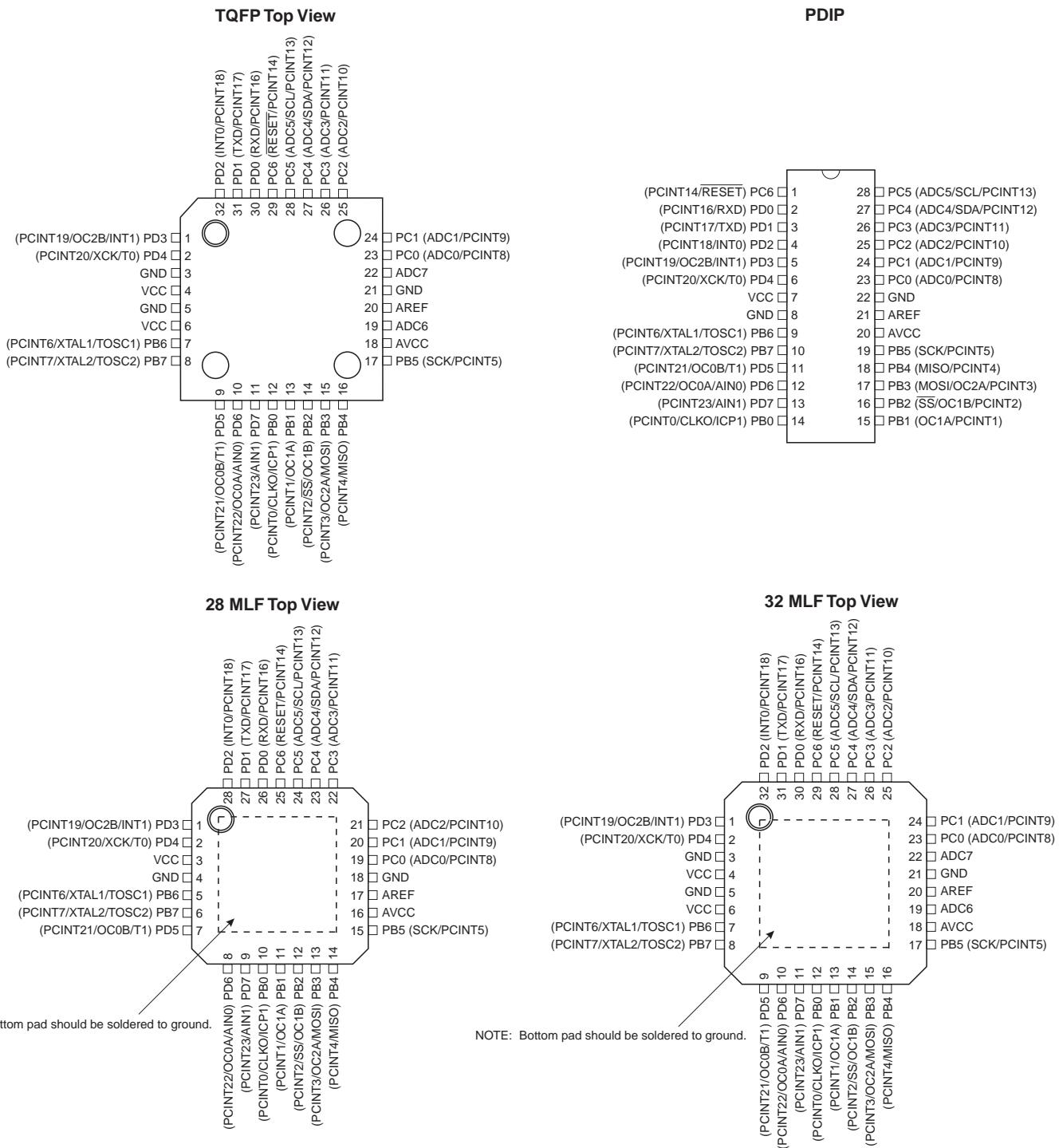


Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions – Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20 MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16/32K Bytes of In-System Self-Programmable Flash program memory (ATmega48P/88P/168P/328P)
 - 256/512/512/1K Bytes EEPROM (ATmega48P/88P/168P/328P)
 - 512/1K/1K/2K Bytes Internal SRAM (ATmega48P/88P/168P/328P)
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits
 - In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package
 - Temperature Measurement
 - 6-channel 10-bit ADC in PDIP Package
 - Temperature Measurement
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 - 5.5V for ATmega48P/88P/168PV
 - 2.7 - 5.5V for ATmega48P/88P/168P
 - 1.8 - 5.5V for ATmega328P
- Temperature Range:
 - -40°C to 85°C
- Speed Grade:
 - ATmega48P/88P/168PV: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
 - ATmega48P/88P/168P: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
 - ATmega328P: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
- Low Power Consumption at 1 MHz, 1.8V, 25°C for ATmega48P/88P/168P:
 - Active Mode: 0.3 mA
 - Power-down Mode: 0.1 µA
 - Power-save Mode: 0.8 µA (Including 32 kHz RTC)

8-bit AVR® Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash


ATmega48P/V
ATmega88P/V
ATmega168P/V
ATmega328P

Preliminary

Summary

1. Pin Configurations

Figure 1-1. Pinout ATmega48P/88P/168P/328P

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "[Alternate Functions of Port B](#)" on page 82 and "[System Clock and Clock Options](#)" on page 26.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in [Table 28-3 on page 320](#). Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "[Alternate Functions of Port C](#)" on page 85.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "[Alternate Functions of Port D](#)" on page [88](#).

1.1.7 **AV_{CC}**

AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6..4 use digital supply voltage, V_{CC}.

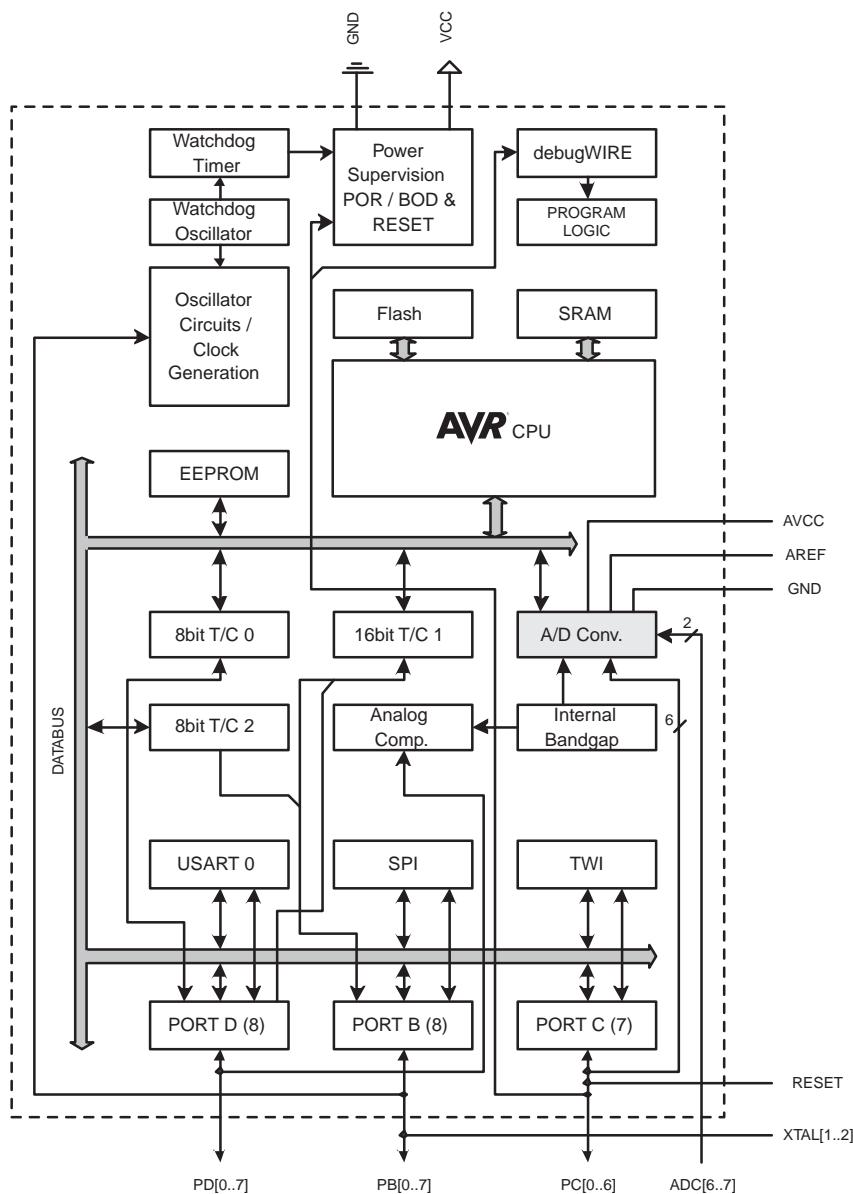
1.1.8 **AREF**

AREF is the analog reference pin for the A/D Converter.

1.1.9 **ADC7:6 (TQFP and QFN/MLF Package Only)**

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

1.2 Disclaimer


Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATmega48P/88P/168P/328P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48P/88P/168P/328P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48P/88P/168P/328P provides the following features: 4K/8K/16K/32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1K bytes EEPROM, 512/1K/1K/2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48P/88P/168P/328P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48P/88P/168P/328P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between ATmega48P, ATmega88P, ATmega168P, and ATmega328P

The ATmega48P, ATmega88P, ATmega168P, and ATmega328P differ only in memory sizes, boot loader support, and interrupt vector sizes. [Table 2-1](#) summarizes the different memory and interrupt vector sizes for the three devices.

Table 2-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48P	4K Bytes	256 Bytes	512 Bytes	1 instruction word/vector
ATmega88P	8K Bytes	512 Bytes	1K Bytes	1 instruction word/vector
ATmega168P	16K Bytes	512 Bytes	1K Bytes	2 instruction words/vector
ATmega328P	32K Bytes	1K Bytes	2K Bytes	2 instructions words/vector

ATmega88P, ATmega168P, and ATmega328P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48P, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on <http://www.atmel.com/avr>.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	—	—	—	—	—	—	—	—	
(0xFE)	Reserved	—	—	—	—	—	—	—	—	
(0xFD)	Reserved	—	—	—	—	—	—	—	—	
(0xFC)	Reserved	—	—	—	—	—	—	—	—	
(0xFB)	Reserved	—	—	—	—	—	—	—	—	
(0xFA)	Reserved	—	—	—	—	—	—	—	—	
(0xF9)	Reserved	—	—	—	—	—	—	—	—	
(0xF8)	Reserved	—	—	—	—	—	—	—	—	
(0xF7)	Reserved	—	—	—	—	—	—	—	—	
(0xF6)	Reserved	—	—	—	—	—	—	—	—	
(0xF5)	Reserved	—	—	—	—	—	—	—	—	
(0xF4)	Reserved	—	—	—	—	—	—	—	—	
(0xF3)	Reserved	—	—	—	—	—	—	—	—	
(0xF2)	Reserved	—	—	—	—	—	—	—	—	
(0xF1)	Reserved	—	—	—	—	—	—	—	—	
(0xF0)	Reserved	—	—	—	—	—	—	—	—	
(0xEF)	Reserved	—	—	—	—	—	—	—	—	
(0xEE)	Reserved	—	—	—	—	—	—	—	—	
(0xED)	Reserved	—	—	—	—	—	—	—	—	
(0xEC)	Reserved	—	—	—	—	—	—	—	—	
(0xEB)	Reserved	—	—	—	—	—	—	—	—	
(0xEA)	Reserved	—	—	—	—	—	—	—	—	
(0xE9)	Reserved	—	—	—	—	—	—	—	—	
(0xE8)	Reserved	—	—	—	—	—	—	—	—	
(0xE7)	Reserved	—	—	—	—	—	—	—	—	
(0xE6)	Reserved	—	—	—	—	—	—	—	—	
(0xE5)	Reserved	—	—	—	—	—	—	—	—	
(0xE4)	Reserved	—	—	—	—	—	—	—	—	
(0xE3)	Reserved	—	—	—	—	—	—	—	—	
(0xE2)	Reserved	—	—	—	—	—	—	—	—	
(0xE1)	Reserved	—	—	—	—	—	—	—	—	
(0xE0)	Reserved	—	—	—	—	—	—	—	—	
(0xDF)	Reserved	—	—	—	—	—	—	—	—	
(0xDE)	Reserved	—	—	—	—	—	—	—	—	
(0xDD)	Reserved	—	—	—	—	—	—	—	—	
(0xDC)	Reserved	—	—	—	—	—	—	—	—	
(0xDB)	Reserved	—	—	—	—	—	—	—	—	
(0xDA)	Reserved	—	—	—	—	—	—	—	—	
(0xD9)	Reserved	—	—	—	—	—	—	—	—	
(0xD8)	Reserved	—	—	—	—	—	—	—	—	
(0xD7)	Reserved	—	—	—	—	—	—	—	—	
(0xD6)	Reserved	—	—	—	—	—	—	—	—	
(0xD5)	Reserved	—	—	—	—	—	—	—	—	
(0xD4)	Reserved	—	—	—	—	—	—	—	—	
(0xD3)	Reserved	—	—	—	—	—	—	—	—	
(0xD2)	Reserved	—	—	—	—	—	—	—	—	
(0xD1)	Reserved	—	—	—	—	—	—	—	—	
(0xD0)	Reserved	—	—	—	—	—	—	—	—	
(0xCF)	Reserved	—	—	—	—	—	—	—	—	
(0xCE)	Reserved	—	—	—	—	—	—	—	—	
(0xCD)	Reserved	—	—	—	—	—	—	—	—	
(0xCC)	Reserved	—	—	—	—	—	—	—	—	
(0xCB)	Reserved	—	—	—	—	—	—	—	—	
(0xCA)	Reserved	—	—	—	—	—	—	—	—	
(0xC9)	Reserved	—	—	—	—	—	—	—	—	
(0xC8)	Reserved	—	—	—	—	—	—	—	—	
(0xC7)	Reserved	—	—	—	—	—	—	—	—	
(0xC6)	UDR0									195
(0xC5)	UBRR0H									199
(0xC4)	UBRR0L									199
(0xC3)	Reserved	—	—	—	—	—	—	—	—	
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01/UDORD0	UCSZ00/UCPHAO	UCPOL0	197/212
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	196
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	195

ATmega48P/88P/168P/328P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	—	—	—	—	—	—	—	—	
(0xBE)	Reserved	—	—	—	—	—	—	—	—	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	—	245
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	—	TWIE	242
(0xBB)	TWDR	2-wire Serial Interface Data Register								244
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	245
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	—	TWPS1	TWPS0	244
(0xB8)	TWBR	2-wire Serial Interface Bit Rate Register								242
(0xB7)	Reserved	—	—	—	—	—	—	—	—	
(0xB6)	ASSR	—	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	164
(0xB5)	Reserved	—	—	—	—	—	—	—	—	
(0xB4)	OCR2B	Timer/Counter2 Output Compare Register B								162
(0xB3)	OCR2A	Timer/Counter2 Output Compare Register A								162
(0xB2)	TCNT2	Timer/Counter2 (8-bit)								162
(0xB1)	TCCR2B	FOC2A	FOC2B	—	—	WGM22	CS22	CS21	CS20	161
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	—	—	WGM21	WGM20	158
(0xAF)	Reserved	—	—	—	—	—	—	—	—	
(0xAE)	Reserved	—	—	—	—	—	—	—	—	
(0xAD)	Reserved	—	—	—	—	—	—	—	—	
(0xAC)	Reserved	—	—	—	—	—	—	—	—	
(0xAB)	Reserved	—	—	—	—	—	—	—	—	
(0xAA)	Reserved	—	—	—	—	—	—	—	—	
(0xA9)	Reserved	—	—	—	—	—	—	—	—	
(0xA8)	Reserved	—	—	—	—	—	—	—	—	
(0xA7)	Reserved	—	—	—	—	—	—	—	—	
(0xA6)	Reserved	—	—	—	—	—	—	—	—	
(0xA5)	Reserved	—	—	—	—	—	—	—	—	
(0xA4)	Reserved	—	—	—	—	—	—	—	—	
(0xA3)	Reserved	—	—	—	—	—	—	—	—	
(0xA2)	Reserved	—	—	—	—	—	—	—	—	
(0xA1)	Reserved	—	—	—	—	—	—	—	—	
(0xA0)	Reserved	—	—	—	—	—	—	—	—	
(0x9F)	Reserved	—	—	—	—	—	—	—	—	
(0x9E)	Reserved	—	—	—	—	—	—	—	—	
(0x9D)	Reserved	—	—	—	—	—	—	—	—	
(0x9C)	Reserved	—	—	—	—	—	—	—	—	
(0x9B)	Reserved	—	—	—	—	—	—	—	—	
(0x9A)	Reserved	—	—	—	—	—	—	—	—	
(0x99)	Reserved	—	—	—	—	—	—	—	—	
(0x98)	Reserved	—	—	—	—	—	—	—	—	
(0x97)	Reserved	—	—	—	—	—	—	—	—	
(0x96)	Reserved	—	—	—	—	—	—	—	—	
(0x95)	Reserved	—	—	—	—	—	—	—	—	
(0x94)	Reserved	—	—	—	—	—	—	—	—	
(0x93)	Reserved	—	—	—	—	—	—	—	—	
(0x92)	Reserved	—	—	—	—	—	—	—	—	
(0x91)	Reserved	—	—	—	—	—	—	—	—	
(0x90)	Reserved	—	—	—	—	—	—	—	—	
(0x8F)	Reserved	—	—	—	—	—	—	—	—	
(0x8E)	Reserved	—	—	—	—	—	—	—	—	
(0x8D)	Reserved	—	—	—	—	—	—	—	—	
(0x8C)	Reserved	—	—	—	—	—	—	—	—	
(0x8B)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte								138
(0x8A)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte								138
(0x89)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte								138
(0x88)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte								138
(0x87)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								139
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								139
(0x85)	TCNT1H	Timer/Counter1 - Counter Register High Byte								138
(0x84)	TCNT1L	Timer/Counter1 - Counter Register Low Byte								138
(0x83)	Reserved	—	—	—	—	—	—	—	—	
(0x82)	TCCR1C	FOC1A	FOC1B	—	—	—	—	—	—	137
(0x81)	TCCR1B	ICNC1	ICES1	—	WGM13	WGM12	CS12	CS11	CS10	136
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	—	—	WGM11	WGM10	134
(0x7F)	DIDR1	—	—	—	—	—	—	AIN1D	AIN0D	250
(0x7E)	DIDR0	—	—	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	267

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	—	—	—	—	—	—	—	—	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	—	MUX3	MUX2	MUX1	MUX0	263
(0x7B)	ADCSRB	—	ACME	—	—	—	ADTS2	ADTS1	ADTS0	266
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	264
(0x79)	ADCH	ADC Data Register High byte							—	266
(0x78)	ADCL	ADC Data Register Low byte							—	266
(0x77)	Reserved	—	—	—	—	—	—	—	—	
(0x76)	Reserved	—	—	—	—	—	—	—	—	
(0x75)	Reserved	—	—	—	—	—	—	—	—	
(0x74)	Reserved	—	—	—	—	—	—	—	—	
(0x73)	Reserved	—	—	—	—	—	—	—	—	
(0x72)	Reserved	—	—	—	—	—	—	—	—	
(0x71)	Reserved	—	—	—	—	—	—	—	—	
(0x70)	TIMSK2	—	—	—	—	—	OCIE2B	OCIE2A	TOIE2	163
(0x6F)	TIMSK1	—	—	ICIE1	—	—	OCIE1B	OCIE1A	TOIE1	139
(0x6E)	TIMSK0	—	—	—	—	—	OCIE0B	OCIE0A	TOIE0	111
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	74
(0x6C)	PCMSK1	—	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	74
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	74
(0x6A)	Reserved	—	—	—	—	—	—	—	—	
(0x69)	EICRA	—	—	—	—	ISC11	ISC10	ISC01	ISC00	71
(0x68)	PCICR	—	—	—	—	—	PCIE2	PCIE1	PCIE0	
(0x67)	Reserved	—	—	—	—	—	—	—	—	
(0x66)	OSCCAL	Oscillator Calibration Register							—	37
(0x65)	Reserved	—	—	—	—	—	—	—	—	
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	—	PRTIM1	PRSPI	PRUSART0	PRADC	42
(0x63)	Reserved	—	—	—	—	—	—	—	—	
(0x62)	Reserved	—	—	—	—	—	—	—	—	
(0x61)	CLKPR	CLKPCE	—	—	—	CLKPS3	CLKPS2	CLKPS1	CLKPS0	37
(0x60)	WDTCSR	WDIF	WDIE	WDWP3	WDCE	WDE	WDWP2	WDWP1	WDWP0	54
0x3F (0x5F)	SREG	I	T	H	S	V	N	Z	C	9
0x3E (0x5E)	SPH	—	—	—	—	—	(SP10) ⁵		SP9	SP8
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
0x3C (0x5C)	Reserved	—	—	—	—	—	—	—	—	
0x3B (0x5B)	Reserved	—	—	—	—	—	—	—	—	
0x3A (0x5A)	Reserved	—	—	—	—	—	—	—	—	
0x39 (0x59)	Reserved	—	—	—	—	—	—	—	—	
0x38 (0x58)	Reserved	—	—	—	—	—	—	—	—	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ⁵	—	(RWWRE) ⁵	BLBSET	PGWRT	PGERS	SELFPRGEN	293
0x36 (0x56)	Reserved	—	—	—	—	—	—	—	—	
0x35 (0x55)	MCUCR	—	BODS	BODSE	PUD	—	—	IVSEL	IVCE	44/68/92
0x34 (0x54)	MCUSR	—	—	—	—	WDRF	BORF	EXTRF	PORF	54
0x33 (0x53)	SMCR	—	—	—	—	SM2	SM1	SM0	SE	40
0x32 (0x52)	Reserved	—	—	—	—	—	—	—	—	
0x31 (0x51)	Reserved	—	—	—	—	—	—	—	—	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	248
0x2F (0x4F)	Reserved	—	—	—	—	—	—	—	—	
0x2E (0x4E)	SPDR	SPI Data Register							—	175
0x2D (0x4D)	SPSR	SPIF	WCOL	—	—	—	—	—	SPI2X	174
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	173
0x2B (0x4B)	GPIOR2	General Purpose I/O Register 2							—	25
0x2A (0x4A)	GPIOR1	General Purpose I/O Register 1							—	25
0x29 (0x49)	Reserved	—	—	—	—	—	—	—	—	
0x28 (0x48)	OCR0B	Timer/Counter0 Output Compare Register B							—	
0x27 (0x47)	OCR0A	Timer/Counter0 Output Compare Register A							—	
0x26 (0x46)	TCNT0	Timer/Counter0 (8-bit)							—	
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	—	—	WGM02	CS02	CS01	CS00	
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	—	—	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	—	—	—	—	—	PSRASY	PSRSYNC	143/165
0x22 (0x42)	EEARH	(EEPROM Address Register High Byte) ⁵							—	21
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte							—	21
0x20 (0x40)	EEDR	EEPROM Data Register							—	21
0x1F (0x3F)	ECCR	—	—	EEPMP1	EEPMP0	EERIE	EEMPE	EEPE	EERE	21
0x1E (0x3E)	GPIOR0	General Purpose I/O Register 0							—	25
0x1D (0x3D)	EIMSK	—	—	—	—	—	—	INT1	INT0	72
0x1C (0x3C)	EIFR	—	—	—	—	—	—	INTF1	INTF0	72

ATmega48P/88P/168P/328P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	—	—	—	—	—	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	—	—	—	—	—	—	—	—	
0x19 (0x39)	Reserved	—	—	—	—	—	—	—	—	
0x18 (0x38)	Reserved	—	—	—	—	—	—	—	—	
0x17 (0x37)	TIFR2	—	—	—	—	—	OCF2B	OCF2A	TOV2	163
0x16 (0x36)	TIFR1	—	—	ICF1	—	—	OCF1B	OCF1A	TOV1	140
0x15 (0x35)	TIFR0	—	—	—	—	—	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	—	—	—	—	—	—	—	—	
0x13 (0x33)	Reserved	—	—	—	—	—	—	—	—	
0x12 (0x32)	Reserved	—	—	—	—	—	—	—	—	
0x11 (0x31)	Reserved	—	—	—	—	—	—	—	—	
0x10 (0x30)	Reserved	—	—	—	—	—	—	—	—	
0x0F (0x2F)	Reserved	—	—	—	—	—	—	—	—	
0x0E (0x2E)	Reserved	—	—	—	—	—	—	—	—	
0x0D (0x2D)	Reserved	—	—	—	—	—	—	—	—	
0x0C (0x2C)	Reserved	—	—	—	—	—	—	—	—	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	93
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	93
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	93
0x08 (0x28)	PORTC	—	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	92
0x07 (0x27)	DDRC	—	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	92
0x06 (0x26)	PINC	—	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	92
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	92
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	92
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	92
0x02 (0x22)	Reserved	—	—	—	—	—	—	—	—	
0x01 (0x21)	Reserved	—	—	—	—	—	—	—	—	
0x00 (0x20)	Reserved	—	—	—	—	—	—	—	—	

Note:

1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVR_s, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48P/88P/168P/328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
5. Only valid for ATmega88P/168P.

6. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	RdI,K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	RdI,K	Subtract Immediate from Word	$Rdh:Rdl \leftarrow Rdh:Rdl - K$	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow 0x00 - Rd$	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) \lll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) \lll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) \lll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP ⁽¹⁾	k	Direct Jump	$PC \leftarrow k$	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL ⁽¹⁾	k	Direct Subroutine Call	$PC \leftarrow k$	None	4
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) $PC \leftarrow PC + 2$ or 3	None	1/2/3
CP	Rd,Rr	Compare	$Rd \leftarrow Rr$	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	$Rd \leftarrow Rr - C$	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	$Rd \leftarrow K$	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) $PC \leftarrow PC + 2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) $PC \leftarrow PC + 2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) $PC \leftarrow PC + 2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) $PC \leftarrow PC + 2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then $PC \leftarrow PC + k + 1$	None	1/2

ATmega48P/88P/168P/328P

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	Rd(n+1) ← Rd(n), Rd(0) ← 0	Z,C,N,V	1
LSR	Rd	Logical Shift Right	Rd(n) ← Rd(n+1), Rd(7) ← 0	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0)←C,Rd(n+1)←Rd(n),C←Rd(7)	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	Rd(7)←C,Rd(n)←Rd(n+1),C←Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=0..6	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	I	1
CLI		Global Interrupt Disable	I ← 0	I	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	H	1
CLH		Clear Half Carry Flag in SREG	H ← 0	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	Rd ← (X)	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	Rd ← (X), X ← X + 1	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	X ← X - 1, Rd ← (X)	None	2
LD	Rd, Y	Load Indirect	Rd ← (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	Rd ← (Y), Y ← Y + 1	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	Y ← Y - 1, Rd ← (Y)	None	2
LDD	Rd, Y+q	Load Indirect with Displacement	Rd ← (Y + q)	None	2
LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	Rd ← (Z), Z ← Z+1	None	2
LD	Rd, - Z	Load Indirect and Pre-Dec.	Z ← Z - 1, Rd ← (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	Rd ← (Z + q)	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	X ← X - 1, (X) ← Rr	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	Y ← Y - 1, (Y) ← Rr	None	2
STD	Y+q, Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) ← Rr, Z ← Z + 1	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	Z ← Z - 1, (Z) ← Rr	None	2
STD	Z+q, Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	Rd ← (Z), Z ← Z+1	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168P and ATmega328P.

7. Ordering Information

7.1 ATmega48P

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10 ⁽³⁾	1.8 - 5.5	ATmega48PV-10AU ATmega48PV-10MMU ATmega48PV-10MU ATmega48PV-10PU	32A 28M1 32M1-A 28P3	Industrial (-40°C to 85°C)
20 ⁽³⁾	2.7 - 5.5	ATmega48P-20AU ATmega48P-20MMU ATmega48P-20MU ATmega48P-20PU	32A 28M1 32M1-A 28P3	Industrial (-40°C to 85°C)

Note:

1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. See [Figure 28-1 on page 317](#) and [Figure 28-2 on page 318](#).

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

7.2 ATmega88P

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10 ⁽³⁾	1.8 - 5.5	ATmega88PV-10AU ATmega88PV-10MU ATmega88PV-10PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)
20 ⁽³⁾	2.7 - 5.5	ATmega88P-20AU ATmega88P-20MU ATmega88P-20PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)

Note:

1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. See [Figure 28-1 on page 317](#) and [Figure 28-2 on page 318](#).

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

ATmega48P/88P/168P/328P

7.3 ATmega168P

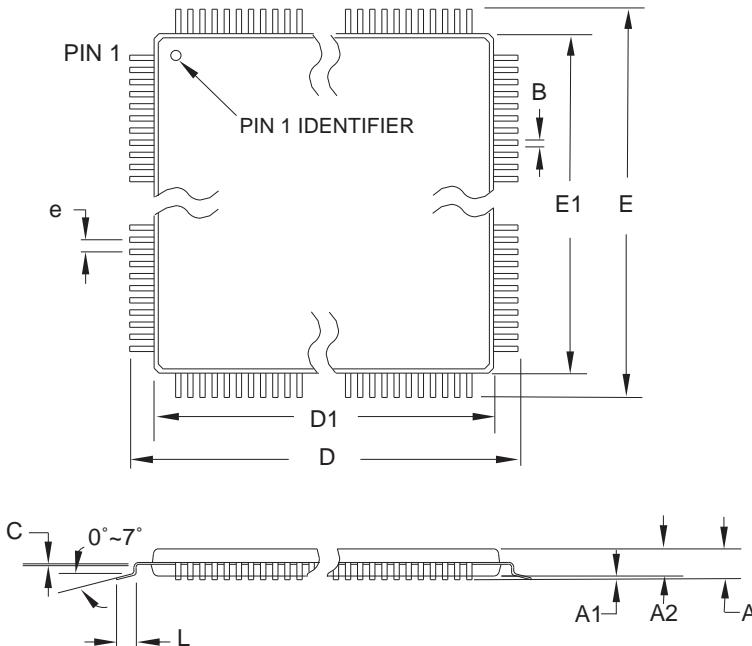
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10	1.8 - 5.5	ATmega168PV-10AU ATmega168PV-10MU ATmega168PV-10PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)
20	2.7 - 5.5	ATmega168P-20AU ATmega168P-20MU ATmega168P-20PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. See [Figure 28-1 on page 317](#) and [Figure 28-2 on page 318](#).

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

7.4 ATmega328P

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20	1.8 - 5.5	ATmega328P- AU ATmega328P- MU ATmega328P- PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)


Note:

1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
3. See [Figure 28-3 on page 318](#).

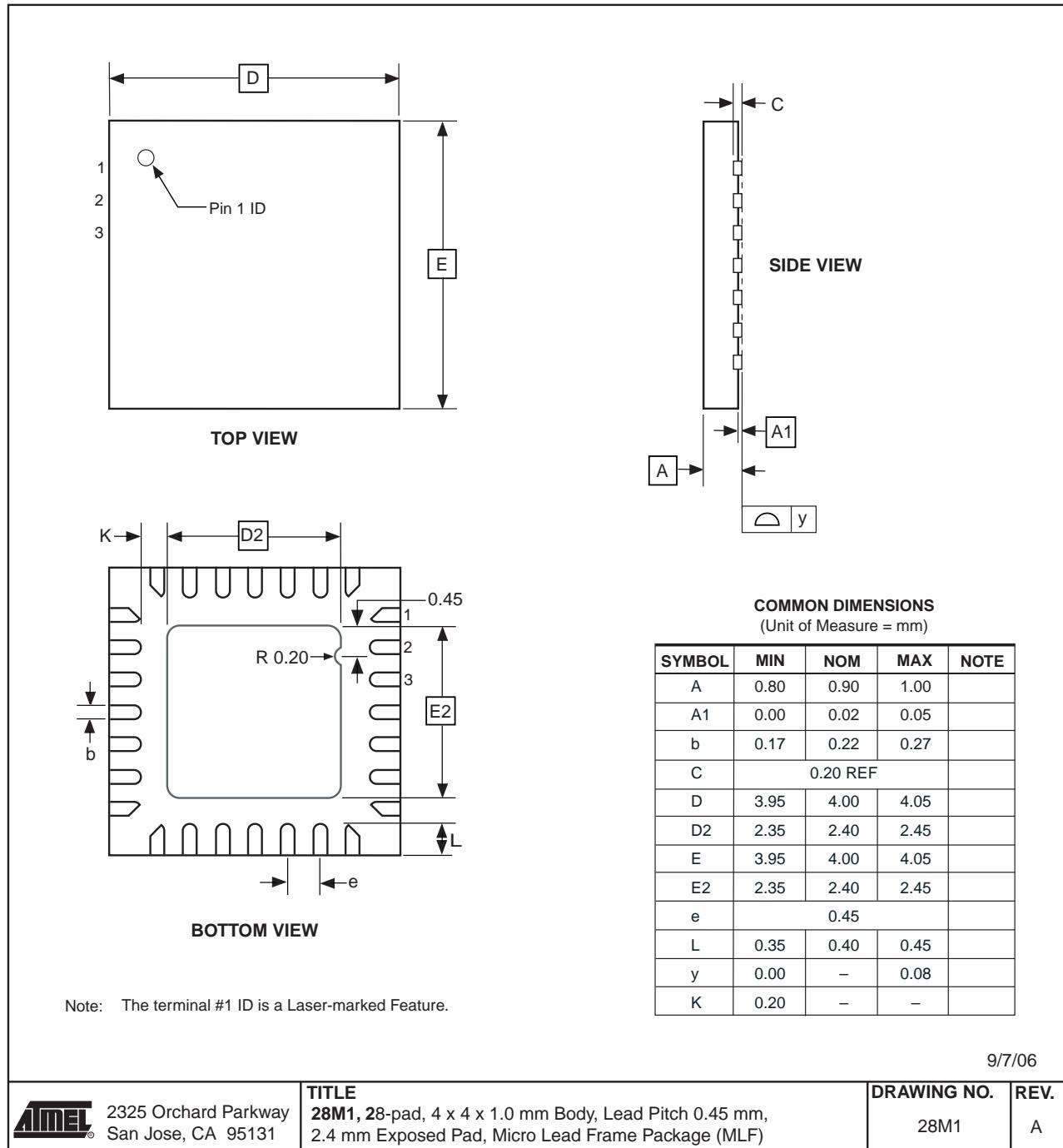
Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

8. Packaging Information

8.1 32A

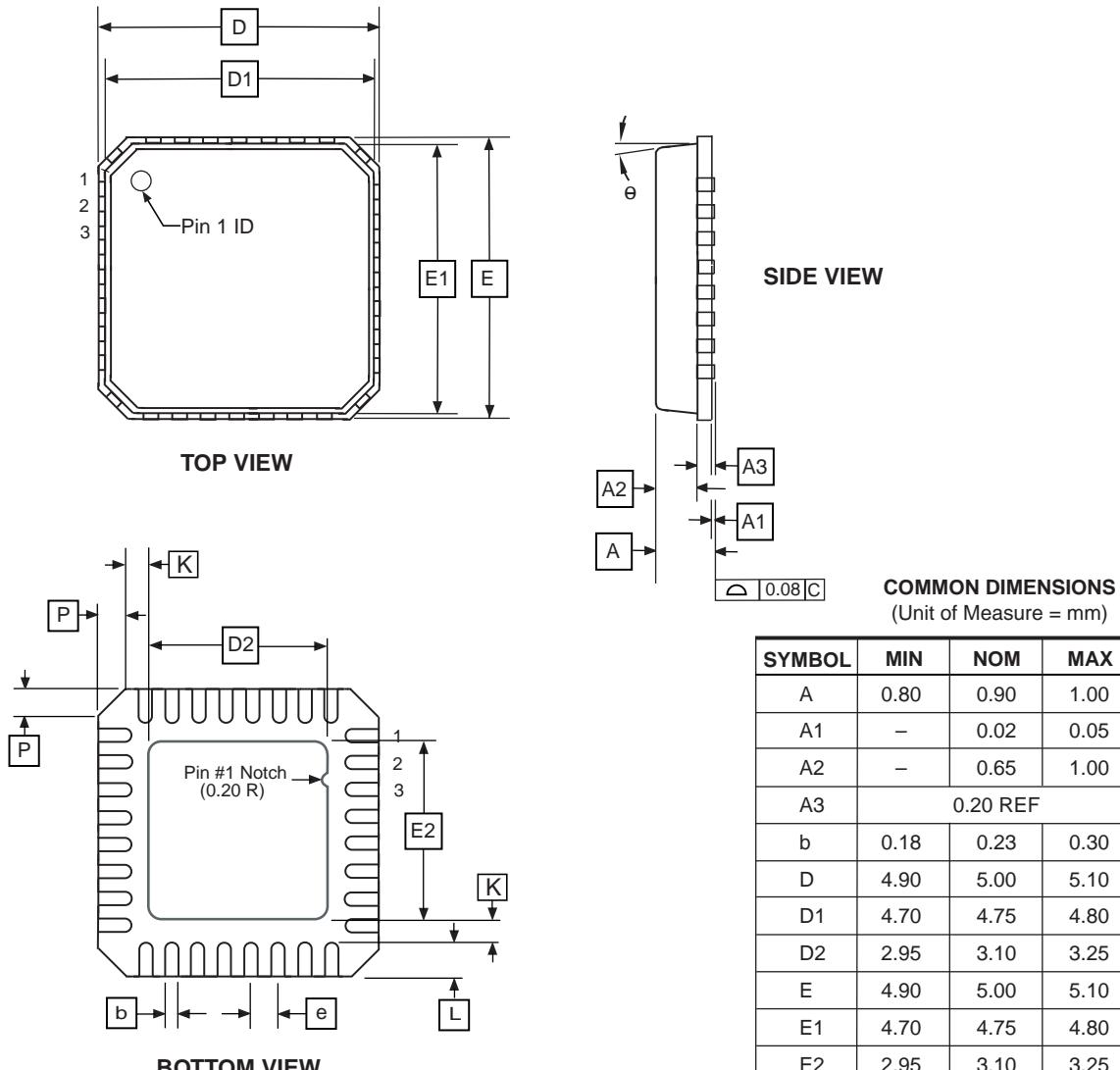
COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	—	—	1.20	
A1	0.05	—	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
B	0.30	—	0.45	
C	0.09	—	0.20	
L	0.45	—	0.75	
e	0.80 TYP			


Notes:

1. This package conforms to JEDEC reference MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.

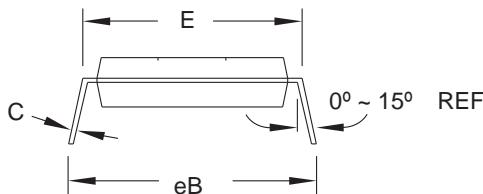
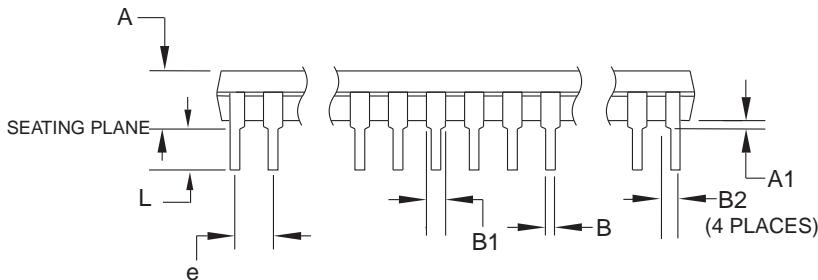
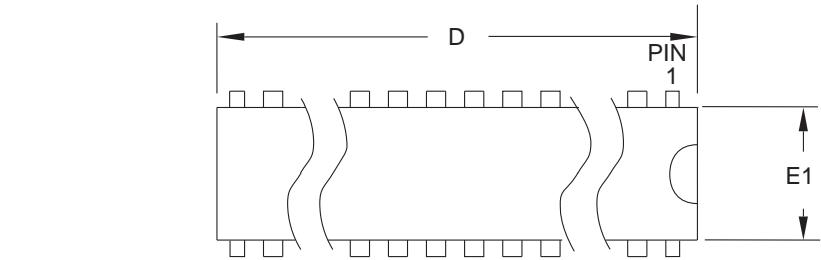
10/5/2001


AMIC	2325 Orchard Parkway San Jose, CA 95131	TITLE 32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	DRAWING NO.	REV.
			32A	B

8.2 28M1

ATmega48P/88P/168P/328P

8.3 32M1-A

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

5/25/06

TITLE		DRAWING NO.	REV.
ATMEL	2325 Orchard Parkway San Jose, CA 95131	32M1-A	E

8.4 28P3

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	—	—	4.5724	
A1	0.508	—	—	
D	34.544	—	34.798	Note 1
E	7.620	—	8.255	
E1	7.112	—	7.493	Note 1
B	0.381	—	0.533	
B1	1.143	—	1.397	
B2	0.762	—	1.143	
L	3.175	—	3.429	
C	0.203	—	0.356	
eB	—	—	10.160	
e	2.540 TYP			

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

09/28/01

ATMEL	2325 Orchard Parkway San Jose, CA 95131	TITLE 28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP)	DRAWING NO.	REV.
			28P3	B

9. Errata

9.1 Errata ATmega48P

The revision letter in this section refers to the revision of the ATmega48P device.

9.1.1 Rev. B

No known errata.

9.1.2 Rev. A

Not Sampled.

9.2 Errata ATmega88P

The revision letter in this section refers to the revision of the ATmega88P device.

9.2.1 Rev. A

No known errata.

9.3 Errata ATmega168P

The revision letter in this section refers to the revision of the ATmega168P device.

9.3.1 Rev A

No known errata.

9.4 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

9.4.1 Rev B

- **Unstable 32 kHz Oscillator**

1. **Unstable 32 kHz Oscillator**

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None

9.4.2 Rev A

No known errata.

10. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

10.1 Rev. 2545F-08/08

1. Updated "ATmega328P Typical Characteristics" on page 401 with Power-save numbers.
2. Added ATmega328P "Standby Supply Current" on page 408.

10.2 Rev. 2545E-08/08

1. Updated description of "Stack Pointer" on page 12.
2. Updated description of use of external capacitors in "Low Frequency Crystal Oscillator" on page 32.
3. Updated Table 8-9 in "Low Frequency Crystal Oscillator" on page 32.
4. Added note to "Address Match Unit" on page 222.
5. Added section "Reading the Signature Row from Software" on page 286.
6. Updated "Program And Data Memory Lock Bits" on page 295 to include ATmega328P in the description.
7. Added "ATmega328P DC Characteristics" on page 317.
8. Updated "Speed Grades" on page 317 for ATmega328P.
9. Removed note 6 and 7 from the table "2-wire Serial Interface Characteristics" on page 323.
10. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 352 for ATmega48P.
11. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 376 for ATmega88P.
12. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 400 for ATmega168P.
13. Added "ATmega328P Typical Characteristics" on page 401.
14. Updated Ordering Information for "ATmega328P" on page 18.

10.3 Rev. 2545D-03/08

1. Updated figures in "Speed Grades" on page 317.
2. Updated note in Table 28-4 in "System and Reset Characteristics" on page 320.
3. Ordering codes for "ATmega328P" on page 18 updated.
 - ATmega328P is offered in 20 MHz option only.
4. Added Errata for ATmega328P rev. B, "Errata ATmega328P" on page 23.

10.4 Rev. 2545C-01/08

1. Power-save Maximum values removed from "ATmega48P DC Characteristics" on page 315, "ATmega88P DC Characteristics" on page 316, and "ATmega168P DC Characteristics" on page 316.

10.5 Rev. 2545B-01/08

1. Updated "Features" on page 1.
2. Added "Data Retention" on page 7.
3. Updated Table 8-2 on page 28.
4. Removed "Low-frequency Crystal Oscillator Internal Load Capacitance" table from "Low Frequency Crystal Oscillator" on page 32.
5. Removed JTD bit from "MCUCR – MCU Control Register" on page 44.
6. Updated typical and general program setup for Reset and Interrupt Vector Addresses in "Interrupt Vectors in ATmega168P" on page 62 and "Interrupt Vectors in ATmega328P" on page 65.
7. Updated Interrupt Vectors Start Address in Table 11-5 on page 63 and Table 11-7 on page 66.
8. Updated "Temperature Measurement" on page 262.
9. Updated ATmega328P "Fuse Bits" on page 296.
10. Removed V_{OL3}/V_{OH3} rows from "DC Characteristics" on page 314.
11. Updated condition for V_{OL} in "DC Characteristics" on page 314.
12. Updated max value for V_{IL2} in "DC Characteristics" on page 314.
13. Added "ATmega48P DC Characteristics" on page 315, "ATmega88P DC Characteristics" on page 316, and "ATmega168P DC Characteristics" on page 316.
14. Updated "System and Reset Characteristics" on page 320.
15. Added "ATmega48P Typical Characteristics" on page 329, "ATmega88P Typical Characteristics" on page 353, and "ATmega168P Typical Characteristics" on page 377.
16. Updated note in "Instruction Set Summary" on page 12.

10.6 Rev. 2545A-07/07

1. Initial revision.

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATTEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATTEL'S WEB SITE, ATTEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATTEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.