General Description

The DS3667 is a high－speed Schottky 8－channel bidirection－ al transceiver designed for digital information and communi－ cation systems．Pin selectable totem－pole／open collector outputs are provided at all driver outputs．This feature，to－ gether with the Dumb Mode which puts both driver and re－ ceiver outputs in TRI－STATE at the same time，means high－ er flexibility of system design．PNP inputs are used at all driver inputs for minimum loading，and hysteresis is provid－ ed at all receiver inputs for added noise margin．A power up／down protection circuit is included at all outputs to pro－ vide glitch－free operation during V_{CC} power up or down．

Features
－8－channel bidirectional non－inverting transceivers
－Bidirectional control implemented with TRI－STATE output design
－High speed Schottky design
－Low power consumption
－High impedance PNP inputs（drivers）
－Pin selectable totem－pole／open collector outputs （drivers）
－ 500 mV （typ）input hysteresis（receivers）
■ Power up／down protection（glitch－free）
－Dumb Mode capability

Connection Diagram

TL／F／5245－1

Order Number DS3667N See NS Package Number N20A

http://www.national.com

Symbol	Parameter	From	To	Conditions	Min	Typ	Max	Units
$t_{\text {tPLH }}$	Propagation Delay Time, Low to High Level Output	Terminal	Bus	$\begin{aligned} \mathrm{V}_{\mathrm{L}} & =2.3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}} & =38.3 \Omega \\ \mathrm{C}_{\mathrm{L}} & =30 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
$t_{\text {PHL }}$	Propagation Delay Time, High to Low Level Output					14	20	ns
${ }_{\text {tPLH }}$	Propagation Delay Time, Low to High Level Output	Bus	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{L}}=5.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=240 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$ (Figure 2)		15	20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High to Low Level Output					10	20	ns
tPZH	Output Enable Time to High Level	TE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$(Figure 1)		19	30	ns
tPHZ	Output Disable Time to High Level					15	20	ns
${ }^{\text {tPZL }}$	Output Enable Time to Low Level			$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=2.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=38.3 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		24	40	ns
${ }^{\text {tPLZ }}$	Output Disable Time to Low Level					17	30	ns
tPZH	Output Enable Time to High Level	TE, PE (Notes 2 and 3)	Terminal	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		19	35	ns
tPHZ	Output Disable Time to High Level					17	25	ns
${ }_{\text {t }}^{\text {PZL }}$	Output Enable Time to Low Level			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$(Figure 1)		27	40	ns
tPLZ	Output Disable Time to Low Level					17	30	ns
tPZH	Output Pull-Up Enable Time	PE (Notes 2 and 3)	Bus	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=480 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$ (Figure 1)		10	20	ns
tPHZ	Output Pull-Up Disable Time					10	20	ns
Switching Load Configurations ${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes jig and probe capacitance FIGURE 1				high current stress V_{C} logic h V_{C} logic low ${ }^{*} \mathrm{C}_{\mathrm{L}}$ includes	aused by $\begin{aligned} & =3.0 \\ & =0 V \end{aligned}$	he V_{1} v capacit	ge sour	when the

Physical Dimensions inches (millimeters)

Molded Dual-In-Line Package (N)
Order Number DS3667N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 http://www.national.com	National Semiconductor Europe Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 8585 English Tel: +49 (0) 180-532 7832 Français Tel: +49 (0) 180-532 9358 Italiano Tel: +49(0) 180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2308 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

