捷多邦,专业PCB打样工厂,24小时加急出货

DG2788/DG2789

Vishay Siliconix

Low Voltage, Low On-Resistance, Dual DPDT/Quad SPDT Analog Switch

DESCRIPTION

VISHAY

The DG2788/DG2789 are monolithic CMOS analog switching products designed for high performance switching of analog signals. Combining low power, high speed, low onresistance and small physical size, the DG2788/DG2789 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2788/DG2789 are built on Vishay Siliconix's low voltage process. An epitaxial layer prevents latchup. Breakbefore-make is guaranteed.

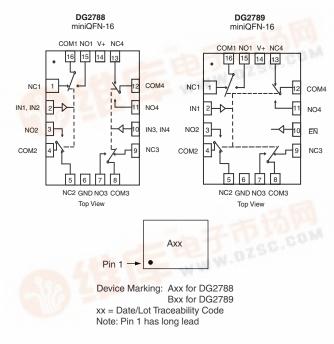
The switch conducts equally well in both directions when on, and blocks up to the power supply level when off. The DG2788 is configured as a dual Double Pole Double Throw switches while the DG2789 is configured as a Quad Single Pole Double Throw. The DG2789 has one control pin for all four SPDT switches and also has an enable pin that can turn all switches off.

The DG2788 and DG2789 comes in a small miniQFN-16 lead package (2.6 x 1.8 x 0.75 mm).

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100 % RoHS compliant.

FEATURES

- Low Voltage Operation (1.65 V to 4.3 V)
- Low On-Resistance r_{ON}: 0.4 Ω Typ. at 2.7 V
- Fast Switching: t_{ON} = 47 ns
- t_{OFF} = 15 ns
- miniQFN-16 Package
- Latch-Up Current > 300 mA (JESD78)


BENEFITS

- Reduced Power Consumption
- High Accuracy
- Reduce Board Space
- TTL/1.8 V Logic Compatible
- High Bandwidth

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE DG2788					
Logic	gic NC1, 2, 3 and 4 NO1, 2, 3 and 4				
0	ON	OFF			
1	OFF	ON			

TRUTH TABLE DG2789						
EN Logic	N Logic IN Logic NC1, 2, 3 and 4 NO1, 2, 3 a					
0	0	ON	OFF			
0	1	OFF	ON			
1	х	OFF	OFF			

ORDERING INFORMATION				
Temp Range	Package	Part Number		
- 40 to 85 °C	miniQFN-16	DG2788DN-T1-E4 DG2789DN-T1-E4		

Document Number: 73863

COMPLIANT

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted						
Parameter		Symbol	Limit	Unit		
Reference to GND	V+		- 0.3 to 5.0	V		
	IN, COM, NC, NO ^a		- 0.3 to (V+ + 0.3)	v		
Current (Any terminal except NO, NC or COM)			30			
Continuous Current (NO, NC, or COM)			± 300	mA		
Peak Current (Pulsed at 1 ms, 10 % duty cycle)			± 500			
Storage Temperature (D Suffix)			- 65 to 150	°C		
Package Solder Reflow Conditions ^d	miniQFN-16		250			
Power Dissipation (Packages) ^b miniQFN-16 ^c			525	mW		

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC Board.

c. Derate 6.6 mW/°C above 70 °C

d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Vishay Siliconix

		Test Conditions Otherwise Unless Specified		Limits - 40 to 85 °C				
Parameter	Symbol	V+ = 3 V, \pm 10 %, V _{IN} = 0.5 or 1.4 V ^e	Temp ^a	Min ^b	Тур ^с	Max ^b	Unit	
Analog Switch								
Analog Signal Range ^d	V _{NO} , V _{NC} , V _{COM}		Full	0		V+	V	
		$V_{+} = 2.7 V$, $V_{COM} = 0.5 V$, I_{NO} , $I_{NC} = 100 mA$	Dama		0.4	0.5		
On-Resistance	r _{ON}	$V_{+} = 2.7 V, V_{COM} = 1.5 V, I_{NO}, I_{NC} = 100 mA$	Room 0.33 (0.5			
			Full			0.56	0	
r _{ON} Flatness ^d	r _{ON} Flatness	$V_{+} = 2.7 V, V_{COM} = 0 \text{ to } V_{+},$	Room		0.1	0.15	Ω	
r _{ON} Match ^d	Δr_{ON}	I _{NO} , I _{NC} = 100 mA	Room		0.05			
	I _{NO(off)} ,		Room	- 1		1	1	
Switch Off Leakage Current	I _{NC(offF)}	V+ = 3.3 V, V _{NO} , V _{NC} = 0.3 V/3.0 V,	Full	- 10		10		
Switch On Leakage Suitent.	I _{COM(off)}	V _{COM} = 3.0 V/0.3 V	Room	- 1		1	nA	
			Full	- 10		10		
Channel-On Leakage Current	I _{COM(on)}	V+ = 3.3 V, V _{NO} , V _{NC} = V _{COM} = 0.3 V/3.0 V	Room Full	- 1 - 10		1 10		
Digital Control							·	
Input High Voltage	V _{INH}		Full	1.4		0.5	v	
Input Low Voltage	V _{INL}		Full					
Input Capacitance	C _{in}		Full		6		pF	
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1		1	μA	
Dynamic Characteristics					1			
Turn-On Time	t _{ON}		Romm Full		47	72 75		
Turn-Off Time	t _{OFF}	$V_{NO}~\text{or}~V_{NC}$ = 1.5 V, R_L = 50 $\Omega,~C_L$ = 35 pF	Room Full		15	43 45	ns	
Break-Before-Make Time	t _d		Full	1				
Charge Injection ^d	Q _{INJ}	C_L = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room		87		рС	
		R_L = 50 Ω, C_L = 5 pF, f = 100 kHz			- 69			
Off-Isolation ^d	OIRR	$R_L = 50 $ Ω, $C_L = 5 $ pF, f = 1 MHz	Deam		- 49			
	V	R_L = 50 Ω, C_L = 5 pF, f = 100 kHz	Room		- 106		dB	
Crosstalk ^{d, f}	X _{TALK}	$R_L = 50 $ Ω, $C_L = 5 $ pF, f = 1 MHz	- 96	- 96				
h h oxo d	C _{NO(off)}		Room		81			
N _O , N _C Off Capacitance ^d	C _{NC(off)}	£ 4 MUL	Room		81		pF	
	C _{NO(on)}	f = 1 MHz	Room		186			
Channel-On Capacitance ^d	C _{NC(on)}		Room		186		1	
Power Supply								
Power Supply Range	V+			2.7		3.3	V	
Power Supply Current	l+	V _{IN} = 0 or V+	Full			1.0	μA	

Vishay Siliconix

Parameter		Test Conditions Otherwise Unless Specified		Limits - 40 to 85 °C			
	Symbol	V+ = 4.3 V, V_{IN} = 0.5 or 1.6 V ^e	Temp ^a	Min ^b	Тур ^с	Max ^b	Unit
Analog Switch							
Analog Signal Range ^d	V _{NO} , V _{NC} , V _{COM}		Full	0		V+	v
		$V_{+} = 4.3 V, V_{COM} = 0.9 V, I_{NO}, I_{NC} = 100 mA$	Deam	0.32	0.45		
On-Resistance	r _{ON}	$V_{+} = 4.3 V, V_{COM} = 2.5 V, I_{NO}, I_{NC} = 100 mA$	Room		0.27	0.45	
			Full			0.5	
r _{ON} Flatness ^d	r _{ON} Flatness	$V_{+} = 4.3 V, V_{COM} = 0 \text{ to } V_{+},$	Room		0.1	0.15	Ω
r _{ON} Match ^d	Δr_{ON}	I _{NO} , I _{NC} = 100 mA	Room		0.03		
Switch Off Leakage Current ^d	I _{NO(off)} , I _{NC(offF)}	V+ = 4.3 V, V _{NO} , V _{NC} = 0.3 V / 4.0 V, V _{COM} = 4.0 V / 0.3 V	Room Full	-10 - 100		10 100	nA
	I _{COM(off)}		Room Full	- 10 - 100		10 100	
Channel-On Leakage Current ^d	I _{COM(on)}	$V_{+} = 4.3 V, V_{NO}, V_{NC} = V_{COM} = 3.0 V / 4.0 V$	Room Full	- 10 - 100		10 100	
Digital Control							
Input High Voltage	V _{INH}		Full	1.6			v
Input Low Voltage	V _{INL}		Full			0.5	v
Input Capacitance	C _{in}		Full		6		pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1		1	μA
Dynamic Characteristics							
Charge Injection ^d	Q _{INJ}	C_L = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room		105		рС
N _O , N _C Off Capacitance ^d	C _{NO(off)}	f = 1 MHz	Room		79		- pF
	C _{NC(off)}		Room		79		
Channel-On Capacitance ^d	C _{NO(on)}		Room		183		h h
	C _{NC(on)}]			183		
Power Supply							
Power Supply Range	V+					4.3	V
Power Supply Current	l+	$V_{IN} = 0 \text{ or } V +$	Full			1.0	μA

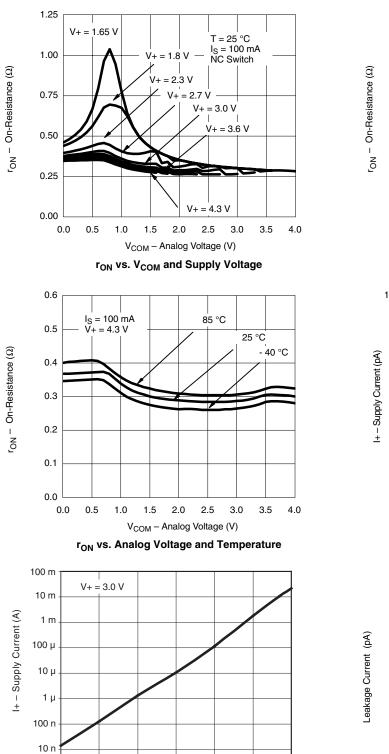
Notes:

a. Room = 25 °C, Full = as determined by the operating suffix.

b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

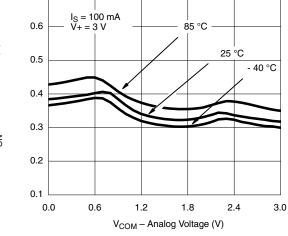
c. Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, not subjected to production test.

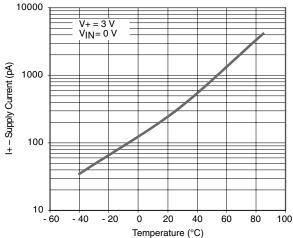

e. V_{IN} = input voltage to perform proper function.

f. Crosstalk measured between channels.

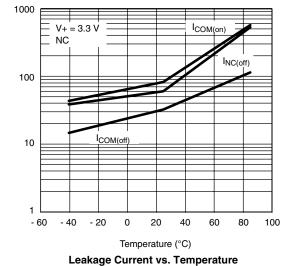
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



Vishay Siliconix


10 M

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted



0.7

r_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Temperature

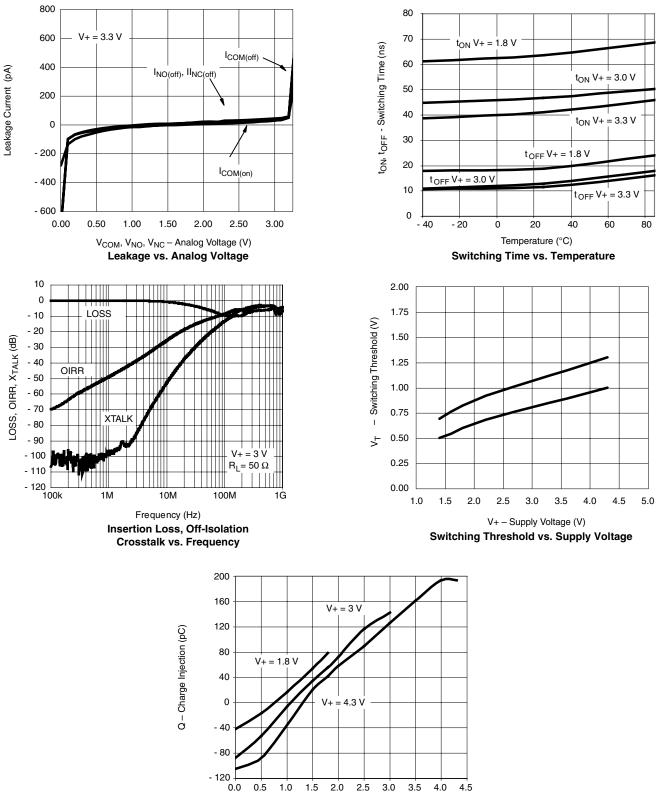
1 n

10

100

10 K

Input Switching Frequency (Hz)

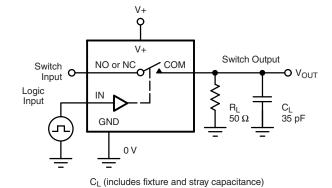

Supply Current vs. Input Switching Frequency

1 K

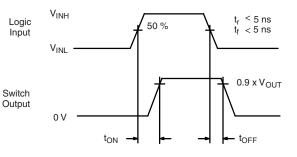
100 K

1 M

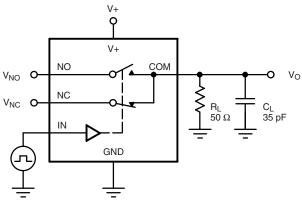
Vishay Siliconix

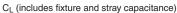

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

V_{COM} – Analog Voltage (V)



Vishay Siliconix




 $V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

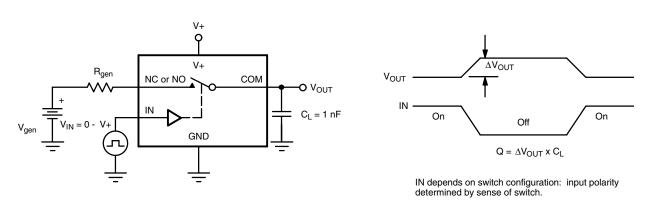
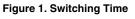
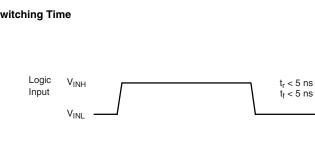
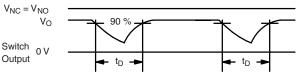





Figure 3. Charge Injection

Vishay Siliconix

TEST CIRCUITS

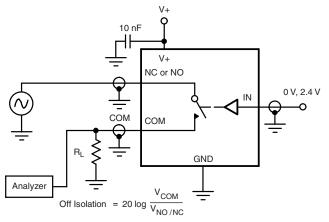


Figure 4. Off-Isolation

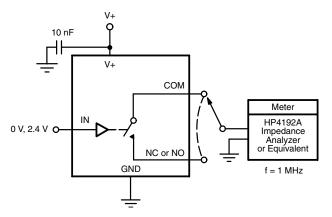


Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73863.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.