6276

16－BIT SERIAL－INPUT，CONSTANT－ CURRENT LATCHED LED DRIVER

Dwg．PP－029－11
Note that three packages offered are electrically identical and share a common terminal number as－ signment．
ABSOLUTE MAXIMUM RATINGS
Supply Voltage， V_{DD} 7.0 V
Output Voltage Range，
V_{O} $\mathbf{0 . 5}$ V to＋17 V
Output Current， I_{O} 90 mA
Ground Current， $\mathrm{I}_{\mathrm{GND}}$ 1475 mA
Input Voltage Range，V_{I} ．．．．．．．．．．．．．．．．．．．．－0．4 V to $\mathrm{V}_{\text {DD }}+\mathbf{0 . 4} \mathrm{V}$Package Power Dissipation，
P_{D} See GraphOperating Temperature Range，
TA $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range，
T_{S} $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$to damage if exposed to extremely high staticelectrical charges．

The A6276 is specifically designed for LED－display applications． Each BiCMOS device includes a 16－bit CMOS shift register，accom－ panying data latches，and 16 npn constant－current sink drivers．Except for package style and allowable package power dissipation，the device options are identical．

The CMOS shift register and latches allow direct interfacing with microprocessor－based systems．With a 5 V logic supply，typical serial data－input rates are up to 20 MHz ．The LED drive current is deter－ mined by the user＇s selection of a single resistor．A CMOS serial data output permits cascade connections in applications requiring additional drive lines．For inter－digit blanking，all output drivers can be disabled with an ENABLE input high．Similar 8－bit devices are available as the A6275EA and A6275ELW．

Three package styles are provided：through－hole DIP（suffix A）， surface－mount SOIC（suffix LW）and TSSOP with exposed thermal pad （suffix LP）．Under normal applications，a copper lead frame and low logic－power dissipation allow the dual in－line package to sink maxi－ mum rated current through all outputs continuously over the operating temperature range（ $90 \mathrm{~mA}, 0.75 \mathrm{~V}$ drop，$+85^{\circ} \mathrm{C}$ ）．

FEATURES

■ To 90 mA Constant－Current Outputs
■ Under－Voltage Lockout
－Low－Power CMOS Logic and Latches
－High Data Input Rate
■ Functional Replacement for TB62706BN／BF

Selection Guide

Part Number	Pb－free＊	Package	Packing	Ambient Temperature $\left({ }^{\circ} \mathbf{C}\right)$
A6276EA－T	Yes	24－pin DIP	15 per tube	-40 to 85
A6276ELP－T	Yes	24－pin TSSOP	62 per tube	-40 to 85
A6276ELPTR－T	Yes	24－pin TSSOP	4000 per reel	-40 to 85
A6276ELW－T	Yes	24－pin SOICW	31 per tube	-40 to 85
A6276ELWTR－T	Yes	24－pin SOICW	1000 per reel	-40 to 85
A6276SLW－T	Yes	24－pin SOICW	31 per tube	-20 to 85
A6276SLWTR－T	Yes	24－pin SOICW	1000 per reel	-20 to 85

＊Pb－based variants are being phased out of the product line．The variants cited in this footnote are in production but have been determined to be NOT FOR NEW DESIGN． This classification indicates that sale of this device is currently restricted to existing customer applications．The variants should not be purchased for new design applica－ tions because obsolescence in the near future is probable．Samples are no longer available．Status change：May 1，2006．These variants include：A6276EA，A6276ELW， A6276ELWTR，A6276SA，A6276SLW，and A6276SLWTR．

6276
 16-BIT SERIAL-INPUT, CONSTANT-CURRENT LATCHED LED DRIVER

*Mounted on single-layer, two-sided PCB, with 3.8 in 2 copper each side additional information on Allegro Web site

FUNCTIONAL BLOCK DIAGRAM

Dwg. EP-010-11
OUTPUT ENABLE (active low)

Dwg. EP-010-13
CLOCK and SERIAL DATA IN

Dwg. EP-010-12

LATCH ENABLE

SERIAL DATA OUT

TRUTH TABLE

6276
16-BIT SERIAL-INPUT, CONSTANT-CURRENT LATCHED LED DRIVER

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted).

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Unit
Supply Voltage Range	$V_{\text {D }}$	Operating	4.5	5.0	5.5	V
Under-Voltage Lockout	$V_{\text {DD(UV) }}$	$\mathrm{V}_{\mathrm{DD}}=0 \rightarrow 5 \mathrm{~V}$	3.4	-	4.0	V
Output Current (any single output)	Io	$\mathrm{V}_{\text {CE }}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=250 \Omega$	64.2	75.5	86.8	mA
		$\mathrm{V}_{\text {CE }}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{EXT}}=470 \Omega$	34.1	40.0	45.9	mA
Output Current Matching (difference between any two outputs at same V_{CE})	Δl_{0}	$\begin{gathered} 0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CE}(\mathrm{~A})}=\mathrm{V}_{\mathrm{CE}(\mathrm{~B})} \leq 0.7 \mathrm{~V}: \\ \mathrm{R}_{\mathrm{EXT}}=250 \Omega \\ \mathrm{R}_{\mathrm{EXT}}=470 \Omega \\ \hline \end{gathered}$			$\begin{array}{r} \pm 6.0 \\ \pm 6.0 \\ \hline \end{array}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
Output Leakage Current	$\mathrm{I}_{\text {CEX }}$	$\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}$	-	1.0	5.0	$\mu \mathrm{A}$
Logic Input Voltage	V_{IH}		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
	$\mathrm{V}_{\text {IL }}$		GND	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
SERIAL DATA OUT Voltage	V_{OL}	$\mathrm{I}_{\mathrm{LL}}=500 \mu \mathrm{~A}$	-	-	0.4	V
	V_{OH}	$\mathrm{IOH}^{\text {O }}=-500 \mu \mathrm{~A}$	4.6	-	-	V
Input Resistance	R_{1}	ENABLE Input, Pull Up	150	300	600	$\mathrm{k} \Omega$
		LATCH Input, Pull Down	100	200	400	$\mathrm{k} \Omega$
Supply Current	$\mathrm{I}_{\text {DD(OFF) }}$	$\mathrm{R}_{\text {EXT }}=$ open, $\mathrm{V}_{\mathrm{OE}}=5 \mathrm{~V}$	-	0.8	1.4	mA
		$\mathrm{R}_{\text {EXT }}=470 \Omega, \mathrm{~V}_{\text {OE }}=5 \mathrm{~V}$	3.5	6.0	8.0	mA
		$\mathrm{R}_{\text {EXT }}=250 \Omega, \mathrm{~V}_{\text {OE }}=5 \mathrm{~V}$	6.5	11	15	mA
	$\mathrm{I}_{\mathrm{DD} \text { (ON) }}$	$\mathrm{R}_{\mathrm{EXT}}=470 \Omega, \mathrm{~V}_{\mathrm{OE}}=0 \mathrm{~V}$	7.0	13	20	mA
		$\mathrm{R}_{\mathrm{EXT}}=250 \Omega, \mathrm{~V}_{\mathrm{OE}}=0 \mathrm{~V}$	10	22	32	mA

Typical Data is at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and is for design information only.

SWITCHING CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$, $R_{E X T}=470 \Omega, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=65 \Omega, \mathrm{C}_{\mathrm{L}}=10.5 \mathrm{pF}$.

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Unit
Propagation Delay Time	$\mathrm{t}_{\mathrm{pHL}}$	CLOCK-OUT $_{\text {n }}$	-	350	1000	ns
		$\mathrm{LATCH}^{\text {-OUT }}$ n	-	350	1000	ns
		ENABLE-OUT ${ }_{n}$	-	350	1000	ns
		CLOCK-SERIAL DATA OUT	-	40	-	ns
Propagation Delay Time	$\mathrm{t}_{\mathrm{pLH}}$	$\mathrm{CLOCK}^{\text {-OUT }}$ n	-	300	1000	ns
		LATCH-OUT ${ }_{\text {n }}$	-	300	1000	ns
		$\mathrm{ENABLE}^{\text {-OUT }}$ n	-	300	1000	ns
		CLOCK-SERIAL DATA OUT	-	40	-	ns
Output Fall Time	t_{f}	90\% to 10\% voltage	150	350	1000	ns
Output Rise Time	t_{r}	10\% to 90\% voltage	150	300	600	ns

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	V_{DD}		4.5	5.0	5.5	V
Output Voltage	V_{O}		-	1.0	4.0	V
Output Current	I_{O}	Continuous, any one output	-	-	90	mA
	I_{OH}	SERIAL DATA OUT	-	-	-1.0	mA
	I_{OL}	SERIAL DATA OUT	-	-	1.0	mA
Logic Input Voltage	V_{IH}		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$		-0.3	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Clock Frequency	f_{CK}	Cascade operation	-	-	10	MHz

TIMING REQUIREMENTS and SPECIFICATIONS

(Logic Levels are $V_{D D}$ and Ground)

A. Data Active Time Before Clock Pulse (Data Set-Up Time), $\mathrm{t}_{\mathrm{su}(\mathrm{D})}$ 50 ns
B. Data Active Time After Clock Pulse
(Data Hold Time), $\mathrm{t}_{\mathrm{h}(\mathrm{D})}$ 20 ns
C. Clock Pulse Width, $\mathrm{t}_{\mathrm{w}(\mathrm{CK})}$ 50 ns
D. Time Between Clock Activation and Latch Enable, $\mathrm{t}_{\text {su(L) }}$ 100 ns
E. Latch Enable Pulse Width, $\mathrm{t}_{\mathrm{w}(\mathrm{L})}$ 100 ns
F. Output Enable Pulse Width, $\mathrm{t}_{\mathrm{w}(\mathrm{OE})}$ $4.5 \mu \mathrm{~s}$
NOTE: Timing is representative of a 10 MHz clock. Significantly higher speeds are attainable. Max. Clock Transition Time, t_{r} or t_{f} $10 \mu \mathrm{~s}$

Serial data present at the input is transferred to the shift register on the logic 0-to-logic 1 transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The serial data must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to the respective latch when the LATCH ENABLE is high (serial-toparallel conversion). The latches continue to accept new data as
long as the LATCH ENABLE is held high. Applications where the latches are bypassed (LATCH ENABLE tied high) will require that the OUTPUT ENABLE input be high during serial data entry.

When the OUTPUT ENABLE input is high, the output sink drivers are disabled (OFF). The information stored in the latches is not affected by the OUTPUT ENABLE input. With the OUTPUT ENABLE input low, the outputs are controlled by the state of their respective latches.

ALLOWABLE OUTPUT CURRENT AS A FUNCTION OF DUTY CYCLE A6276EA
 A6276ELW

Dwg. GP-062-11

6276

16-BIT SERIAL-INPUT, CONSTANT-CURRENT LATCHED LED DRIVER

ALLOWABLE OUTPUT CURRENT AS A FUNCTION OF DUTY CYCLE (cont.)

A6276EA

A6276ELW

TYPICAL CHARACTERISTICS

ALLOWABLE OUTPUT CURRENT AS A FUNCTION OF DUTY CYCLE (cont.)
 A6276ELP

TERMINAL DESCRIPTION

Terminal No.	Terminal Name	Function
1	GND	Reference terminal for control logic.
2	SERIAL DATA IN	Serial-data input to the shift-register.
3	CLOCK	Clock input terminal for data shift on rising edge.
4	LATCH ENABLE	Data strobe input terminal; serial data is latched with high-level input.
$5-20$	OUT $_{0-15}$	The 16 current-sinking output terminals.
21	OUTPUT ENABLE	When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
22	SERIAL DATA OUT	CMOS serial-data output to the following shift-register.
23	R $_{\text {EXT }}$	An external resistor at this terminal establishes the output current for all sink drivers.
24	SUPPLY	$\left(\mathrm{V}_{\mathrm{DD}}\right)$ The logic supply voltage (typically 5 V).

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Applications Information

The load current per bit (I_{O}) is set by the external resistor ($\mathrm{R}_{\text {EXT }}$) as shown in the figure below.

Package Power Dissipation (\mathbf{P}_{D}). The maximum allowable package power dissipation is determined as

$$
\mathrm{P}_{\mathrm{D}}(\max)=\left(150-\mathrm{T}_{\mathrm{A}}\right) / \mathrm{R}_{\theta \mathrm{JJA}} .
$$

The actual package power dissipation is

$$
\mathrm{P}_{\mathrm{D}}(\mathrm{act})=\mathrm{DC} \cdot\left(\mathrm{~V}_{\mathrm{CE}} \cdot \mathrm{I}_{\mathrm{O}} \cdot 16\right)+\left(\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{I}_{\mathrm{DD}}\right),
$$

where DC is the duty cycle.
When the load supply voltage is greater than 3 V to 5 V , considering the package power dissipating limits of these devices, or if $\mathrm{P}_{\mathrm{D}}(\mathrm{act})>\mathrm{P}_{\mathrm{D}}(\max)$, an external voltage reducer ($\mathrm{V}_{\mathrm{DROP}}$) should be used.

Load Supply Voltage ($\mathrm{V}_{\text {LED }}$). These devices are designed to operate with driver voltage drops $\left(\mathrm{V}_{\mathrm{CE}}\right)$ of 0.4 V to 0.7 V with LED forward voltages $\left(\mathrm{V}_{\mathrm{F}}\right)$ of 1.2 V to 4.0 V . If higher voltages are dropped across the driver, package power dissipation will be increased significantly. To minimize package power dissipation, it is recommended to use the lowest possible load supply voltage or to set any series dropping voltage ($\mathrm{V}_{\text {DROP }}$) as

$$
\mathrm{V}_{\mathrm{DROP}}=\mathrm{V}_{\mathrm{LED}}-\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{CE}}
$$

with $V_{\text {DROP }}=I_{0} \cdot R_{\text {DROP }}$ for a single driver, or a Zener
diode $\left(\mathrm{V}_{\mathrm{Z}}\right)$, or a series string of diodes (approximately 0.7 V per diode) for a group of drivers. If the available voltage source will cause unacceptable dissipation and series resistors or diode(s) are undesirable, a regulator such as the Sanken Series SAI or Series SI can be used to provide supply voltages as low as 3.3 V .

For reference, typical LED forward voltages are:

White	$3.5-4.0 \mathrm{~V}$
Blue	$3.0-4.0 \mathrm{~V}$
Green	$1.8-2.2 \mathrm{~V}$
Yellow	$2.0-2.1 \mathrm{~V}$
Amber	$1.9-2.65 \mathrm{~V}$
Red	$1.6-2.25 \mathrm{~V}$
Infrared	$1.2-1.5 \mathrm{~V}$

Pattern Layout. This device has a common logicground and power-ground terminal. If ground pattern layout contains large common-mode resistance, and the voltage between the system ground and the LATCH ENABLE or CLOCK terminals exceeds 2.5 V (because of switching noise), these devices may not operate correctly.

Davg EP-064

Dimensions in Millimeters (for reference only)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative
3. Lead thickness is measured at seating plane or below.
4. Supplied in standard sticks/tubes of 15 devices.

A6276ELW

Dimensions in Inches
(for reference only)

Dimensions in Millimeters
(controlling dimensions)

Dwg. MA-008-24A mm

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Supplied in standard sticks/tubes of 31 devices or add "TR" to part number for tape and reel.

