

捷多邦,专业PCB打样工厂,24小时加急出货

Model BD1631J50100A00

Ultra Low Profile 0805 Balun 50Ω to 100Ω Balanced

Description

The BD1631J50100Aoo is a low profile sub-miniature balanced to unbalanced transformer designed for differential inputs and output locations on next generation wireless chipsets in an easy to use surface mount package covering 802.11b+g+n, GSM, DCS, PCS and UMTS. The BD1631J50100Aoo is ideal for high volume manufacturing and is higher performance than traditional ceramic and lumped element baluns. The BD1631J50100Aoo has an unbalanced port impedance of 50Ω and a 100 Ω balanced port impedance*. This transformation enables single ended signals to be applied to differential ports on modern semiconductors. The output ports have equal amplitude (-3dB) with 180 degree phase differential. The BD1631J50100Aoo is available on tape and reel for pick and place high volume manufacturing.

Detailed Electrical Specifications*: Specifications subject to change without notice.

		ROOM (25°C)						
Features:	Parameter	Min.	Тур.	Max	Min.	Тур.	Max	Unit
• 1.6 – 3.1 GHz	Frequency	2.0		2.5	1.6		3.1	GHz
0.7mm Height Profile 50 Ohm to 2 x 50 Ohm	Unbalanced Port Imp.		50			50		Ω
 802.11 b & g +n Compliant 	Balanced Port Imp.**		100			100		Ω
Low Insertion Loss	Return Loss	12	17.5		10	13		dB
 DCS, PCS & UMTS 	Insertion Loss***		0.6	0.75		0.75	1.0	dB
Compliant	Amplitude Balance		0.35	0.65	da	0.7	1.0	dB
Input to Output DC Isolation Surface Mountable	Phase Balance		±2	±5		±2	±5	Degrees
Tape & Reel	Power Handling	1 900		2	- NY 7		2	Watts
Non-conductive Surface	.7.60							
RoHS Compliant	7751000							
	Operating Temperature	-55		+85	-55		+85	O⁰

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at +85 °C)

Outline Drawing

Anaren®

Typical Broadband Performance: 0 GHz. to 6.0 GHz.

USA/Canada: Toll Free: (315) 432-8909 (800) 411-6596

Available on Tape and Reel for Pick and Place

Available on Tape and Reel for Pick and USA/Canada: Toll Free:

(315) 432-8909 (800) 411-6596

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of 17 ppm/°C.

An example of the PCB footprint used in the testing of these parts is shown below. An example of a DC-biased footprint is also shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

No Bias Footprint

DC Bias Footprint

6X .016

Part Orientation (Top View) (\Box) (__) 57 \bigcirc (--) (-) []]

DC Bias

Part Orientation (Top View)

Dimensions are in Inches [Millimeters] 0805 DC Bias Mounting Footprint

USA/Canada: Toll Free:

(315) 432-8909 (800) 411-6596

Available on Tape and Reel for Pick and Place

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.

Available on Tape and Reel for Pick and USA/Canada: Toll Free: (315) 432-8909 (800) 411-6596

Anaren®

BD 2425 J 50 100 A 00

FunctionFrequencyPackage DimensionsUnbalanced ImpedanceBalanced Impedance + CouplingPlating FinishCodesB = Balun BD = Balun + DC0110 = 100 - 1000 MHz 0810 = 800 - 1000 MHz 0922 = 950 - 2150 MHz C = 30B CouplerA = 150 x 150 mils $(4mm \times 4mm)$ C = 120 x 120 mils $(3mm \times 3mm)$ $50 = 50 \ Ohm$ $75 = 75 \ Ohm25 = 25 \ \Omega \ Balanced30 = 30 \ \Omega \ Balanced50 = 50 \ \Omega \ Balanced75 = 75 \ \Omega \ Balanced150 = 150 \ \Omega \ Balanced200 = 200 \ \Omega \ Balanced150 = 150 \ \Omega \ Balanced200 = 200 \ \Omega \ Balanced200 = 200 \ \Omega \ Balanced150 = 3100 - 5000 \ MHz150 = 5100 - 5000 \ MHz$						L		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Func	tion	Frequency	Package Dimensions	Unbalanced Impedance	I Balanced Impedar + Coupling	nce Plating C Finish C	odes
	B = Balun BD = Balun F = Filter FB = Filter / C = 3dB Cou DC = Directic J = RF Jump X = RF cross	► DC Balun pler onal er over	0110 = 100 - 1000 MHz 0810 = 800 - 1000 MHz 0922 = 950 - 2150 MHz 0826 = 800 - 6200 MHz 1222 = 1200 - 2200 MHz 1416 = 1400 - 1600 MHz 1722 = 1700 - 2200 MHz 2326 = 2300 - 2600 MHz 2425 = 2400 - 2500 MHz 3150 = 3100 - 5000 MHz 3436 = 3400 - 3600 MHz 5153 = 5100 - 5300 MHz 5159 = 5100 - 5900 MHz 5759 = 5700 - 5900 MHz		50 = 50 Ohm 75 = 75 Ohm	25 = 25 Ω Balanced 30 = 30 Ω Balanced 50 = 50 Ω Balanced 100 = 100 Ω Balanced 150 = 150 Ω Balanced 200 = 200 Ω Balanced 300 = 300 Ω Balanced 400 = 400 Ω Balanced 03 = 3dB Hybrid 10 = 10dB Directional 20 = 20dB Directional	A = Gold P = Tin-Lead	

USA/Canada: Toll Free: (315) 432-8909 (800) 411-6596

Available on Tape and Reel for Pick and Place

