## 查询DN3545\_07供应商 Supertex inc.

#### 专业PCB打样工厂 24小时加急出货

## **DN3545**



# **N-Channel Depletion-Mode** Vertical DMOS FET

#### **Features**

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage

## **Applications**

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

#### **Absolute Maximum Ratings**

| Parameter                                        | Value             |  |  |
|--------------------------------------------------|-------------------|--|--|
| Drain-to-source voltage                          | BV <sub>DSX</sub> |  |  |
| Drain-to-gate voltage                            | BV <sub>DGX</sub> |  |  |
| Gate-to-source voltage                           | ±20V              |  |  |
| Oper <mark>ating an</mark> d storage temperature | -55°C to +150°C   |  |  |
| Soldering temperature*                           | 300°C             |  |  |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

## **General Description**

These depletion-mode (normally-on) transistors utilize an advanced vertical DMOS structure and Supertex's wellproven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

## Package Options





dzsc.com

| *Distance of 1.6                         | imm from case                | for 10 seconds.           |                 |                   |  |  |  |
|------------------------------------------|------------------------------|---------------------------|-----------------|-------------------|--|--|--|
| Ordering Information                     |                              |                           |                 |                   |  |  |  |
| BV <sub>DSX</sub> /<br>BV <sub>DGX</sub> | R <sub>DS(ON)</sub><br>(max) | l <sub>DSS</sub><br>(min) | Package Options |                   |  |  |  |
|                                          |                              |                           | TO-92           | TO-243AA (SOT-89) |  |  |  |
| 4501/                                    | 20Ω                          | 200mA                     | DN3545N3        | DN3545N8          |  |  |  |
| 450V                                     |                              |                           | DN3545N3-G      | DN3545N8-G        |  |  |  |



s package is RoHS compliant ('Green')

## **Thermal Characteristics**

| Package  | I <sub>⊳</sub><br>(continuous)¹ | Ι <sub>⊳</sub><br>(pulsed) | Power Dissipation<br>@T <sub>A</sub> = 25°C | θ <sub>jc</sub><br>°C/W | θ <sub>ja</sub><br>°C/W | I 1<br>DR | I <sub>DRM</sub> |
|----------|---------------------------------|----------------------------|---------------------------------------------|-------------------------|-------------------------|-----------|------------------|
| T0-92    | 136mA                           | 550mA                      | 0.74W                                       | 125                     | 170                     | 136mA     | 550mA            |
| TO-243AA | 200mA                           | 550mA                      | 1.6W <sup>2</sup>                           | 15                      | 78 <sup>2</sup>         | 200mA     | 550mA            |

Notes:

1.  $I_p$  (continuous) is limited by max rated  $T_j$ . 2. Mounted on FR4 board, 25mm x 25mm x 1.57mm. Significant  $P_p$  increase possible on ceramic substrate.

#### Electrical Characteristics (@25°C unless otherwise specified)

| Symbol               | Parameter                                                   | Min  | Тур | Max  | Units | Conditions                                                                                              |  |
|----------------------|-------------------------------------------------------------|------|-----|------|-------|---------------------------------------------------------------------------------------------------------|--|
| BV <sub>DSX</sub>    | Drain-to-source breakdown voltage                           | 450  | -   | -    | V     | V <sub>GS</sub> = -5V, I <sub>D</sub> = 100μA                                                           |  |
| $V_{GS(OFF)}$        | Gate-to-source OFF voltage                                  | -1.5 | -   | -3.5 | V     | $V_{\rm DS} = 25V, I_{\rm D} = 10\mu A$                                                                 |  |
| $\Delta V_{GS(OFF)}$ | Change in $V_{\mbox{\scriptsize GS(OFF)}}$ with temperature | -    | -   | 4.5  | mV/ºC | $V_{\rm DS} = 25V, I_{\rm D} = 10\mu A$                                                                 |  |
| I <sub>GSS</sub>     | Gate body leakage current                                   | -    | -   | 100  | nA    | $V_{GS} = \pm 20V, V_{DS} = 0V$                                                                         |  |
|                      |                                                             | -    | -   | 1.0  | μA    | $V_{GS}$ = -5V, $V_{DS}$ = Max Rating                                                                   |  |
| I <sub>D(OFF)</sub>  | Drain-to-source leakage current                             | -    | -   | 1.0  | mA    | $V_{GS} = -5V, V_{DS} = 0.8$ Max Rating<br>$T_A = 125^{\circ}C$                                         |  |
| I <sub>DSS</sub>     | Saturated drain-to-source current                           | 200  | -   | -    | mA    | V <sub>GS</sub> = 0V, V <sub>DS</sub> = 15V                                                             |  |
| R <sub>DS(ON)</sub>  | Static drain-to-source<br>on-state resistance               | -    | -   | 20   | Ω     | V <sub>GS</sub> = 0V, I <sub>D</sub> = 150mA                                                            |  |
| $\Delta R_{DS(ON)}$  | Change in $R_{_{DS(ON)}}$ with temperature                  | -    | -   | 1.1  | %/°C  | $V_{_{\rm GS}}$ = 0V, I_{_{\rm D}} = 150mA                                                              |  |
| G <sub>FS</sub>      | Forward transductance                                       | 150  | -   | -    | m℧    | I <sub>D</sub> = 100mA, V <sub>DS</sub> = 10V                                                           |  |
| C <sub>ISS</sub>     | Input capacitance                                           | -    | -   | 360  |       |                                                                                                         |  |
| C <sub>oss</sub>     | Common source output capacitance                            | -    | -   | 40   | pF    | V <sub>GS</sub> = -5V, V <sub>DS</sub> = 25V, f = 1MHz                                                  |  |
| C <sub>RSS</sub>     | Reverse transfer capacitance                                | -    | -   | 15   |       |                                                                                                         |  |
| t <sub>d(ON)</sub>   | Turn-ON delay time                                          | -    | -   | 20   |       |                                                                                                         |  |
| t,                   | Rise time                                                   | -    | -   | 30   |       | $V_{_{DD}}$ = 25V, $I_{_{D}}$ = 150mA,<br>R <sub>GEN</sub> = 25 $\Omega$ , V <sub>GS</sub> = 0V to -10V |  |
| t <sub>d(OFF)</sub>  | Turn-OFF delay time                                         | -    | -   | 30   | ns    |                                                                                                         |  |
| t <sub>r</sub>       | Fall time                                                   | -    | -   | 40   |       |                                                                                                         |  |
| V <sub>SD</sub>      | Diode forward voltage drop                                  | -    | -   | 1.8  | V     | V <sub>GS</sub> = -5V, I <sub>SD</sub> = 150mA                                                          |  |
| t <sub>rr</sub>      | Reverse recovery time                                       | -    | 800 | -    | ns    | V <sub>GS</sub> = -5V, I <sub>SD</sub> = 150mA                                                          |  |

## **Switching Waveforms and Test Circuit**







#### **Typical Performance Curves**











Power Dissipation vs. Ambient Temperature









20

V<sub>DS</sub> (Volts)

30

40

10

0

0

#### **Typical Performance Curves (cont.)**



On Resistance vs. Drain Current



# 3-Lead TO-92 Surface Mount Package (N3)



Notes:

All dimensions are in millimeters; all angles in degrees.

## 3-Lead TO-243AA (SOT-89) Surface Mount Package (N8)



All dimensions are in millimeters; all angles in degrees.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com.

©2007 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.