

捷多邦,专业PCB打样工厂,24小时加急出货

# **Data Book**

## AU9368 USB Multi-LUN Flash Card Reader Controller

## **Technical Reference Manual**

**Product Specification** 

**Official Release** 

**Revision 1.19W** 

Public



Jul 2005



### Data sheet status

| Objective specification   | This data sheet contains target or goal specifications for product development.          |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Preliminary specification | This data sheet contains preliminary data;<br>supplementary data may be published later. |  |  |  |  |
| Product specification     | This data sheet contains final product specifications.                                   |  |  |  |  |

### **Revision History**

| Date     | Revision  | Description                                                                  |
|----------|-----------|------------------------------------------------------------------------------|
| Feb 2005 | 1.17W/D27 | Removed the schematics.<br>Please contact our sales if you need it.          |
| Jan 2005 | 1.18W/D27 | Add "7.4 AC Electrical Characteristics" and modify<br>"5.1 Pin Descriptions" |
| Jul 2005 | 1.19W/D27 | To modified "5.1 Pin Descriptions" (pin 56)                                  |
|          |           |                                                                              |
|          |           |                                                                              |

-0



#### **Copyright Notice**

Copyright 1997 - 2004 Alcor Micro Corp. All Rights Reserved.

#### **Trademark Acknowledgements**

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

#### Disclaimer

Alcor Micro Corp. reserves the right to change this product without prior notice. Alcor Micro Corp. makes no warranty for the use of its products and bears no responsibility for any error that appear in this document. Specifications are subject to change without prior notice  $\mathbf{c}$ 



### **Table of Contents**

| 1 | Introduction                                              | 6  |
|---|-----------------------------------------------------------|----|
|   | 1.1 Description                                           | 6  |
|   | <u>1.2 Features</u>                                       | 6  |
| 2 | Application Block Diagram                                 | 7  |
| 3 | Operating Mode Selection                                  | 8  |
| 4 | Power Switch Feature                                      | 9  |
|   | 4.1 Card Power Output Current Range                       | 9  |
|   | 4.2 Card Detect Power-on Timing                           | 9  |
| 5 | Pin Assignment                                            | 10 |
| 6 | System Architecture and Reference Design                  | 13 |
|   | 6.1 AU9368 Block Diagram                                  | 13 |
| 7 | Electrical Characteristics                                | 14 |
|   | 7.1 Recommended Operating Conditions                      | 14 |
|   | 7.2 General DC Characteristics                            | 14 |
|   | 7.3 DC Electrical Characteristics for 3.3 volts operation | 14 |
|   | 7.4 AC Electrical Characteristics                         | 14 |
|   | 7.5 Crystal Oscillator Circuit Setup for Characterization | 17 |
|   | 7.6 ESD Test Results                                      | 17 |
|   | 7.7 Latch-Up Test Results                                 | 18 |
| 8 | Mechanical Information                                    | 20 |
| 9 | Abbreviations                                             | 21 |

-0



## **List of Figures**

| 2.1 | Block Diagram                                         | 7  |
|-----|-------------------------------------------------------|----|
| 5.1 | Pin Assignment Diagram                                | 10 |
| 6.1 | AU9368 Block Diagram                                  | 13 |
| 7.1 | Electrical Characteristics Diagram                    | 15 |
| 7.2 | Crystal Oscillator Circuit Setup for Characterization | 17 |
| 7.3 | Latch-Up Test Results                                 | 18 |

## **List of Tables**

| 3.1 | Mode Table                                            | 8  |
|-----|-------------------------------------------------------|----|
| 5.1 | Pin Descriptions                                      | 11 |
| 7.1 | Recommended Operating Conditions                      | 14 |
| 7.2 | General DC Characteristics                            | 14 |
| 7.3 | DC Electrical Characteristics for 3.3 volts operation | 14 |
| 7.4 | AC Electrical Characteristics                         | 15 |
| 7.5 | ESD Data                                              | 17 |
| 7.6 | Latch-Up Test Results                                 | 18 |

-0



## **1.0 Introduction**

### 1.1. Description

The AU9368 is an integrated single chip memory card reader controller specially designed for notebook, hand-held and other PC peripheral devices, which require fewer components for small PCB area. It supports a widely used flash memory card such as CF, MD, SMC, xD Picture Card, MS, MS Pro, MS Duo, SD and MMC. It can be used as removable storage disks in enormous data exchange applications between PC and PC or PC and various consumer electronic appliances.

The AU9368 reads digital content saved on memory card that user captured with the portable device such as notebook, digital camera, MP3 player, PDA and mobile phone... etc. In addition, AU9368 allows user to transfer information such as data, graphics, texts or digital images from one electronic device to another quickly and easily. Furthermore, AU9368 integrates power switch function; manufacturers can use fewer components in their product design.

With AU9368, user's experience will be also further enhanced by the Plug-and-Play nature built into latest operation systems such as Windows 2000/XP and Mac OS X.

### 1.2. Feature

- Support USB v1.1 specification and USB Device Class Definition for Mass Storage, Bulk-Transport
- Support CF\SD\MS\MS PRO\MS Duo\MS ROM Format\MMC\SMC\xD-Picture Card Format Specification and Microdrive device
- Work with default driver from Windows ME, Windows XP, Mac OS 9, and Mac OS X. Windows 98, Windows 2000 are supported by vendor driver from Alcor.
- Ping-pong FIFO implementation for concurrent bus operation
- Support multiple sectors transfer to 4GB to optimize performance
- Support optional external EEPROM for VID, PID and string customization
- Integrated power switch and power management circuit for each slot to reduce the BOM cost in PCB and meet USB power consumption requirement during suspend with card in the slot.
- CPU Runs at 30MHz, built-in 480MHz PLL
- Built-in 3.3V regulator
- 64-pin LQFP package
- Lead-free package available



## 2.0 Application Block Diagram

Following is the application diagram of a typical card reader product with AU9368. By connecting the card reader to a desktop or notebook PC through USB bus, AU9368 is implemented as a bus-powered, full speed USB card reader, which can be used as a bridge for data transfer between Desktop PC and Notebook PC.



Figure 2.1 Au9368 Application Block Diagram



## **3.0 Operating Mode Selection**

The Au9368 offers two operating modes. Mode 0 is used for CF/SD/SMC/MS/xD combo socket. While mode 1 is designed for single function socket. Mode 1 support xD card in a shared SMC socket.

| Mode 0 (Modesel : 0) |                 | Mode 1 (Modesel : 1) |        |  |  |
|----------------------|-----------------|----------------------|--------|--|--|
| Slot 1               |                 | Slot 1               | SD     |  |  |
|                      | CF/SD/SMC/MS/xD | Slot 2               | CF     |  |  |
|                      |                 | Slot 3               | SMC/XD |  |  |
|                      |                 | Slot 4               | MS     |  |  |

#### Table 3.1 Mode definition table

О



## 4.0 Power Switch Feature

AU9368 integrates a 5V to 3.3V voltage regulator and power switch to replace all MOS chips for flash card power supply.

### 4.1. Card Power Output Current Range

- For MS/SD
  - ♦ MAX: 100mA
- For XD/SMC
  - ♦ MAX: 70mA
- For CF
  - ♦ MAX: 250mA
- Card power output voltage range
  - ♦ MS/XD/SD/SMC/CF: 3.3V±0.3V
- AU9368 will turn off all of Card Power in suspend mode

### 4.2. Card Detect Power-on Timing



 $\mathbf{\cap}$ 



## 5.0 Pin Assignment

The AU9368 is packed in 64-LQFP-form factor. The following figure shows signal name for each pin and the table in the following page describes each pin in detail.



#### Figure 5.1 Pin Assignment Diagram



| Pin | Pin Name | I/О Туре | Description                       |  |
|-----|----------|----------|-----------------------------------|--|
| 1   | VCCA     | PWR      | Analog 3.3V input                 |  |
| 2   | GNDA     | PWR      | Analog GND                        |  |
| 3   | XTAL1    |          | Crystal Oscillator input (12MHz)  |  |
| 4   | XTAL2    | 0        | Crystal Oscillator output (12MHz) |  |
| 5   | SD_VCC   | PWR      | SD card power                     |  |
| 6   | XD_VCC   | PWR      | SMC/XD power                      |  |
| 7   | MS_VCC   | PWR      | MS card power                     |  |
| 8   | CF_VCC   | PWR      | CF card power                     |  |
| 9   | VCC5V    | PWR      | VCC 5V power supply from USB      |  |
| 10  | VCC3V    | PWR      | VCC 3.3V                          |  |
| 11  | GNDIO    | PWR      | PAD GND                           |  |
| 12  | XDWPN    | 0        | XD write protect                  |  |
| 13  | USB_DM   | 1/0      | USB DM                            |  |
| 14  | USB_DP   | 1/0      | USB DP                            |  |
| 15  | SMWRN    | 0        | SMC Write Enable                  |  |
| 16  | SMRDN    | 0        | SMC Read Enable                   |  |
| 17  | SMDATA4  | I/O      | SMC DATA4                         |  |
| 18  | SMDATA5  | I/O      | SMC DATA5                         |  |
| 19  | SMDATA6  | 1/0      | SMC DATA6                         |  |
| 20  | SMDATA7  | 1/0      | SMC DATA7                         |  |
| 21  | SMDATA3  | I/O      | SMC DATA3                         |  |
| 22  | SMDATA2  | 1/0      | SMC DATA2                         |  |
| 23  | SMDATA1  | I/O      | SMC DATA1                         |  |
| 24  | SMDATA0  | I/O      | SMC DATAO                         |  |
| 25  | CFDO     | I/O      | CF card data0                     |  |
| 26  | CFD1     | 1/0      | CF card data1                     |  |
| 27  | CFD2     | 1/0      | CF card data2                     |  |
| 28  | CFD3     | 1/0      | CF card data3                     |  |
| 29  | CFD4     | I/O      | CF card data4                     |  |
| 30  | CFD5     | I/O      | CF card data5                     |  |
| 31  | CFD6     | I/O      | CF card data6                     |  |
| 32  | CFD7     | 1/0      | CF card data7                     |  |
| 33  | CFCDN    |          | CF card detect                    |  |
| 34  | CFWRN    | 0        | CF card IOWR                      |  |
| 35  | CFWEN    | 0        | CF card WE                        |  |
| 36  | CFOEN    | 0        | CF card OE                        |  |
| 37  | CFWTN    |          | CF card WAIT                      |  |
| 38  | CFAD9    | 0        | CF card addr09                    |  |
| 39  | CFAD3    | 0        | CF card addr03                    |  |
| 40  | CFAD2    | 0        | CF card addr02                    |  |
| 41  | CFAD1    | 0        | CF card addr01                    |  |
| 42  | CFADO    | 0        | CF card addr00                    |  |
| 43  | CFRDN    | 0        | CF card IORD                      |  |
| 44  | XDCEN    | 0        | XD card enable                    |  |
| 45  | SMCDN    | I        | SMC card detect                   |  |
| 46  | SMWPN    | I        | SMC write protect                 |  |
| 47  | SMCLE    | 0        | SMC command latch enable          |  |

#### **Table 5.1 Pin Descriptions**

0



## Alcor Micro Corp.

| 48 | SMALE   | 0   | SMC address latch enable                                  |
|----|---------|-----|-----------------------------------------------------------|
| 49 | SMRBN   | I   | SMC Ready/Busy                                            |
| 50 | SMCEN   | 0   | SMCEN                                                     |
| 51 | SDCMD   | 1/0 | SD CMD                                                    |
| 52 | SDCLK   | 0   | SD CLK                                                    |
| 53 | SDDATA  | 1/0 | SD DAT                                                    |
| 54 | SDCDN   |     | SD card detect                                            |
| 55 | SDWP    | I   | SD write protect                                          |
| 56 |         |     | Card active LED; Active when card inserted; Blinking when |
| 50 | GPUN7   | 1/0 | card opeating                                             |
| 57 | XDCDN   |     | XD card detect                                            |
| 58 | VCCK    | PWR | Core 3.3V VCC                                             |
| 59 | GNDK    | PWR | Core Ground                                               |
| 60 | MSINSN  |     | MS card INS.                                              |
| 61 | MSBS    | 0   | MS card BS                                                |
| 62 | MSCLK   | 0   | MS card CLK                                               |
| 63 | MSDATA  | 1/0 | MS card SDIO                                              |
| 64 | MODESEL | l   | Mode selection. ("0":1 slot mode; "1": 4.5 slots mode)    |

-0



## 6.0 System Architecture and Reference Design

### 6.1. AU9368 Block Diagram



Figure 6.1 AU9368 Block Diagram

O



## **7.0 Electrical Characteristics**

### 7.1. Recommended Operating Conditions

| SYMBOL           | PARAMETER                            | MIN  | ТҮР | МАХ             | UNITS |
|------------------|--------------------------------------|------|-----|-----------------|-------|
| V <sub>CC</sub>  | Power Supply                         | 4.75 | 5   | 5.25            | V     |
| V <sub>IN</sub>  | Input Voltage                        | 0    |     | V <sub>cc</sub> | V     |
| T <sub>OPR</sub> | Operating Temperature                | 0    |     | 85              | °C    |
| T <sub>STG</sub> | T <sub>STG</sub> Storage Temperature |      |     | 125             | °C    |

#### Table 7.1 Recommended Operating Conditions

### 7.2. General DC Characteristics

#### Table 7.2 General DC Characteristics

| SYMBOL           | PARAMETER                         | CONDITIONS              | MIN | ТҮР | MAX | UNITS |
|------------------|-----------------------------------|-------------------------|-----|-----|-----|-------|
| I <sub>IL</sub>  | Input low current                 | no pull-up or pull-down | -1  |     | 1   | μΑ    |
| Гін              | Input high current                | no pull-up or pull-down | -1  |     | 1   | μΑ    |
| l <sub>oz</sub>  | Tri-state leakage current         |                         | -10 |     | 10  | μΑ    |
| CIN              | Input capacitance                 |                         |     | 5   |     | ρF    |
| Cout             | Output capacitance                |                         |     | 5   |     | ρF    |
| C <sub>BID</sub> | Bi-directional buffer capacitance |                         |     | 5   |     | ρF    |

### 7.3. DC Electrical Characteristics for 3.3 volts operation

#### Table 7.3 DC Electrical Characteristics for 3.3 volts operation

| SYMBO           | PARAMETER                     | PARAMETER CONDITIONS MIN   |     | ТҮР      | MAX | UNITS |
|-----------------|-------------------------------|----------------------------|-----|----------|-----|-------|
| VIL             | Input Low Voltage             | CMOS                       |     |          | 0.9 | V     |
| V <sub>IH</sub> | Input Hight Voltage           | CMOS                       | 2.3 |          |     | V     |
| V <sub>OL</sub> | Output low voltage            | I <sub>OL</sub> =4mA, 16mA |     |          | 0.4 | V     |
| V <sub>OH</sub> | Output high voltage           | I <sub>OH</sub> =4mA,16mA  | 2.4 |          |     | V     |
| R               | Input Pull-up/down resistance | $Vil=0_V$ or $Vih=V_{CC}$  |     | 10K/200K |     | KΩ    |

 $\mathbf{\cap}$ 



### 7.4 AC Electrical Characteristics

GND=0V,  $t_{R} = t_{F}$  =3.0 ns;  $C_{L}$  =50 pF; RL=500 Ohms

|                              |                                           |          | LIMITS (T <sub>AMB</sub> ) |            |                      |          |                      |      |
|------------------------------|-------------------------------------------|----------|----------------------------|------------|----------------------|----------|----------------------|------|
| SYMBOL                       | PARAMETER                                 | NAVEFORM | <b>0</b> °°                | C to +25   | <sup>o°</sup> C      | 0°°C to  | +70°°(               | UNIT |
|                              |                                           |          | MIN                        | TYP        | MAX                  | MIN      | MAX                  |      |
| tpLH<br>tpHL                 | VMO/VPO to D+/D-<br>Full Speed            | 1        | 0<br>0                     |            | 12<br>12             | 0<br>0   | 14<br>14             | ns   |
| trise<br>tfall               | Rise and Fall Times<br>Full Speed         | 2        | 4<br>4                     | 9<br>9     | 20<br>20             | 4<br>4   | 20<br>20             | ns   |
| tRFM                         | Rise and Fall Time<br>Matching Full Speed |          | 90                         |            | 110                  | 90       | 110                  | %    |
| tpLH<br>tpHL                 | VMO/VPO to D+/D-<br>Low Speed             | 1        |                            | 120<br>120 | 300<br>300           |          | 300<br>300           | ns   |
| trise<br>tfall               | Rise and Fall Times<br>Low Speed          | 2        | 75<br>75                   |            | 300<br>200           | 75<br>75 | 300<br>200           | ns   |
| tRFM                         | Rise and Fall Time<br>Matching Low Speed  |          | 70                         |            | 130                  | 70       | 130                  | %    |
| tpLH<br>tpHL                 | D+/D- to RCV                              | 3        |                            | 9<br>9     | 16<br>16             |          | 16<br>16             | ns   |
| tpLH<br>tpHL                 | D+/D- to VP/VM                            | 1        |                            | 4<br>4     | 8<br>8               |          | 8<br>8               | ns   |
| tpHZ<br>tpZH<br>tpLZ<br>tpZL | OE# to D+/D- RL =<br>500ohm               | 4        |                            |            | 12<br>12<br>10<br>10 |          | 12<br>12<br>10<br>10 | ns   |
| tsu                          | Setup for SPEED                           | 5        | 0                          |            |                      |          |                      | ns   |
| Vcr                          | Crossover point <sup>1</sup>              | 3        | 1.3                        |            | 2.0                  | 1.3      | 2.0                  | V    |

#### Table 7.4 AC Electrical Characteristics

#### NOTES:

1. The crossover point is in the range of 1.3V to 2.5V for the low speed mode with a 50 pF capacitance.

ю



Figure 7.1 Electrical Characteristics Diagram

#### AC WAVEFORM 1. D+/D- TO VP/VM OR VPO/VMO TO D+/D-



#### AC WAVEFORM 3. D+/D- TO RCV



#### AC WAVEFORM 2. **RISE AND FALL TIMES**



 $\mathbf{c}$ 

#### AC WAVEFORM 4. OE# TO D/+/D-



#### AC WAVEFORM 5. **SETUP FOR SPEED**



## **TEST CIRCUIT 1.**

#### LOAD FOR VM/VP AND RCV



#### **TEST CIRCUIT 2.** LOAD FOR ENABLE AND DISABLE TIMES



#### TEST CIRCUIT 3. LOAD FOR D+/D-





### 7.5 Crystal Oscillator Circuit Setup for Characterization

The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2.

Figure 7.2 Crystal Oscillator Circuit Setup for Characterization



### 7.6 ESD Test Results

**Test Description**: ESD Testing was performed on a Zapmaster system using the Human-Body-Model (HBM) and Machine-Model (MM), according to MIL-STD 883 and EIAJ IC-121 respectively.

- Human-Body-Model stresses devices by sudden application of a high voltage supplied by a 100pF capacitor through 1.5k-ohm resistance.
- Machine-Model stresses devices by sudden application of a high voltage supplied by a 200pF capacitor through very low (0 ohm) resistance.

#### Test circuit & condition

- Zap Interval: 1 second
- Number of Zaps: 3 positive and 3 negative at room temperature
- Criteria: I-V Curve Tracing

| Model | Mode          | S/S | Target | Results |  |  |  |
|-------|---------------|-----|--------|---------|--|--|--|
| HBM   | Vdd, Vss, I/C | 15  | 6000V  | PASS    |  |  |  |
| MM    | Vdd, Vss, I/C | 15  | 200V   | PASS    |  |  |  |

#### Table 7.5 ESD Data



### 7.7 Latch-Up Test Results

**Test Description**: Latch-Up testing was performed at room ambient using an IMCS-4600 system which applies a stepped voltage to one pin per device with all other pins open except Vdd and Vss which were biased to 5Volts and ground respectively.

Testing was started at 5.0V (Positive) or 0V (Negative), and the DUT was biased for 0.5 seconds.

If neither the PUT current supply nor the device current supply reached the predefined limit (DUT=00mA, Icc=100mA), then the voltage was increased by 0.1Volts and the pin was tested again.

The JEDEC JC-40.2 CMOS Logic standardization committee recommended this procedure.

#### Notes:

- 1. DUT: The device under test.
- 2. PUT: The pin under test.



#### Figure 7.3 Latch-Up Test Results

#### Test Circuit: Positive Input/Output Overvoltage/Overcurrent









Supply Overvoltage Test

| Mode      |   | Voltage (V)/Current (mA) | S/S | Results |
|-----------|---|--------------------------|-----|---------|
| Voltage   | + | 11.0                     | 5   | Pass    |
|           | - | 11.0                     | 5   | Pass    |
| Current   | + | 200                      | 5   | Pass    |
|           | - | 200                      | 5   | Pass    |
| Vdd - Vxx |   | 9.0                      | 5   | Pass    |



## 8.0 Mechanical Information





## 9.0 Abbreviations

This chapter lists and defines terms and abbreviations used throughout this specification.

PCB Printed Circuit Board BOM Bill of Material SIE Serial Interface Engine CF Compact Flash Micro Drive MD SmartMedia Card SMC MS Memory Stick SD Secure Digital Multimedia Card MMC

O



#### About Alcor Micro, Corp

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California.

Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.