查询BFP540FESD供应商

BFP540FESD

NPN Silicon RF Transistor*

- For ESD protected high gain low noise amplifier
- Excellent ESD performance typical value 1000 V (HBM)
- Outstanding G_{ms} = 20 dB Noise Figure F = 0.9 dB
- SIEGET ® 45 Line
- Pb-free (ROHS compliant) package¹⁾
- Qualified according AEC Q101
- * Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	-TP	COP	in Con	figurati	on		Package
BFP540FESD	AUs	1=B	2=E	3=C	4=E	-	-	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	EE W. OZSO	V
$T_{A} > 0$ °C	48	4.5	
$T_{A} \leq 0^{\circ} C$	0 ///p	4	
Collector-emitter voltage	V _{CES}	10	
Collector-base voltage	V_{CBO}	10	
Emitter-base voltage	V _{EBO}	1	
Collector current	I _C	80	mA
Base current	I _B	8 0750	COM
Total power dissipation ²⁾	P _{tot}	250	mW
_T _S ≤ 80 °C	-W6		
Junction temperature	T_{i}	150	°C
Ambient temperature	TA	-65 150	
Storage temperature	T _{stq}	-65 150	

¹Pb-containing package may be available upon special request

 $^{^2}T_{
m S}$ is measured on the collector lead at the soldering point to the pcb

THEITHAL NESISTAILE	Thermal	Resistance
---------------------	---------	------------

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	≤ 280	K/W

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	•				
Collector-emitter breakdown voltage	$V_{(BR)CEO}$	4.5	5	-	V
$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0					
Collector-emitter cutoff current	I _{CES}	-	-	10	μA
$V_{CE} = 10 \text{ V}, V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	10	μA
$V_{\rm EB} = 0.5 \rm V, I_{\rm C} = 0$					
DC current gain	h _{FE}	50	110	170	-
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3.5 V, pulse measured					

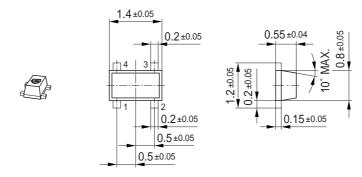
 $^{^{\}rm 1} {\rm For}$ calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

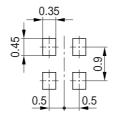
BFP540FESD

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified Unit **Parameter Symbol Values** min. typ. max. AC Characteristics (verified by random sampling) GHz Transition frequency 21 30 f_{T} $I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 4 V, f = 1 GHz Collector-base capacitance 0.26 pF 0.16 C_{cb} $V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BF} = 0$, emitter grounded Collector emitter capacitance 0.4 C_{ce} $V_{CF} = 2 \text{ V}, f = 1 \text{ MHz}, V_{RF} = 0$ base grounded Emitter-base capacitance C_{eb} 0.55 $V_{FR} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{CB} = 0$, collector grounded F dB Noise figure $I_{\rm C}$ = 5 mA, $V_{\rm CF}$ = 2 V, f = 1.8 GHz, $Z_{\rm S}$ = $Z_{\rm Sont}$ 0.9 1.4 I_{C} = 5 mA, V_{CE} = 2 V, f = 3 GHz, Z_{S} = Z_{Sopt} 1.3 Power gain, maximum stable¹⁾ G_{ms} 20 dB $I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_L = Z_{Lopt}$, f = 1.8 GHz Power gain, maximum available¹⁾ 14.5 dB G_{ma} $I_{\rm C}$ = 20 mA, $V_{\rm CF}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{L} = Z_{Lopt}$, f = 3 GHzTransducer gain $|S_{21e}|^2$ dB $I_{\rm C}$ = 20 mA, $V_{\rm CF}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , f = 1.8GHz 15.5 18 $I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , f = 3GHz 13 Third order intercept point at output²⁾ IP_3 24.5 dBm V_{CE} = 2 V, I_{C} = 20 mA, Z_{S} = Z_{L} = 50 Ω , f = 1.8GHz 1dB Compression point at output P_{-1dB} 11 $I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , f = 1.8GHz

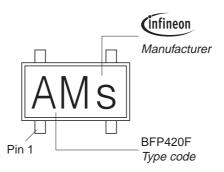
 $^{{}^{1}}G_{\text{ma}} = |S_{21e} / S_{12e}| \text{ (k-(k^2-1)^{1/2})}, G_{\text{ms}} = |S_{21e} / S_{12e}|$

²IP3 value depends on termination of all intermodulation frequency components.

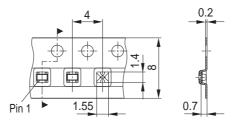

Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz


Package TSFP-4

BFP540FESD


Package Outline

Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.