## power light source

## Luxeon V Star

#### Technical Data DS30

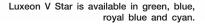
Luxeon is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting.

Luxeon Power Light Sources give you total design freedom and unmatched brightness, creating a new world of light.

The Luxeon V offers extreme luminous density, providing lumens per package of 4X a standard Luxeon or up to 50X that of alternative solid state light sources creating new opportunities for solid state lighting to displace conventional lighting technologies.

For high volume applications, custom Luxeon power light source designs are available upon request, to meet your specific needs.













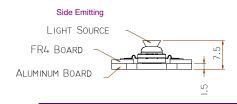


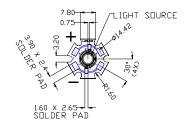

#### **Features**

- Highest Flux per LED in the world 4X the Flux of a comparable Luxeon and up to 50X the Flux of standard through hole LEDs
- Extreme Luminous Density 20X the lm/mm²
   of a standard through hole LED
- Very long operating life (up to 100k hours)
- Available in Green, Blue, Royal Blue, and Cyan
- Lambertian or Side Emitting Distribution
   Pattern
- More Energy Efficient than Incandescent and most Halogen lamps
- Low voltage DC operated
- Cool beam, safe to the touch
- Instant light (less than 100 ns)
- Fully dimmable
- No UV
- Superior ESD protection

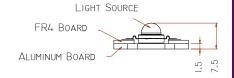
#### Typical Applications

- Portable (flashlight, bicycle)
- Architectural Detail Lighting
- Decorative
- Fiber Optic Alternative
- Medical Applications
- Power Signaling / Airfield / Taxiway Lighting
- Edge-Lit Signs (Exit, Point Of Sale)
- LCD Backlights / Light Guides




#### **Mechanical Dimensions**


#### Luxeon V Star







Lambertian



## Flux Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C

| Color                     | PART NUMBER | Minimum Luminous Flux (Im) or Radiometric Power (MW) $\Phi_V^{[1,2]}$ | Typical Luminous Flux (Im) OR Radiometric Power (MW) $\Phi_V^{[2]}$ | RADIATION<br>PATTERN |
|---------------------------|-------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|
| GREEN                     | LXHL-LM5C   | 67.2                                                                  | 160                                                                 |                      |
| CYAN                      | LXHL-LE5C   | 67.2                                                                  | 160                                                                 | LAMBERTIAN           |
| BLUE <sup>[3]</sup>       | LXHL-LB5C   | 23.5                                                                  | 48                                                                  |                      |
| ROYAL BLUE <sup>[4]</sup> | LXHL-LR5C   | 275 mW                                                                | 700 mW                                                              |                      |
| GREEN                     | LXHL-FM5C   | 67.2                                                                  | 145                                                                 |                      |
| CYAN                      | LXHL-FE5C   | 67.2                                                                  | 145                                                                 | SIDE EMITTING        |
| BLUE <sup>[3]</sup>       | LXHL-FB5C   | 23.5                                                                  | 43                                                                  |                      |
| ROYAL BLUE <sup>[4]</sup> | LXHL-FR5C   | 275 MW                                                                | 630 MW                                                              |                      |

#### Notes

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- Electrical insulation between neighboring Stars is required – aluminum board is not electrically neutral.
- 4. Drawings not to scale.
- 5. All dimensions are in millimeters.

#### Notes:

- Minimum luminous flux or radiometric power performance guaranteed within published operating conditions. Lumileds maintains a tolerance of ± 10% on flux and power measurements.
- Luxeon types with even higher luminous flux levels will become available in the future. Please consult your Lumileds Authorized Distributor or Lumileds sales representative for more information.
- Minimum flux value for 470 nm devices. Due to the CIE eye response curve in the short blue wavelength range, the minimum luminous flux will vary over the Lumileds' blue color range. Luminous flux will vary from a minimum of 18.1 Im at 460 nm to a typical of 80 lm at 480 nm due to this effect. Although the luminous power efficiency is lower in the short blue wavelength range, radiometric power efficiency increases as wavelength decreases. For more information, consult the Luxeon Design Guide, available upon request.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength.

## Optical Characteristics at 700mA, Junction Temperature, $T_J = 25^{\circ}C$

| Radiation     |                                           | Dominant Wavelength <sup>(1)</sup> λD or<br>Peak Wavelength <sup>(2)</sup> λP |                                      |                                      | SPECTRAL<br>HALF-WIDTH <sup>(3)</sup><br>(nm) | Temperature<br>Coefficient<br>of Dominant<br>Wavelength<br>(nm/°C) |
|---------------|-------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| PATTERN       | Color                                     | Min.                                                                          | Typ.                                 | Max.                                 | $\Delta\lambda_{1/2}$                         | $\Delta\lambda_{	extsf{D}}/\Delta T_{	extsf{J}}$                   |
| LAMBERTIAN    | GREEN CYAN BLUE ROYAL BLUE <sup>[2]</sup> | 520 nm<br>490 nm<br>460 nm<br>440 nm                                          | 530 nm<br>505 nm<br>470 nm<br>455 nm | 550 nm<br>520 nm<br>490 nm<br>460 nm | 35<br>30<br>25<br>20                          | 0.04<br>0.04<br>0.04<br>0.04                                       |
| SIDE EMITTING | GREEN CYAN BLUE ROYAL BLUE <sup>[2]</sup> | 520 nm<br>490 nm<br>460 nm<br>440 nm                                          | 530 nm<br>505 nm<br>470 nm<br>455 nm | 550 nm<br>520 nm<br>490 nm<br>460 nm | 35<br>30<br>25<br>20                          | 0.04<br>0.04<br>0.04<br>0.04                                       |

## Optical Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C, Continued

| Radiation pattern | Color      | Total included angle $^{[4]}$ (degree) $	heta_{0.90V}$ | viewing angle <sup>(5)</sup><br>(degree)<br>2 <del>0</del> 1/2 |
|-------------------|------------|--------------------------------------------------------|----------------------------------------------------------------|
| Lambertian        | GREEN      | 50                                                     | 150                                                            |
|                   | CYAN       | 50                                                     | 150                                                            |
|                   | BLUE       | 50                                                     | 150                                                            |
|                   | ROYAL BLUE | 50                                                     | 150                                                            |

## Optical Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C, Continued

| Radiation<br>Pattern | Color      | Typical total flux percent within first $45^{\circ (6)}$ Cum $\Phi_{45^{\circ}}$ | Typical angle of<br>peak intensity <sup>(7)</sup><br>θ <sub>peak</sub> |
|----------------------|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|
| SIDE EMITTING        | GREEN      | <30%                                                                             | 75° - 85°                                                              |
|                      | CYAN       | <30%                                                                             | 75° - 85°                                                              |
|                      | BLUE       | <30%                                                                             | 75° - 85°                                                              |
|                      | ROYAL BLUE | <30%                                                                             | 75° - 85°                                                              |

3

#### Notes: (for all three optical tables)

- Dominant wavelength is derived from the CIE 1931 Chromaticity diagram and represents the perceived color. Lumileds maintains a tolerance of ± 0.5nm for dominant wavelength measurements.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength. Lumileds maintains a tolerance of ± 2nm for peak wavelength measurements.
- 3. Spectral width at ½ of the peak intensity.
- 4. Total angle at which 90% of total luminous flux is captured.
- θ½ is the off axis angle from lamp centerline where the luminous intensity is ½ of the peak value.
- 6. Cumulative flux percent within  $\pm$  45° from optical axis.
- Off axis angle from lamp centerline where the luminous intensity reaches the peak value. On axis peak may be higher than off axis
- 8. All products built with Indium Gallium Nitride (InGaN).
- Blue and Royal Blue power light sources represented here are IEC825 Class 2 for eye safety.

# Electrical Characteristics at 700mA, Junction Temperature, $T_J = 25^{\circ}C$

| _                          | Forward Voltage V <sub>F</sub> (V) <sup>[1]</sup> |                      | TEMPERATURE  COEFFICIENT THERMA  OF FORWARD RESISTANC  DYNAMIC VOLTAGE <sup>[3]</sup> JUNCTIO  RESISTANCE <sup>[2]</sup> (mV/°C) TO BOAF |                    |                              |                          |
|----------------------------|---------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|--------------------------|
| Color                      | Min.                                              | TYP.                 | Max.                                                                                                                                     | (Ω) R <sub>D</sub> | $\Delta V_F / \Delta T_J$    | (°C/W) R $\theta_{J-B}$  |
| GREEN CYAN BLUE ROYAL BLUE | 5.43<br>5.43<br>5.43<br>5.43                      | 6.84<br>6.84<br>6.84 | 8.31<br>8.31<br>8.31<br>8.31                                                                                                             | 1.0<br>1.0<br>1.0  | -4.0<br>-4.0<br>-4.0<br>-4.0 | 1 1<br>1 1<br>1 1<br>1 1 |

## Notes:

- Lumileds maintains a tolerance of ± 0.06V on forward voltage measurements.
- Dynamic resistance is the inverse of the slope in linear forward voltage model for LEDs. See Figure 3.
- 3. Measured between 25°C  $\leq$  TJ  $\leq$  110°C at I<sub>F</sub> = 700mA.

## **Absolute Maximum Ratings**

| Parameter                             | GREEN/CYAN/<br>Blue/Royal Blue |
|---------------------------------------|--------------------------------|
| DC FORWARD CURRENT (MA) [1]           | 700                            |
| PEAK PULSED FORWARD CURRENT (MA)      | 1000                           |
| AVERAGE FORWARD CURRENT (MA)          | 700                            |
| ESD SENSITIVITY [2]                   | ± 16,000V HBM                  |
| LED JUNCTION TEMPERATURE (°C)         | 135                            |
| ALUMINUM-CORE PCB TEMPERATURE (°C)[3] | 70                             |
| Storage & Operating Temperature (°C)  | -40 то + I 20                  |

#### Notes:

- Proper current derating must be observed to maintain junction temperature below the maximum.
   For more information, consult Luxeon Design Guide, available upon request.
- LEDs are not designed to be driven in reverse bias. Please consult Lumileds' Application Brief AB11 for further information.
- Allowable board temperature to avoid exceeding maximum junction temperature at maximum V<sub>t</sub> limit at 700 mA based on thermal resistance of Star assembly.

## Wavelength Characteristics, $T_J = 25^{\circ}C$

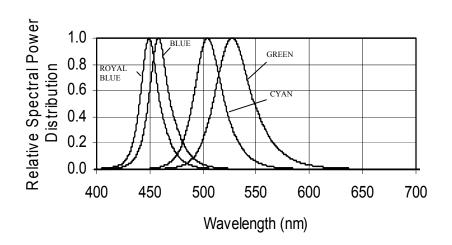



Figure 1.
Relative Intensity vs. Wavelength.

## **Light Output Characteristics**

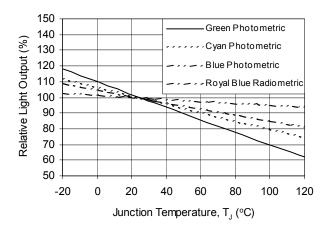
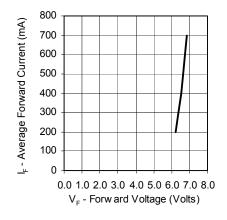




Figure 2. Relative Light Output vs. Junction Temperature.

## Forward Current Characteristics, $T_J = 25^{\circ}C$



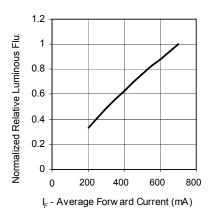



Figure 3.
Forward Current vs. Forward Voltage.

Figure 4. Relative Luminous Flux vs. Forward Current at  $T_J = 25^{\circ}C$  maintained.

### **Current Derating Curve**

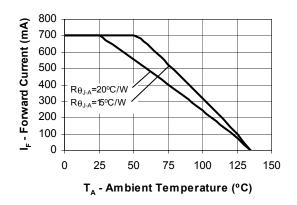
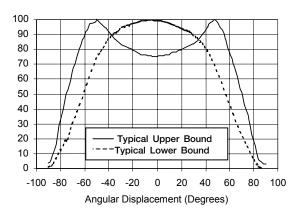



Figure 5.


Maximum Forward Current vs. Ambient Temperature. Derating based on  $T_{\text{JMAX}} = 135 \,^{\circ}\text{C}$ .

#### Note:

Additional heatsinking is required, even for extremely brief periods. Please consult AB05, Luxeon Thermal Design Guide, for additional information.

## Representative Typical Spatial Radiation Pattern

#### Lambertian Radiation Pattern



## Figure 6.

Representative Typical Spatial Radiation Pattern for Luxeon V Star.

Side Emitting Radiation Pattern

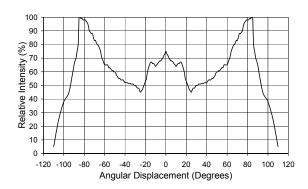



Figure 7.
Representative Typical Spatial Radiation
Pattern for Luxeon V Star.

#### **About Luxeon**



Luxeon is the new world of solid state lighting (LED) technology.

Luxeon Power Light Source Solutions offer huge advantages over conventional lighting and huge advantages over other LED solutions.

Luxeon enables partners to create and market products that, until now, were impossible to create. This means the opportunity to create products with a clear competitive advantage in the market. Products that are smaller, lighter, sleeker, cooler, and brighter. Products that are more fun to use, more efficient, and more environmentally conscious than ever before possible!



### **Company Information**

Luxeon is developed, manufactured and marketed by Lumileds Lighting, LLC. Lumileds is a world-class supplier of Light Emitting Diodes (LEDs) producing billions of LEDs annually. Lumileds is a fully integrated supplier, producing core LED material in all three base colors (Red, Green, Blue) and White. Lumileds has R&D development centers in San Jose, California and Best, The Netherlands. Production capabilities in San Jose, California and Malaysia.

Lumileds is pioneering the high-flux LED technology and bridging the gap between solid state LED technology and the lighting world. Lumileds is absolutely dedicated to bringing the best and brightest LED technology to enable new applications and markets in the Lighting world.



©2003 Lumileds Lighting. All rights reserved. Luxeon is a trademark of Lumileds Lighting, U.S., LLC.

Product specifications are subject to change without notice.

Lumileds may make process or materials changes affecting the performance or other characteristics of Luxeon. These products supplied after such change will continue to meet published specifications, but may not be identical to products supplied as samples or under prior orders.

#### **LUMILEDS**

www.luxeon.com www.lumileds.com

For technical assistance or the location of your nearest Lumileds sales office, call:

### Worldwide:

+1 408-435-6044 US Toll free: 877-298-9455 Europe: +31 499 339 439 Asia: +65 6248 4759 Fax: 408-435-6855 Email us at info@lumileds.com

Lumileds Lighting, U.S., LLC 370 West Trimble Road San Jose, CA 95131