查询DVHF2805DFR/K-XXX供应商

DVHF2800D Series

HIGH RELIABILITY HYBRID DC-DC CONVERTERS

DESCRIPTION

The DVHF series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVHF series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 450 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems.

These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 and MIL-STD-883.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

f.dzsc.com

FEATURES

- High Reliability
- Very Low Output Noise
- Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704
- Up to 20 Watts Output Power
- Radiation Immune Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Indefinite Short Circuit Protection
- Current Limit Protection
- Industry Standard Pinout
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Radiation Hardened Version Available
- Precision Projection Welded Hermetic Package
- High Power Density: > 37 W/in³
- Custom Versions Available
- Additional Environmental Screening Available
- Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMH28 EMI Filter
- Flanged and Non-flanged Versions Available.
- MIL-PRF-38534 Element Evaluated Components

Figure 1 – DVHF2800D / DVHF2800DF DC-DC Converter (Not To Scale)

11314 4th Avenue West, Suite 206 Sales Information: Phone: (425) 353-3010

A NELTA MPT

DVHF2800D Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V \pm 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS						
Input Voltage (Continuous)	50 V_{DC}	Junction Temperature Rise to Case	+12°C			
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C			
Output Power ¹	20 Watts	Lead Solder Temperature (10 seconds)	270°C			
Power Dissipation (Full Load, T _{CASE} = +125°C)	6 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(24 / 28) Grams			

Parameter		Conditions	ſ	OVHF2805	D		DVHF2812I	C	Units
Farameter		Conditions	Min	Тур	Max	Min	Тур	Max	Units
STATIC									
INPUT		Continuous	15	28	50	15	28	50	V
Voltage ⁴		Transient, 1 sec	-	-	80	-	-	80	V
Current		Inhibited	-	-	6	-	-	6	mA
Current		No Load	-	40	65	-	40	65	mA
Ripple Current		Full Load ⁵ , 20Hz to 10MHz	-	-	60	-	-	90	mA_{p-p}
Inhibit Pin Input ⁴			0	-	1.5	0	-	1.5	V
Inhibit Pin Open Circuit	Voltage⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
UVLO Turn On			12.0	-	14.8	12.0	-	14.8	V
UVLO Turn Off ⁴			11.0	-	14.5	11.0	-	14.5	V
	$+V_{OUT}$	T _{CASE} = 25°C	4.95	5.0	5.05	11.88	12.0	12.12	V
OUTPUT	$+V_{OUT}$	T_{CASE} = -55°C to +125°C	4.925	5.0	5.075	11.82	12.0	12.18	V
Voltage⁵	-V _{OUT}	T _{CASE} = 25°C	4.80	5.0	5.20	11.80	12.0	12.20	V
	-V _{OUT}	T _{CASE} = -55°C to +125°C	4.75	5.0	5.25	11.52	12.0	12.48	V
Power ^{3,6}	Total		0	-	15	0	-	20	W
Fower	$\pm V_{\text{OUT}}$	Either Output	0	-	10.5	0	-	14	W
Current ^{3,6}	±V _{OUT}	Either Output	0	-	2.1	0	-	1.17	А
Ripple Voltage	$\pm V_{\text{OUT}}$	Full Load ⁵ , 20Hz to 10MHz	-	-	60	-	-	50	mV_{p-p}
Line Regulation	+V _{OUT}	V _{IN} = 16V to 40V	-	-	20	-	-	20	mV
	-V _{OUT}	V _{IN} = 16V to 40V	-	-	200	-	-	200	mV
Load Regulation	+V _{OUT}	No Load to Full Load ⁵	-	-	50	-	-	50	mV
Load Regulation	-V _{OUT}	No Load to Full Load ^{5,7}	-	-	200	-	-	200	mV
Cross Regulation -V _{OUT}		+V _{OUT} = 70%, -V _{OUT} = 30% +V _{OUT} = 30%, -V _{OUT} = 70%	-	-	500	-	-	500	mV
EFFICIENCY		Full Load⁵	73	-	-	78	-	-	%
		Overload ⁴	-	-	8	-	-	8	W
LOAD FAULT POWER DISSIPATION		Short Circuit	-	-	8	-	-	8	W
CAPACITIVE LOAD ⁴ Either Out		Either Output	-	-	500	-	-	500	μF
SWITCHING FREQUENCY		350	450	500	350	450	500	kHz	
ISOLATION		500 V _{DC} , T _{CASE} = 25°C	100	-	-	100	-	-	MΩ
MTBF (MIL-HDBK-217F)		AIF @ T _c = 55°C	-	427	-	-	427	-	kHrs

See notes next page.

A NELTA MPL

DVHF2800D Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	50 V_{DC}	Junction Temperature Rise to Case	+12°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	20 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	6 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(24 / 28) Grams

Parameter		Conditions		DVHF2805D			DVHF2812D		
		Conditions	Min Typ		Max	Min	Тур	Max	Units
DYNAMIC									
Load Step Output Transient	$\pm V_{\text{OUT}}$	Half Load to Full Load	-	-	400	-	-	400	mV_{PK}
Load Step Recovery ²		Thail Load to Full Load	-	-	500	-	-	500	μSec
Line Step Output Transient ⁴	$\pm V_{\text{OUT}}$	V _{IN} = 16V to 40V	-	400	800	-	500	900	mV_{PK}
Line Step Recovery ^{2, 4}		VIN - 10V (0 40V	-	300	700	-	300	500	μSec
Turn On Delay	$\pm V_{\text{OUT}}$	$V_{IN} = 0V$ to 28V	-	-	20	-	-	20	mSec
Turn On Overshoot		VIN - UV 10 28V	-	-	25	-	-	50	mV_{PK}

Notes: 1. Dependant on output voltage.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. Half load at +V_{OUT} and half load at -V_{OUT}.

6. Up to 70% of the total power or current can be drawn from any one of the two outputs.

7. 5% Load to Full Load at -55°C.

A NELTA MPT

DVHF2800D Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V \pm 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	$50 V_{DC}$	Junction Temperature Rise to Case	+12°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	20 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	6 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(24 / 28) Grams

Parameter		Conditions	C	Units		
		Conditions	Min	Тур	Max	Units
STATIC						
INPUT		Continuous	15	28	50	V
Voltage ⁴		Transient, 1 sec	-	-	80	V
Current		Inhibited	-	-	6	mA
Gunenit		No Load	-	40	65	mA
Ripple Current		Full Load ⁵ , 20Hz to 10MHz	-	-	90	mA _{p-p}
Inhibit Pin Input ⁴			0	-	1.5	V
Inhibit Pin Open Circuit V	′oltage⁴		9.0	11.0	13.0	V
UVLO Turn On			12.0	-	14.8	V
UVLO Turn Off ⁴			11.0	-	14.5	V
	+V _{OUT}	T _{CASE} = 25°C	14.85	15.0	15.15	V
OUTPUT	+V _{OUT}	T _{CASE} = -55°C to +125°C	14.775	15.0	15.225	V
Voltage⁵	-V _{OUT}	T _{CASE} = 25°C	14.80	15.0	15.20	V
	-V _{OUT}	T _{CASE} = -55°C to +125°C	14.40	15.0	15.60	V
Power ^{3,6}	Total		-	-	20	W
Power	$\pm V_{\text{OUT}}$	Either Output	-	-	14	W
Current ^{3,6}	$\pm V_{\text{OUT}}$	Either Output	-	-	0.93	А
Ripple Voltage	$\pm V_{\text{OUT}}$	Full Load ^₅ , 20Hz to 10MHz	-	-	60	mV _{p-p}
Line Devulation	+V _{OUT}	V _{IN} = 16V to 40V	-	-	20	mV
Line Regulation	-V _{OUT}	V _{IN} = 16V to 40V	-	-	200	mV
Las d Dassidation	+V _{OUT}	No Load to Full Load⁵	-	-	50	mV
Load Regulation	-V _{OUT}	No Load to Full Load ^{5,7}	-	-	200	mV
Cross Regulation -V _{OUT}		+V _{OUT} = 70%, -V _{OUT} = 30% +V _{OUT} = 30%, -V _{OUT} = 70%	-	-	500	mV
EFFICIENCY		Full Load⁵	79	-	-	%
	DATION	Overload ⁴	-	-	8	W
LOAD FAULT POWER DISSIPATION		Short Circuit	-	-	8	W
CAPACITIVE LOAD ⁴		Either Output	-	-	500	μF
SWITCHING FREQUENCY			350	450	500	kHz
ISOLATION		500 V _{DC} , T _{CASE} = 25°C	100	-	-	MΩ
MTBF (MIL-HDBK-217F)		AIF @ T _c = 55°C	-	427	-	kHrs

See notes next page.

A NELTA MPL

DVHF2800D Series

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load⁵, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS						
Input Voltage (Continuous)	50 V_{DC}	Junction Temperature Rise to Case	+12°C			
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C			
Output Power ¹	20 Watts	Lead Solder Temperature (10 seconds)	270°C			
Power Dissipation (Full Load, T _{CASE} = +125°C)	6 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(24 / 28) Grams			

Parameter		Conditions		DVHF2815D			
		Conditions	Min	Тур	Max	Units	
DYNAMIC							
Load Step Output Transient	$\pm V_{\text{OUT}}$	Half Load to Full Load	-	-	400	тV _{РК}	
Load Step Recovery ²			-	-	500	μSec	
Line Step Output Transient ⁴	$\pm V_{\text{OUT}}$	V _{IN} = 16V to 40V	-	500	900	mV_{PK}	
Line Step Recovery ^{2, 4}		V _{IN} - 10V 10 40V	-	300	500	μSec	
Turn On Delay	$\pm V_{\text{OUT}}$	$V_{IN} = 0V$ to 28V	-	-	20	mSec	
Turn On Overshoot		VIN - UV 10 20V	-	-	50	тV _{РК}	

Notes: 1. Dependant on output voltage.

2. Time for output voltage to settle within 1% of its nominal value.

3. Derate linearly to 0 at 135°C.

4. Verified by qualification testing.

5. Half load at +V_{OUT} and half load at -V_{OUT}.

6. Up to 70% of the total power or current can be drawn from any one of the two outputs.

7. 5% Load to Full Load at -55°C.

A NELTA MPL

DVHF2800D Series

BLOCK DIAGRAM PIN 2 D2 -O +V OUT C3 Rs3 Ŵ О ООТ СОМ w Ð Τ1 \downarrow D1 Rs2 PIN 3 ≶ PIN 8 $\gamma\gamma\gamma\gamma$ 28V IN 🔿-C2 . 377 L1 C1 PIN 4 - V ООТ IN COM PIN 7 Q1 k VOLTAGE AND CURRENT MAGNETIC FEEDBACK AMPLIFIERS UNDER ≶ VOLTAGE Rs1 SHUTDOWN 3112 Ξ \downarrow PWM PRIMARY Ŧ HOUSEKEEPING CONTROL SECONDARY SUPPLY HOUSEKEEPING SUPPLY INH O

PIN 1

Figure 2

CONNECTION DIAGRAM

DVHF2800D Series INHIBIT DRIVE CONNECTION DIAGRAMS 28V IN 8 + 10K + 10

ZD

Figure 4 – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay)

∑ 12V

Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay)

12V

OPTIONAL

IN COM

CAPACITOR

7

EMI FILTER HOOKUP DIAGRAM

OPTIONAL

IN COM 7

CAPACITOR

Figure 7 – DVHF2805D Efficiency (%) vs. Output Power (W)

Figure 8 – DVHF2812D Efficiency (%) vs. Output Power (W)

Figure 9 – DVHF2815D Efficiency (%) vs. Output Power (W)

A NELTA MPI

DVHF2800D Series

EMI PERFORMANCE CURVES

(T_{CASE} = 25°C, V_{IN} = +28V \pm 5%, Full Load, Unless Otherwise Specified)

Figure 13 – Flanged Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

DVHF2800D Series

PACKAGE PIN DESCRIPTION

Pin	Function	Description	
1	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common (PIN 7) causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.	
2	+V OUT	Positive Output Voltage Connection	
3	OUT COM	Output Common Connection	
4	-V OUT	Negative Output Voltage Connection	
5	N/C	No Connection	
6	CASE	Case Connection	
7	IN COM	Input Common Connection	
8	28V IN	Positive Input Voltage Connection	

A NELTA MPT

DVHF2800D Series

ENVIRONMENTAL SCREENING (100% Tested Per MIL-STD-883 as referenced to MIL-PRF-38534)

Screening	MIL-STD-883	Standard (No Suffix)	Extended /ES	HB /HB	Class H /H	Class K /K
Non- Destructive Bond Pull	Method 2023	•	•	•	•	•
Internal Visual	Method 2017, 2032 Internal Procedure	•	•	•	•	•
Temperature Cycling	Method 1010, Condition C Method 1010, -55°C to 125°C		•	•	•	•
Constant Acceleration	Method 2001, 3000g, Y1 Direction Method 2001, 500g, Y1 Direction		•	•	•	•
PIND	Method 2020, Condition A ²					•
Pre Burn-In Electrical	100% at 25°C					•
Burn-In	Method 1015, 320 hours at +125°C Method 1015, 160 hours at +125°C 96 hours at +125°C 24 hours at +125°C	•	•	•	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•	•	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1 x 10 ⁻³)	•	•	•	•	•
Radiography	Method 2012 ³					•
External Visual	Method 2009	•	•	•	•	•

Notes:

1. 100% R&R testing at –55°C, +25°C, and +125°C with all test data included in product shipment. 2.

PIND test Certificate of Compliance included in product shipment.

Radiographic test Certificate of Compliance and film(s) included in product shipment. 3.

DVHF2800D Series

ORDERING INFORMATION DVHF 28 05 D F R /HB XXX 5 1 2 3 4 6 7 8 (2) (1) (3) (4) Nominal Input **Product Series** Output Voltage Number of Outputs Voltage DVHF 28 Volts D 28 05 ± 5 Volts Dual 12 ± 12 Volts 15 ± 15 Volts

A NELTA MPL

	(5)	(6	(6)		7)	(8)
Packa	ge Option	Rad-Haro	Rad-Hard Option ²		g Code ^{1,3}	Additional Screening Code
None F	Non- Flanged Flanged	None R	Standard 100 kRad	None /ES /HB /H /K	Standard Extended HB Class H Class K	Contact Sales

Notes: 1. Contact the VPT Inc. Sales Department for availability of Class H (/H) or Class K (/K) qualified products.

2. VPT Inc. is not currently qualified to a DSCC certified radiation hardness assurance program.

3. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract.

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

A BELTA MAT

DVHF2800D Series

SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERS

Standard Microcircuit	DVHF2800D Series
Drawing (SMD)	Similar Part Number
5962-0324401HXC	DVHF2805D/H
5962-0324401HYC	DVHF2805DF/H
5962-0324402HXC	DVHF2812D/H
5962-0324402HYC	DVHF2812DF/H
5962-0324403HXC	DVHF2815D/H
5962-0324403HYC	DVHF2815DF/H

Do not use the DVHF2800D Series similar part number for SMD product acquisition. It is listed for reference only. For exact specifications for the SMD product, refer to the SMD drawing. SMD's can be downloaded from the DSCC website at http://www.dscc.dla.mil/programs/smcr/. The SMD number listed above is for MIL-PRF-38534 Class H screening, standard gold plated lead finish, and no RHA (Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, lead finishes, and radiation levels.

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

 Phone:
 (425) 353-3010

 Fax:
 (425) 353-4030

 E-mail:
 vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.