捷多邦,专业PCB打样工厂,24小时加急出货

National Semiconductor

PRELIMINARY

January 2006

DS90C241/DS90C124 5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer General Description

The DS90C241/124 Chipset translates a 24-bit parallel bus into a fully transparent data/control LVDS serial stream with embedded clock information. This single serial stream simplifies transferring a 24-bit bus over PCB traces and cable by eliminating the skew problems between parallel data and clock paths. It saves system cost by narrowing data paths that in turn reduce PCB layers, cable width, and connector size and pins.

The DS90C241/124 incorporates LVDS signaling on the high-speed I/O. LVDS provides a low power and low noise environment for reliably transferring data over a serial transmission path. By optimizing the serializer output edge rate for the operating frequency range EMI is further reduced.

In addition the device features pre-emphasis to boost signals over longer distances using lossy cables. Internal DC balanced encoding/decoding is used to support AC-Coupled interconnects.

Features

- 5 MHz–35 MHz clock embedded and DC-Balancing 1:24 and 24:1 data transmissions
- User defined pre-emphasis driving ability through external resistor on LVDS outputs and capable to drive up to 10 meters shielded twisted-pair cable

- User selectable clock edge for parallel data on both TX and RX
- Supports AC-coupling interface
- Individual power-down controls for both TX and RX
- Embedded clock CDR (clock and data recovery) on RX and no external source of reference clock needed
- All codes RDL (random data lock) to support hot-pluggable applications
- LOCK output flag to ensure data integrity at RX side
- Balanced T_{SETUP}/T_{HOLD} between RCLK and RDATA on RX side
- PTO (progressive turn-on) LVTTL O/P to minimize the SSO effects
- All LVTTL inputs and control pins have internal pulldown except PRE
- On-chip filters for PLLs on TX and RX
- 48 pin TQFP package for both TX and RX
- Pure CMOS .35 µm process
- Power supply range 3.3V ± 10%
- Temperature range -40°C to +105°C
- 8 kV HBM ESD structure

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +4V
LVCMOS/LVTTL Input Voltage	–0.3V to (V _{CC} +0.3V)
LVCMOS/LVTTL Output	
Voltage	-0.3V to (V _{CC} +0.3V)
LVDS Receiver Input Voltage	-0.3V to 3.9V
LVDS Driver Output Voltage	-0.3V to 3.9V
LVDS Output Short Circuit	
Duration	10 ms
Junction Temperature	+150°C
Storage Temperature	−65°C to +150°C
Lead Temperature	
(Soldering, 4 seconds)	+260°C
Maximum Package Power Disa	sipation Capacity Package
De-rating:	
48L TQFP	$1/\theta_{JA}$ °CW above +25°C
DS90C241	
θ.ΙΑ	45.8 (4L*); 75.4 (2L*) °C/W

θ_{JC}	21.0°C/W	/
DS90C124		
θ_{JA}	45.4 (4L*); 75.0 (2L*)°C/W	/
θ_{JC}	21.1°C/W	1
	*JEDEC	;
ESD Rating (HBM)	>8 kV	/
ESD Rating (ISO10605)	DS90C241 meets ISO 10605	;
Contact Discharge (D _{OUT+}	, D _{OUT-}) to GND ±10 kV	/
Air Discharge (D _{OUT+} , D _{OU}	_{IT-}) to GND ±30 kV	/

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T _A)	-40	+25	+105	°C
Clock Rate	5		35	MHz
Supply Noise			±100	mV _{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
LVCMO	S/LVTTL DC SPECIFICATION	S					
V _{IH}	High Level Voltage		Tx: DIN[0:23], TCLK,	2.0		V _{cc}	V
V _{IL}	Low Level Input Voltage		DEN, TRFB, DCAOFF,	GND		0.8	V
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA	DCBOFF, VODSEL		-0.7	-1.2	V
I _{IN}	Input Current	V _{IN} = 0V or 3.6V	Rx: RRFB, REN	-10	±2	+10	μA
			Tx: TPWDNB Rx: RPWDNB	-20	±5	+20	μA
V _{OH}	High Level Output Voltage	$I_{OH} = -2 \text{ mA}$	ROUT[0:23], RCLK,	2.3	3.0	V_{CC}	V
V _{OL}	Low Level Output Voltage	$I_{OL} = +2 \text{ mA}$	LOCK	GND	0.33	0.5	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V				-110	mA
I _{oz}	TRI-STATE® Output Current	$RPWRDN = 0.8V,$ $V_{OUT} = 0V \text{ or } V_{CC}$	ROUT[0:23], RCLK, LOCK	-15	±0.4	+15	μA
LVDS D	C SPECIFICATIONS	•					·
V _{TH}	Differential Threshold High Voltage	V _{CM} = +1.2V	R _{IN+} , R _{IN-}			+100	mV
V _{TL}	Differential Threshold Low Voltage			-100			mV
I _{IN}	Input Current	V _{IN} = 2.4V, V _{CC} = 3.6V or 0V				±100	μΑ
		$V_{IN} = 0V, V_{CC} = 3.6V \text{ or } 0V$	1			±100	μΑ

Electrical Characteristics (Continued) Over recommended operating supply and temperature ranges unless otherwise specified.								
Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units	
LVDS D	C SPECIFICATIONS		-				L	
V _{OD}	Output Differential Voltage (D _{OUT+})–(D _{OUT}) (<i>Figure 16</i>)	$R_L = 100\Omega$, w/o pre-emphasis VODSEL = L (VODSEL = H)	D _{OUT+} , D _{OUT-}	250 (500)	400 (800)	600 (1200)	mV	
ΔV_{OD}	Output Differential Voltage Unbalance	$R_L = 100\Omega$, w/o pre-emphasis			10	50	mV	
V _{os}	Offset Voltage	$R_L = 100\Omega$, w/o pre-emphasis		1.05	1.2	1.25	V	
ΔV_{OS}	Offset Voltage Unbalance	$R_L = 100\Omega$, w/o pre-emphasis			10	50	mV	
I _{OS}	Output Short Circuit Current	DOUT = 0V, DIN = H, TPWRDND = 2.4V	-	-35	-50	-70	mA	
I _{oz}	TRI-STATE Output Current	TPWRDND = $0.8V$, DOUT = $0V$ or V_{DD}		-10	±1	10	μA	
SER/DE	S SUPPLY CURRENT (DVDD	*, PVDD* and AVDD* pins) *Digitized	ital, PLL, and Analog VD	Ds				
I _{CCT}	Serializer (Tx) Total Supply Current (includes load current)	$R_L = 100\Omega$ Pre-emphasis = OFF Checker-board pattern VODSEL=L (<i>Figure 1</i>)	f = 35 MHz		105		mA	
		$R_L = 100\Omega$ $RPRE = 6 k\Omega$ Checker-board pattern VODSEL=L (<i>Figure 1</i>)	f = 35 MHz		120		mA	
	Serializer (Tx) Total Supply Current (includes load current)	$R_L = 100\Omega$ $R_{PRE} = OFF$ Random pattern VODSEL=L	f = 35 MHz		65		mA	
		$\label{eq:RL} \begin{split} &R_{L} = 100\Omega \\ &R_{PRE} = 6 \; k\Omega \\ &Random \; pattern \\ &VODSEL=L \end{split}$	f = 35 MHz		80		mA	
I _{CCTZ}	Serializer (Tx) Supply Current Power-down	TPWRDNB = 0.8V			200	500	μA	
I _{CCR}	Deserializer (Rx) Total Supply Current (includes load current)	C _L = 8 pF Checker-board pattern LVTTL Output <i>(Figure 2</i>)	f = 35 MHz		180		mA	
	Deserializer (Rx) Total Supply Current (includes load current)	C _L = 8 pF Random pattern LVTTL Output	f = 35 MHz		110		mA	
I _{CCRZ}	Deserializer (Rx) Supply Current Power-down	RPWRDND = 0.8V			500	750	μA	

Serializer Timing Requirements for TCLK Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period		28.6	Т	200	ns
t _{TCIH}	Transmit Clock High Time		0.4T	0.5T	0.6T	ns
t _{TCIL}	Transmit Clock Low Time		0.4T	0.5T	0.6T	ns
t _{CLKT}	TCLK Input Transition Time			3	6	ns
t _{JIT}	TCLK Input Jitter	(Note 9)			±200	ns

Serializer Switching Characteristics Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{LLHT}	LVDS Low-to-High Transition Time	$R_L = 100\Omega$, $C_L = 10 \text{ pF to GND}$		0.6		ns
t _{LHLT}	LVDS High-to-Low Transition Time	VODSEL = L (<i>Figure 3</i>)		0.6		ns
t _{DIS}	DIN (0:23) Setup to TCLK	$R_L = 100\Omega$,	5			ns
t _{DIH}	DIN (0:23) Hold from TCLK	(Note 8)	5			ns
t _{HZD}	DOUT ± HIGH to TRI-STATE Delay	R _L = 100Ω,		5		ns
t _{LZD}	DOUT ± LOW to TRI-STATE Delay	$C_L = 10 \text{ pF to GND}$		5		ns
t _{zHD}	DOUT ± TRI-STATE to HIGH Delay	(Note 4) (Figure 7)		5		ns
t _{ZLD}	DOUT ± TRI-STATE to LOW Delay	_		5		ns
t _{PLD}	Serializer PLL Lock Time (Figure 8)	R _L = 100Ω		10		ms
t _{SD}	Serializer Delay (Figure 9)	$R_L = 100\Omega$ VODSEL = L, TRFB = H		3.5T + 2.85		ns
		$R_{L} = 100\Omega$ VODSEL = L, TRFB = L		3.5T + 2.85		ns

Deserializer Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
t _{RCP}	Receiver out Clock Period (Note 8)	$t_{RCP} = t_{TCP}$	RCLK	28.6		200	ns
t _{RDC}	RCLK Duty Cycle		RCLK	45	50	55	%
t _{CLH}	CMOS/TTL Low-to-High Transition Time	C _L = 8 pF (lumped load)	ROUT [0:23], LOCK, RCLK		2.5	3.5	ns
t _{CHL}	CMOS/TTL High-to-Low Transition Time	(Figure 4)			2.5	3.5	ns
t _{ROS}	ROUT (0:7) Setup Data to RCLK (Group 1) (<i>Figure 11</i>)		ROUT [0:7]		(29/56)*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROH}	RO UT (0:7) H old Data to RCLK (Group 1) (<i>Figure 11</i>)				(27/56)*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROS}	ROUT (8:15) Setup Data to RCLK (Group 2) (Figure 11)		ROUT [8:15], LOCK		0.5*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROH}	ROUT (9:15) Hold Data to RCLK (Group 2) (<i>Figure 11</i>)				0.5*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROS}	ROUT (16:23) Setup Data to RCLK (Group 3) (Figure 11)		ROUT [16:23]		(27/56)*t _{RCP}	(2/5)* t _{RCP}	ns
t _{ROH}	ROUT (16:23) Hold Data to RCLK (Group 3) (<i>Figure 11</i>)				(29/56)*t _{RCP}	(2/5)* t _{RCP}	ns
t _{HZR}	HIGH to TRI-STATE Delay	(Figure 12)	ROUT [0:23],		3	10	ns
t _{LZR}	LOW to TRI-STATE Delay		RCLK, LOCK		3	10	ns
t _{zHR}	TRI-STATE to HIGH Delay				3	10	ns
t _{ZLR}	TRI-STATE to LOW Delay	1			3	10	ns

Symbol	Parameter	Conditions	Pin/Freq.	Min	Тур	Max	Units
t _{DD}	Deserializer Delay			[4+(3/56)]T+		ns	
	(Figure 10)		NOLK		5.9		
			5 MHz		817	825	ns
			35 MHz		122	125	ns
t _{DRDL}	Deserializer PLL Lock Time	(Notes 7, 8)	5 MHz		5	12	ms
	from Powerdown		35 MHz		5	10	ms
RxIN_TOL_L	Receiver INput TOLerance Left, (<i>Figure 15</i>)	(Notes 6, 10)	5 MHz–35 MHz			0.25	UI
RxIN_TOL_R	Receiver INput TOLerance Right, (Figure 15)	(Notes 6, 10)	5 MHz–35 MHz			0.25	UI

Note 3: Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, Δ VOD, VTH and VTL which are differential voltages.

Note 4: When the Serializer output is tri-stated, the Deserializer will lose PLL lock. Resynchronization MUST occur before data transfer.

Note 5: t_{DRDL} is the time required by the deserializer to obtain lock when exiting powerdown mode. t_{DRDL} is specified with an external synchronization pattern.

Note 6: RxIN_TOL is a measure of how much phase noise (jitter) the deserializer can tolerate in the incoming data stream before bit errors occur. It is a measurement in reference with the ideal bit position, please see National's AN-1217 for detail.

Note 7: The Deserializer PLL lock time may vary depending on input data patterns and the number of transitions within the pattern.

Note 8: Guaranteed by Design (GBD) using statistical analysis.

Note 9: Total Interconnect Jitter Budget (t_{JI}) specifies the allowable jitter added by the interconnect assuming both transmitter and receiver are Auto SerDes circuits.

Note 10: UI – Unit Interval, equivalent to one ideal serialized data bit width. The UI scales with frequency.

Note 11: Figures 1, 2, 9, 10, 13 show a falling edge data strobe (TCLK IN/RCLK OUT).

Note 12: Figures 6, 11 show a rising edge data strobe (TCLK IN/RCLK OUT).

AC Timing Diagrams and Test Circuits

20171904

FIGURE 4. Deserializer LVCMOS/LVTTL Output Load and Transition Times

www.national.com

Pin	Pin Descriptions						
Pin #	Pin Name	I/O	Description				
DS90C	241 SERIALIZE	R PIN DESCRI	PTIONS				
22	VDDDR	VDD	Analog Voltage Supply, LVDS O/P Power				
21	VSSDR	GND	Analog Ground, LVDS O/P Ground				
16	VDDPT0	VDD	Analog Voltage supply, VCO Power				
17	VSSPT0	GND	Analog ground, VCO Ground				
14	VDDPT1	VDD	Analog Voltage supply, PLL Power				
15	VSSPT1	GND	Analog Ground, PLL Ground				
30	VDDT	VDD	Digital Voltage supply, Tx serializer Power				
31	VSST	GND	Digital Ground, Tx serializer Ground				
7	VDDL	VDD	Digital Voltage supply, Tx Logic Power				
6	VSSL	GND	Digital Ground, Tx Logic Ground				
42	VDDIT	VDD	Digital Voltage supply, Tx Input Power				
43	VSSIT	GND	Digital Ground, Tx Input Ground				
24	VSSESD	GND	ESD Ground				
4-1,	DIN[23:0]	CMOS_I	Transmitter Data INputs				
48-44,							
41-32,							
29-25							
10	ICLK	CMOS_I	Transmitter reference CLocK.				
9	TPWDNB		Transmiller Power Down Bar (ACTIVE L). TPW/DNR = L: Disabled DOUT ($\frac{1}{2}$) are TPLSTATED stand by mode. PLL is shutdown				
			TPWDNB = H: Enabled				
18	DEN		Data ENable (ACTIVE H)				
			DEN = L; Disabled, DOUT (+/-) are TRI-STATED, PLL still operational				
			DEN = H; Enabled				
13	RESRVD	CMOS_I	RESERVED - tie Low				
23	PRE	CMOS_I	PRE-emphasis select pin.				
			$PRE = (R_PRE \ge 3 \ k\Omega); \ I_max = (1.2/R^*20), \ R_min = 3 \ k\Omega$				
			PRE = H or floating; pre-emphasis off				
11	TRFB	CMOS_I	Transmitter Rising/Falling Bar Clock Edge Select (H = rising edge L = falling edge)				
12	VODSEL	CMOS_I	VOD level SELect				
			VODSEL = L; IOD \approx 3.5 mA, (default). e.g. 3.5 mA*100 Ω \approx 350 mV				
			VODSEL = H; IOD \approx 7.0 mA, VOD doubles approximately. e.g. 7 mA*100 $\Omega \approx$ 700 mV				
5	DCAOFF	CMOS_I	RESERVED — tie Low				
8	DCBOFF						
20	DOUT+	LVDS_0					
19		LVDS_O	I ransmitter LVDS inverted (-) OUTput				
DS90C			Analar LVDC Valtara averte Davar				
39	VDDIR		Analog LVDS Voltage supply, Power				
40	VOOR		Analog Voltage supply DLL Power				
47	VDDPRU		Analog Voltage supply, PLL Power				
40	VDDBB1		Analog Voltago supply PLL VCO Power				
40			Analog Voltage Supply, FLL VCO Power				
44	VODD1		Digital Valtage supply Legis Power				
3/ 20			Digital Voltage supply, Logic Power				
30	VODPO		Digital Voltage supply Legie Rower				
30			Digital Voltage Supply, Logic Power				
30			Digital Voltage supply LVTTL O/P Power				
30	VDDURI		Digital Voltage Supply, LVIIL O/F FOWER				

Pin	Pin Descriptions (Continued)							
Pin #	Pin Name	I/O	Description					
DS90C	DS90C124 DESERIALIZER PIN DESCRIPTIONS							
29	VSSOR1	GND	Digital Ground, LVTTL O/P Ground					
20	VDDOR2	VDD	Digital Voltage supply, LVTTL O/P Power					
19	VSSOR2	GND	Digital Ground, LVTTL O/P Ground					
7	VDDOR3	VDD	Digital Voltage supply, LVTTL O/P Power					
8	VSSOR3	GND	Digital Ground, LVTTL O/P Ground					
41	RIN+	LVDS_I	Receiver LVDS true (+) INput					
42	RIN-	LVDS_I	Receiver LVDS inverted (-) INput					
2	RESRVD	CMOS_I	RESERVED - tie Low					
43	RRFB	CMOS_I	Receiver Rising Falling Bar clock Edge Select					
			RRFB = H; ROUT LVTTL O/P clocked on R ising CLK					
			RRFB = L; ROUT LVTTL O/P clocked on Falling CLK					
48	REN	CMOS_I	Receiver ENable, (ACTIVE H)					
			REN = L; Disabled, ROUT[23-0] and RCLK TRI-STATED, PLL still operational					
			REN = H; Enabled					
1	RPWDNB	CMOS_I	Receiver PoWer DowN Bar (ACTIVE L)					
			RPWDNB = L; Disabled, ROUT[23-0], RCLK, and LOCK are TRI-STATED in stand-by					
			mode, PLL is shutdown					
			RPWDNB = H; Enabled					
17	LOCK	CMOS_O	LOCK indicates the status of the receiver PLL					
			LOCK = L; receiver PLL is unlocked, ROUT[23-0] and RCLK are TRI-STATED					
		01400.0	LOCK = H; receiver PLL is locked					
25-28,	ROUT[7:0]		Receiver Outputs – Group 1					
31-34								
13-16,	ROUT[15:8]	CMOS_O	Receiver Outputs – Group 2					
21-24								
3-6,	HOUT[23:16]	CMOS_O	Heceiver Outputs – Group 3					
9-12								
18	HULK		Hecovered CLock. Parallel data rate clock recovered from the embedded clock.					

