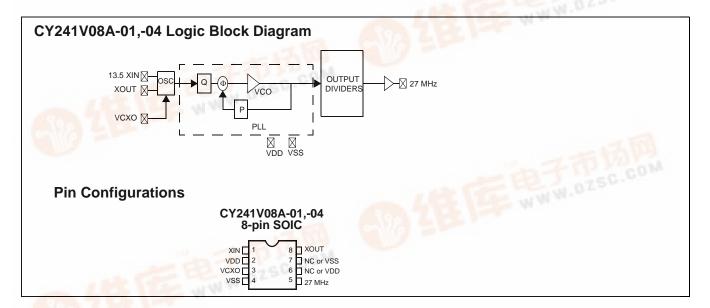
查询CY241V08ASC-04T供应商

YPRESS

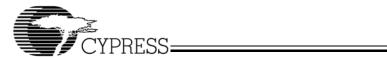
捷多邦,专业PCB打样工厂,24小时加急出货

CY241V08A-01,04 CY241V8A-01


MPEG Clock Generator with VCXO

Features

- Integrated phase-locked loop (PLL)
- Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4)
- Application compatibility for a wide variety of designs
- Enables design compatibility
- Lower drive strength settings (CY241V08A-04)


Benefits

- Digital VCXO control
- Second source for existing designs
- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system
 designs
- •

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08A-01 1 13.5-MHz pullable crystal input per Cypress specification		1 copy of 27 MHz	linear	Compatible with MK3727	
CY241V08A-04	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Same as CY241V08A-01 except lower drive strength settings

CY241V08A-01,04 CY241V8A-01

Pin Description

Name	Pin Number	Description				
XIN 1		Reference crystal input				
VDD	2	Voltage supply				
VCXO	3	Input analog control for VCXO				
VSS	4	Ground				
27 MHz	5	27-MHz clock output				
NC/VDD	6	No connect or voltage supply				
NC/VSS	7	No connect or ground				
XOUT	8	Reference crystal output				

Absolute Maximum Conditions

(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Supply Voltage (V _{DD})0.5 to +7.0V
DC Input Voltage0.5V to V _{DD} + 0.5

CY241V08A-01,04
CY241V8A-01

Storage Temperature (Non-condensing) –55°C to +125°C
Junction Temperature
Data Retention @ Tj = 125°C> 10 years
Package Power Dissipation
ESD (Human Body Model) MIL-STD-883> 2000V

Pullable Crystal Specifications^[1]

Parameter	Description	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	_	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		_	14	-	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R_1 values are much less than the maximum spec	3	-	-	-
DL	Crystal drive level	No external series resistor assumed	150	-	-	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	-	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	-	-150	ppm
C ₀	Crystal shunt capacitance		-	-	7	pF
C ₀ /C ₁	Ratio of shunt to motional capaci- tance		180	-	250	-
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

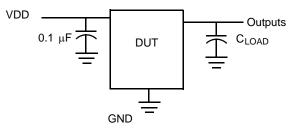
Parameter	Description	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	_	70	°C
C _{LOAD}	Max. Load Capacitance	-	_	15	pF
t _{PU}	Power-up time for all VDD pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	_	500	ms

DC Electrical Specifications

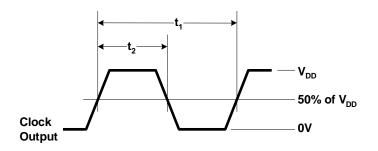
Parameter	Name	Description	Min.	Тур.	Max.	Unit mA
I _{OH}	Output HIGH Current	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24		
I _{OL}	Output LOW Current	V _{OL} = 0.5V, V _{DD} = 3.3V	12	24	-	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	-	-	7	pF
V _{VCXO}	VCXO Input Range		0	-	V _{DD}	V
$f_{\Delta XO}^{[2]}$	VCXO Pullability Range	Low Side	-	-	-115	ppm
		High Side	115	-	-	ppm
I _{VDD}	Supply Current		-	30	35	mA

Notes:

Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
 -115/+115 ppm assumes 2.5pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.



CY241V08A-01,04 CY241V8A-01


AC Electrical Specifications ($V_{DD} = 3.3V$)^[3]

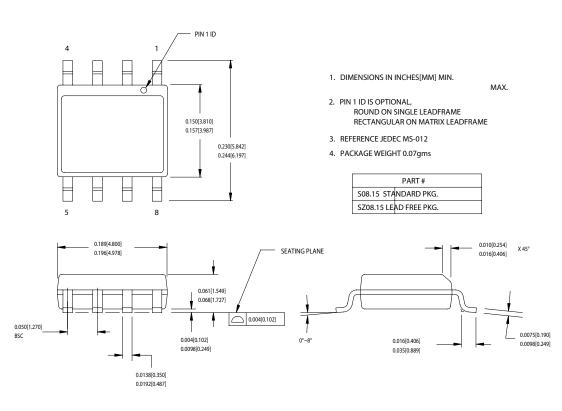
Parameter ^[3]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in <i>Figure 1</i> , 50% of V _{DD}	45	50	55	%
ER _{OR}	R _{OR} Rising Edge Rate –01 Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .				-	V/ns
ER _{OF}					_	V/ns
ER _{OR}	Rising Edge Rate –04 Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i>				_	V/ns
ER _{OF}	OF Falling Edge Rate -04 Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See Figure 2.		0.7	1.1	_	V/ns
t ₉	Clock Jitter	Peak-to-peak period jitter	—	-	100	ps
t ₁₀	PLL Lock Time		-	-	3	ms

Test and Measurement Set-up

Voltage and Timing Definitions

Figure 1. Duty Cycle Definition

Figure 2. ER = $(0.6 \text{ x V}_{DD})/t_3$, EF = $(0.6 \text{ x V}_{DD})/t_4$


Note: 3. Not 100% tested.

Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY241V08ASC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-01T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
Lead-free		•		
CY241V8ASXC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-01T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product or company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject, to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the u

Document History Page

ocument Title: CY241V08A-01,04/ CY241V8A-01MPEG Clock Generator with VCXO ocument Number: 38-07656					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	214069	See ECN	RGL	New Data Sheet	
*A	220404	See ECN	RGL	Minor Change: To post on web	
*В	393122	See ECN	RGL	Added Lead-free device for -01 Added the CY241V8A-01 in the title	
*C	414184	See ECN	RGL	Minor Change: Deleted unneccesary text in the benefit section	