3 is selected, SHCLK1BS follows TCK1. When not in
the SHIFT-DR state, or when scan chain 3 is not selected, this clock is LOW. When
an external boundary scan chain is not connected, this output must be left
unconnected.

SHCLK2BS

Output

Boundary scan shift clock phase 2. This control signal is provided to ease the
connection of an external boundary scan chain. SHCLK2BS is used to clock the
slave half of the external scan cells. When in the SHIFT-DR state of the state
machine and scan chain 3 is selected, SHCLK2BS follows TCK2. When not in
the SHIFT-DR state, or when scan chain 3 is not selected, this clock is LOW. When
an external boundary scan chain is not connected, this output must be left
unconnected.

TAPID[31:0]

Input

This is the ARM940T device identification (ID) code test data register, accessible
from the scan chains. It must be tied to an appropriate value when the device is
instantiated.

TAPSM[3:0]

Output

TAP controller state machine. This bus reflects the current state of the TAP
controller state machine. These bits change off the rising edge of TCK.

TCK

Input

Test clock. The JTAG clock (the test clock).

TCK1

Output

TCK, phase 1. TCK1 is HIGH when TCK is HIGH, although there is a slight
phase lag because of the internal clock non-overlap.

TCK2

Output

TCK, phase 2. TCK2 is HIGH when TCK is LOW, although there is a slight
phase lag because of the internal clock non-overlap.

TDI

Input

Test data input. JTAG serial input.

TDO

Output

Test data output. JTAG serial output.
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Table A-3 JTAG and TAP controller signals (continued)

Name Direction Description

nTDOEN Output Not TDO Enable. When HIGH, this signal denotes that serial data is being driven
out on the TDO output. " TDOEN would normally be used as an output enable for
a TDO pin in a packaged part.

TMS Input Test mode select. TMS selects the next state that the TAP controller state machine
must change to.

nTRST Input Not test reset. Active-low reset signal for the boundary scan logic. This pin must

be pulsed or driven LOW to achieve normal device operation, in addition to the
normal device reset (BnRES).
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A.4  Debug signals

Table A-4 on page A-8 describes the debug signals.

Table A-4 Debug signals

Name Direction Description

COMMRX Output Communications channel receive. When HIGH, this signal denotes that the
comms channel receive buffer contains data waiting to be read by the processor
core.

COMMTX Output Communications channel transmit. When HIGH, this signal denotes that the
comms channel transmit buffer is empty.

DBGACK Output Debug acknowledge. When HIGH, this signal indicates the ARM is in debug state.

DBGEN Input Debug enable. This input signal allows the debug features of the ARM940T to be
disabled. This signal must be HIGH unless debugging is not required.

DBGRQI Output Internal debug request. This signal represents the debug request signal presented
to the processor core. This is a combination of EDBGRQ, as presented to the
ARMO940T, and bit 1 of the debug control register.

DEWPT Input External watchpoint. This signal allows external data watchpoints to be
implemented.

ECLK Output External clock output.

EDBGRQ Input External debug request. When driven HIGH, this causes the processor to enter
debug state when execution of the current instruction has completed.

EXTERNO Input External input 0. This is an input to watchpoint unit O of the EmbeddedICE unit in
the processor, and allows breakpoints/watchpoints to be dependent on an external
condition.

EXTERN1 Input External input 1. This is an input to watchpoint unit 1 of the EmbeddedICE unit in
the processor, and allows breakpoints/watchpoints to be dependent on an external
condition.

IEBKPT Input External breakpoint. This signal allows an external instruction breakpoints to be
implemented.

INSTREXEC Output Instruction executed. Indicates that in the previous cycle, the instruction in the
Execute stage of the pipeline passed its condition codes, and executed.
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ARM940T Signal Descriptions

Table A-4 Debug signals (continued)

Name

Direction

Description

RANGEOUTO0

Output

EmbeddedICE rangeout 0. This signal indicates that the EmbeddedICE unit
watchpoint unit 0 has matched the conditions currently present on the address, data
and control buses. This signal is independent of the state of the watchpoint unit
enable control bit.

RANGEOUT1

Output

EmbeddedICE rangeout 1. This signal indicates that the EmbeddedICE unit
watchpoint unit 1 has matched the conditions currently present on the address, data
and control buses. This signal is independent of the state of the watchpoint unit
enable control bit.

TRACK

Input

Enable tracking ICE mode. Driving this signal HIGH places the ARM940T into
tracking mode for debugging purposes.
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ARMY40T Signal Descriptions

A.5 Miscellaneous signals

Table A-5 on page A-10 describes the miscellaneous signals.

Table A-5 Miscellaneous signals

Name Direction Description

BIGENDOUT Output Big-endian output. When HIGH, the ARM940T is operating in big-endian
configuration. When LOW, it is in little-endian configuration.

ENAMBADRYV Output AMBA signal enabled. This signal is driven HIGH when the AMBA signals,
BA[31:0], BLOK, BPROT, BWRITE, and BSIZE are driven out of the
ARMO940T macrocell. When this signal is driven LOW, these outputs are in the
high-impedance state.

ENBTRAN Output BTRAN enable. This signal is driven HIGH when the AMBA signal
BTRANIJ1:0] is driven out of the ARM940T macrocell. When this signal is driven
LOW, BTRANJ1:0] is in the high-impedance state.

FCLK Input Fast clock. The fast clock input is used when the ARM940T is in the synchronous
or asynchronous clocking mode.

FCLKOUT Output The fast clock signal after the multiplexing within the AMBA test wrapper, as used
by the ARM940T clock generator.

GATEDBDDRV Output BD direction. This signal is driven HIGH when the bidirectional AMBA data bus,
BD[31:0], is driven as an output. When this signal is LOW, BD[31:0] is in its input
state.

ISYNC Input Synchronous interrupts. When HIGH, interrupts must be applied synchronously.
nFIQ Input Fast interrupt request, active LOW. When the nFIQ signal goes LOW the core is
being requested to deal with an interrupt.

nIRQ Input Interrupt request, active LOW. When the nIRQ signal goes LOW the core is
being requested to deal with an interrupt.
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Glossary

Abort

Abort model

ALU

Application Specific
Integrated Circuit

Arithmetic Logic Unit
ARM state

ASIC

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

A mechanism that indicates to a core that it should halt execution of an attempted illegal
memory access. An abort can be caused by the external or internal memory system as a
result of attempting to access invalid instruction or data memory. An abort is classified
as either a prefetch abort, a data abort, or an external abort. See also Data abort,
External abort and Prefetch abort.

An abort model is the defined behavior of an ARM processor in response to a Data
Abort exception. Different abort models behave differently with regard to load and store
instructions that specify base register writeback.

See Arithmetic Logic Unit.

An integrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.

The part of a processor core that performs arithmetic and logic operations.

A processor that is executing ARM (32-bit) word-aligned instructions is operating in
ARM state.

See Application Specific Integrated Circuit.
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Glossary

Banked registers

Base register

Big-endian

Breakpoint

Byte

Cache

Cache contention

Cache hit

Cache line index

Cache lockdown

Those physical registers whose use is defined by the current processor mode. The
banked registers are R8 to R14.

A register specified by a load or store instruction that is used to hold the base value for
the instruction’s address calculation.

Byte ordering scheme in which bytes of decreasing significance in a data word are
stored at increasing addresses in memory. See also Little-endian and Endianness.

A breakpoint is a mechanism provided by debuggers to identify an instruction at which
program execution is to be halted. Breakpoints are inserted by the programmer to allow
inspection of register contents, memory locations, variable values at fixed points in the
program execution to test that the program is operating correctly. Breakpoints are
removed after the program is successfully tested. See also Watchpoint.

An 8-bit data item.

A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retreiving copies of often used
instructions and/or data. This is done to greatly reduce the average speed of memory
accesses and so to increase processor performance.

When the number of frequently-used memory cache lines that use a particular cache set
exceeds the set-associativity of the cache. In this case, main memory activity increases
and performance decreases.

A memory access that can be processed at high speed because the instruction or data
that it addresses is already held in the cache.

The number associated with each cache line in a cache set. Within each cache set, the
cache lines are numbered from 0 to (set associativity) -1.

To fix a line in cache memory so that it cannot be overwritten. Cache lockdown allows
critical instructions and/or data to be loaded into the cache so that the cache lines
containing them will not subsequently be reallocated. This ensures that all subsequent
accesses to the instructions/data concerned are cache hits, and therefore complete as
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it
addresses is not in the cache and a main memory access is required.

CAM See Content addressable memory.

Central Processing The part of a processor that contains the ALU, the registers, and the instruction decode

Unit logic and control circuitry. Also commonly known as the processor core.

Clock gating Gating a clock signal for a macrocell with a control signal (such as PWRDOWN) and
using the modified clock that results to control the operating state of the macrocell.
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Condition field
Content addressable
memory

Coprocessor

CPU

Data Abort

Data cache

DCache

Debugger

Domain

Double word

EmbeddedICE

Endianness

Exception vector

External abort

Halfword

Glossary

A 4-bit field in an instruction that is used to specify a codition under which the
instruction can execute.

Memory that is identified by its contents. Content addressable memory is used in
CAM-RAM architecture caches to store the tags for cache entries.

A processor that supplements the main CPU. It carries out additional functions that the
main CPU cannot perform. Usually used for floating-point math calculations, signal
processing, or memory management.

See Central Processing Unit.

An indication from a memory system to a core that it should halt execution of an
attempted illegal memory access. A data abort is attempting to access invalid data
memory. See also Abort, External abort and Prefetch abort.

See DCache.

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retreiving copies of often used data. This is done to
greatly reduce the average speed of memory accesses and so to increase processor
performance.

A debugging system that includes a program, used to detect, locate, and correct
software faults, together with custom hardware that supports software debugging.

A collection of sections, large pages and small pages of memory, which can have their
access permissions switched rapidly by writing to the Domain Access Control Register
(CP15 register 3).

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise
stated.

The additional JTAG-based hardware provided by debuggable ARM processors to aid
debugging.

Byte ordering. The scheme that determines the order in which successive bytes of a data
word are stored in memory. See also Little-endian and Big-endian.

One of a number of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt service
routine.

An indication from an external memory system to a core that it should halt execution of
an attempted illegal memory access. An external abort is caused by the external
memory system as a result of attempting to access invalid memory. See also Abort,
Data abort and Prefetch abort

A 16-bit data item.
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ICache

Instruction cache

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retreiving copies of often used instructions. This is
done to greatly reduce the average speed of memory accesses and so to increase
processor performance.

See ICache.

Joint Test Action Group The name of the organization that developed standard IEEE 1149.1. This standard

JTAG

Little-endian

Macrocell

Prefetch abort

Processor

Region
Register
SBO
SBz
SCREG

Should be one

Should be zero

Tag bits
TAP

defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

See Joint Test Action Group.

Byte ordering scheme in which bytes of increasing significance in a data word are
stored at increasing addresses in memory. See also Big-endian and Endianness.

A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such as an ARMOIE-S, an ETM9, and a memory
block) plus application-specific logic.

An indication from a memory system to a core that it should halt execution of an
attempted illegal memory access. A prefetch abort can be caused by the external or
internal memory system as a result of attempting to access invalid instruction memory.
See also Data abort, External abort and Abort

A contraction of microprocessor. A processor includes the CPU or core, plus additional
components such as memory, and interfaces. These are combined as a single macrocell,
that can be fabricated on an integrated circuit.

A partition of instruction or data memory space.

A temporary storage location used to hold binary data until it is ready to be used.
See Should be one.

See Should be zero.

The currently selected scan chain number in an ARM TAP controller.

Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 will produce
UNPREDICTABLE results.

Should be written as O (or all Os for bit fields) by software. Writing a 1 will produce
UNPREDICTABLE results.

The index or key field of a CAM entry.

See Test access port.
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Test Access Port

Thumb state

UNDEFINED
UNPREDICTABLE

Watchpoint

Word

Glossary

The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

A processor that is executing Thumb (16-bit) half-word aligned instructions is
operating in Thumb state

An instruction that generates an undefined instruction exception.

For reads, the data returned when reading from this location is unpredictable. It can
have any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. UNPREDICTABLE instructions must
not halt or hang the processor, or any part of the system.

A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory address is changed. Watchpoints are inserted
by the programmer to allow inspection of register contents, memory locations, and
variable values when memory is written to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

A 32-bit data item.
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