

STD110NH02L

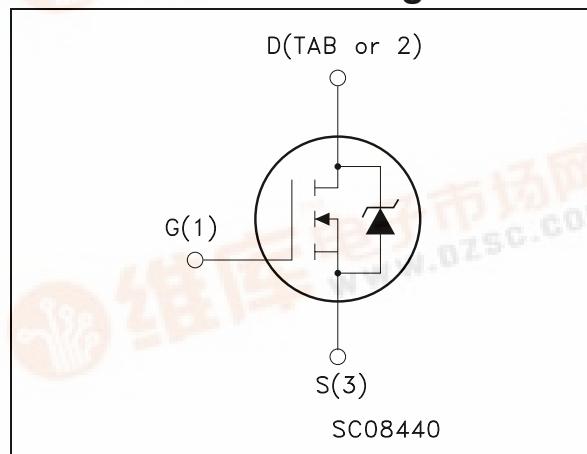
N-channel 24V - 0.0044Ω - 80A - DPAK
STripFET™ III Power MOSFET

General features

Type	V _{DSS}	R _{DS(on)}	I _D
STD110NH02L	24V	<0.0048Ω	80A ⁽¹⁾

1. Value limited by wire bonding

- R_{DS(on)} * Qg industry's benchmark
- Conduction losses reduced
- Switching losses reduced
- Low threshold device


Description

This device utilizes the latest advanced design rules of ST's proprietary STripFET™ technology. This is suitable for the most demanding DC-DC converter application where high efficiency is to be achieved.

Applications

- Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STD110NH02LT4	D110NH02L	DPAK	Tape & reel

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Packaging mechanical data	11
6	Revision history	14

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$V_{\text{spike}}^{(1)}$	Drain-source voltage rating	30	V
V_{DS}	Drain-source voltage ($V_{\text{GS}} = 0$)	24	V
V_{DGR}	Drain-gate voltage ($R_{\text{GS}} = 20\text{K}\Omega$)	24	V
V_{GS}	Drain-source voltage	± 20	V
$I_{\text{D}}^{(2)}$	Drain current (continuous) at $T_{\text{C}} = 25^{\circ}\text{C}$	80	A
$I_{\text{D}}^{(2)}$	Drain current (continuous) at $T_{\text{C}} = 100^{\circ}\text{C}$	80	A
$I_{\text{DM}}^{(3)}$	Drain current (pulsed)	320	A
P_{TOT}	Total dissipation at $T_{\text{C}} = 25^{\circ}\text{C}$	125	W
	Derating factor	0.83	W/ $^{\circ}\text{C}$
$E_{\text{AS}}^{(4)}$	Single pulse avalanche energy	900	mJ
T_{stg}	Storage temperature	-55 to 175	$^{\circ}\text{C}$
T_{J}	Max. operating junction temperature		

1. Garanteed when external $R_{\text{g}} = 4.7 \Omega$ and $t_f < t_{f\text{max}}$.
2. Value limited by wire bonding.
3. Pulse width limited by safe operating area
4. Starting $T_{\text{J}} = 25^{\circ}\text{C}$, $I_{\text{D}} = 30\text{A}$, $V_{\text{DD}} = 15\text{V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R_{thJC}	Thermal resistance junction-case Max	1.20	$^{\circ}\text{C/W}$
R_{thJA}	Thermal resistance junction-ambient Max	100	$^{\circ}\text{C/W}$
T_{I}	Maximum lead temperature for soldering purpose	275	$^{\circ}\text{C}$

2 Electrical characteristics

($T_{CASE}=25^{\circ}\text{C}$ unless otherwise specified)

Table 3. On⁽¹⁾ /off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 25\text{mA}$, $V_{GS} = 0$	24			V
I_{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	$V_{DS} = 20$ $V_{DS} = 20$, $T_C = 125^{\circ}\text{C}$			1 10	μA μA
I_{GSS}	Gate body leakage current ($V_{DS} = 0$)	$V_{GS} = \pm 20\text{V}$			± 100	nA
$V_{GS(\text{th})}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu\text{A}$	1			V
$R_{DS(\text{on})}$	Static drain-source on resistance	$V_{GS} = 10\text{V}$, $I_D = 40\text{A}$ $V_{GS} = 5\text{V}$, $I_D = 20\text{A}$		0.0044 0.0050	0.0050 0.0095	Ω Ω

1. Pulsed: Pulse duration = 300 μs , duty cycle 1.5%

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$g_{fs}^{(1)}$	Forward transconductance	$V_{DS} = 10\text{ V}$, $I_D = 40\text{A}$		52		S
C_{iss} C_{oss} C_{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 15\text{V}$, $f = 1\text{ MHz}$, $V_{GS} = 0$		4450 1126 141		pF pF pF
Q_g Q_{gs} Q_{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 10\text{V}$, $I_D = 80\text{A}$ $V_{GS} = 10\text{V}$		69 13 9	93	nC nC nC
$Q_{oss}^{(2)}$	Output charge	$V_{DS} = 16\text{V}$, $V_{GS} = 0\text{V}$		27		nC
$Q_{gls}^{(3)}$	Third-quadrant gate charge	$V_{DS} < 0\text{V}$, $V_{GS} = 10\text{V}$		64		nC
R_G	Gate input resistance	$f = 1\text{MHz}$ gate DC Bias = 0 Test signal level = 20mV Open drain		16		Ω

1. Pulsed: pulse duration=300 μs , duty cycle 1.5%

2. $Q_{oss} = C_{oss} * \Delta V_{in}$, $C_{oss} = C_{gd} + C_{ds}$. See [Section Appendix A](#)

3. Gate charge for synchronous operation

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on delay time	$V_{DD} = 10V, I_D = 40A,$ $R_G = 4.7\Omega, V_{GS} = 10V$ <i>Figure 13 on page 8</i>	14 224 69 40	54	ns ns ns ns	ns ns ns ns
t_r	Rise time					
$t_{d(off)}$	Turn-off delay time					
t_f	Fall time					

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min	Typ.	Max	Unit
I_{SD}	Source-drain current				80	A
I_{SDM}	Source-drain current (pulsed)				320	A
$V_{SD}^{(1)}$	Forward on voltage	$I_{SD} = 40A, V_{GS} = 0$			1.3	V
t_{rr}	Reverse recovery time	$I_{SD} = 80A,$ $di/dt = 100A/\mu s,$ $V_{DD} = 15V, T_J = 150^\circ C$ <i>Figure 15 on page 8</i>	47 58 2.5	ns μC A	ns μC A	
Q_{rr}	Reverse recovery charge					
I_{RRM}	Reverse recovery current					

1. Pulsed: pulse duration=300 μs , duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

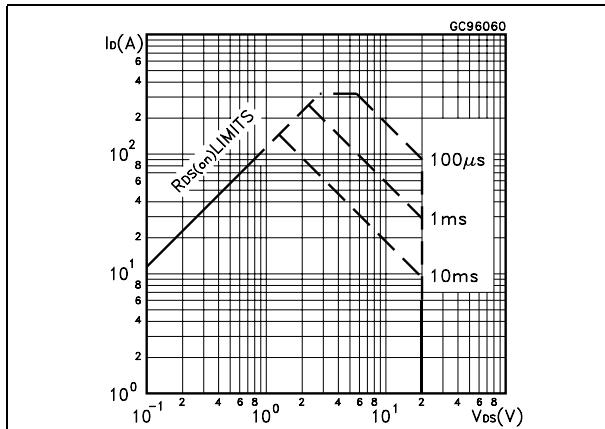


Figure 2. Thermal impedance

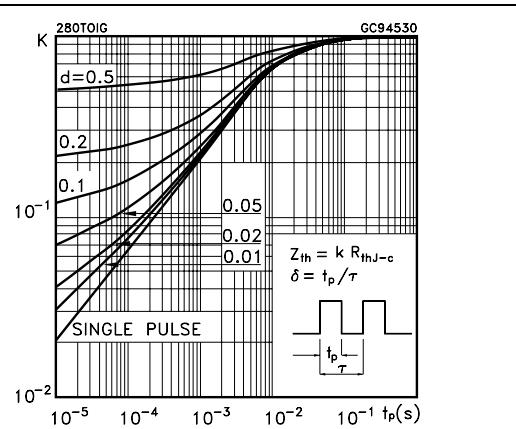


Figure 3. Output characteristics

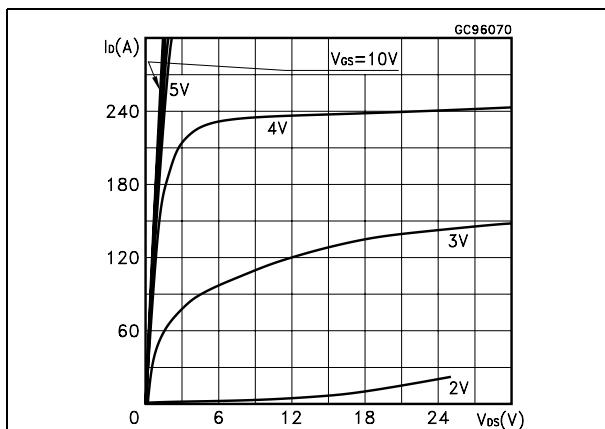


Figure 4. Transfer characteristics

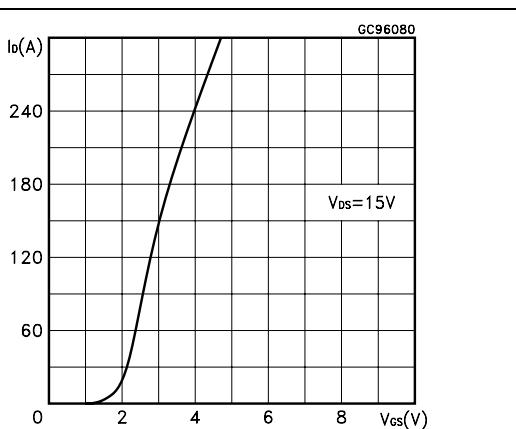


Figure 5. Transconductance

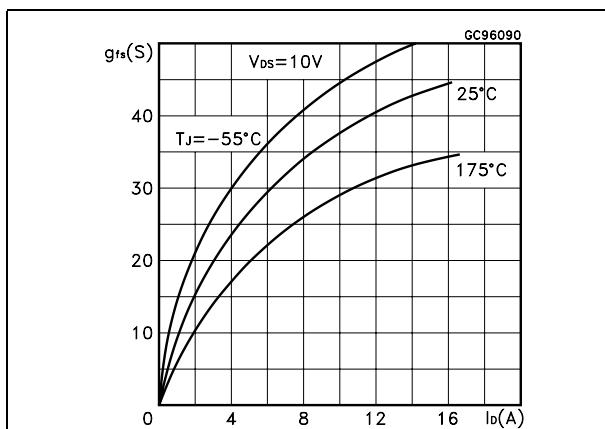


Figure 6. Static drain-source on resistance

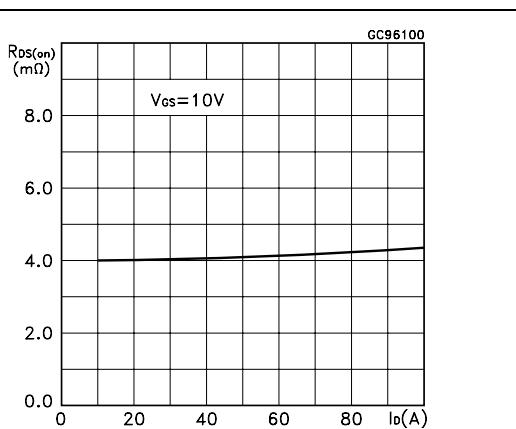


Figure 7. Gate charge vs gate-source voltage

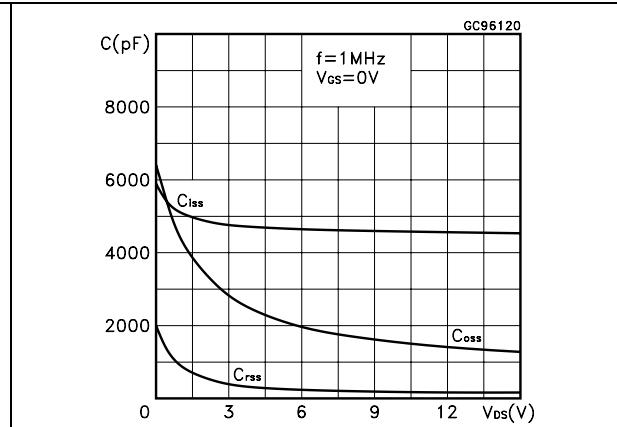
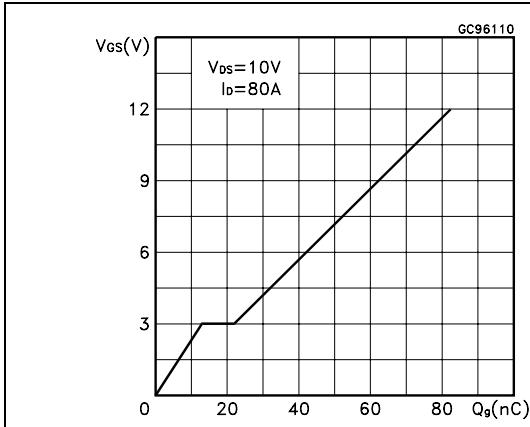



Figure 9. Normalized gate threshold voltage vs temperature

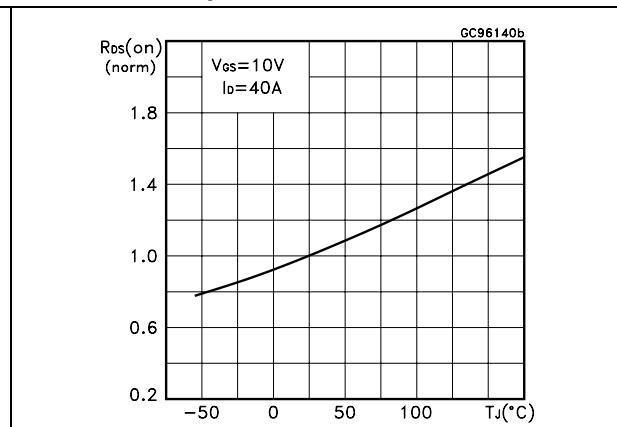
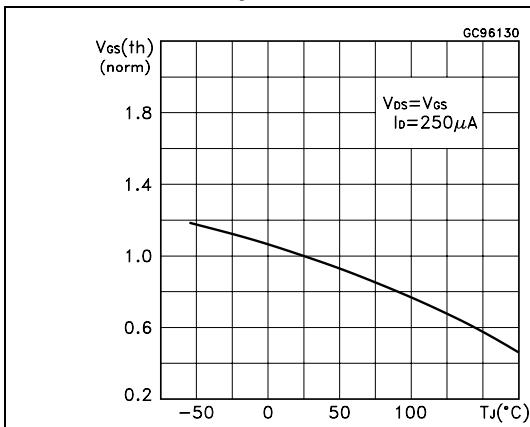



Figure 11. Source-drain diode forward characteristics

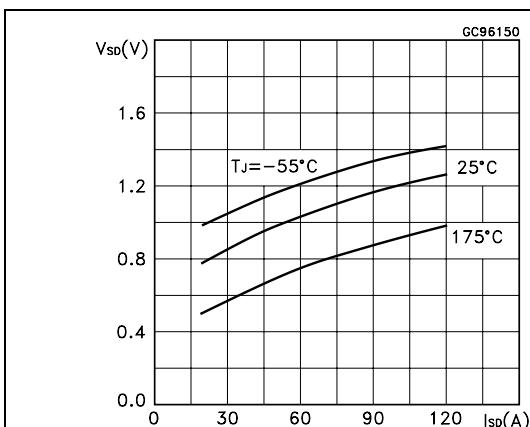
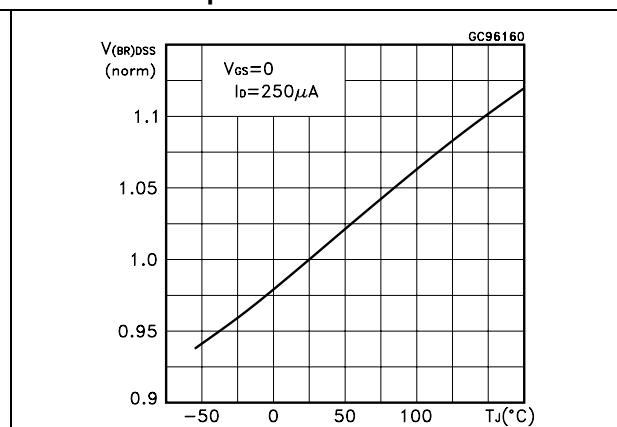
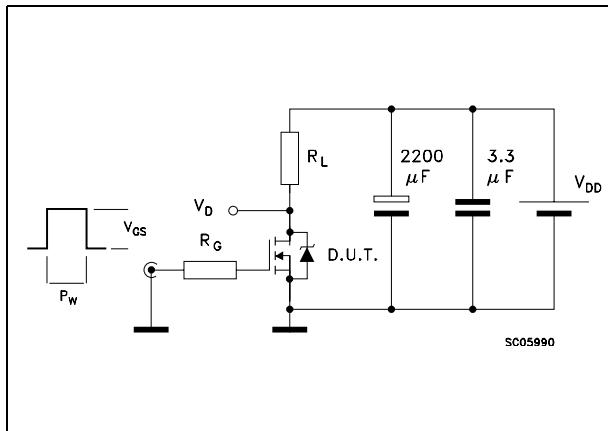
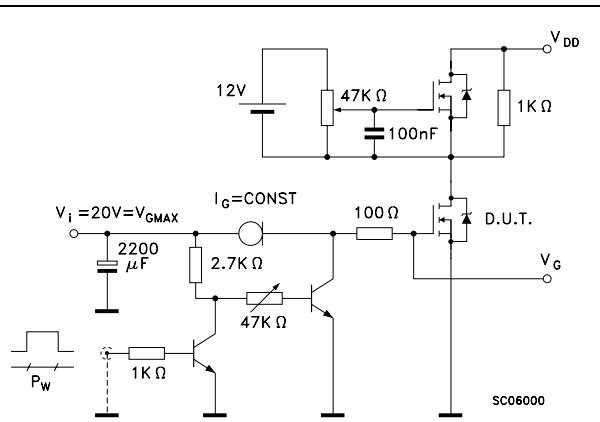
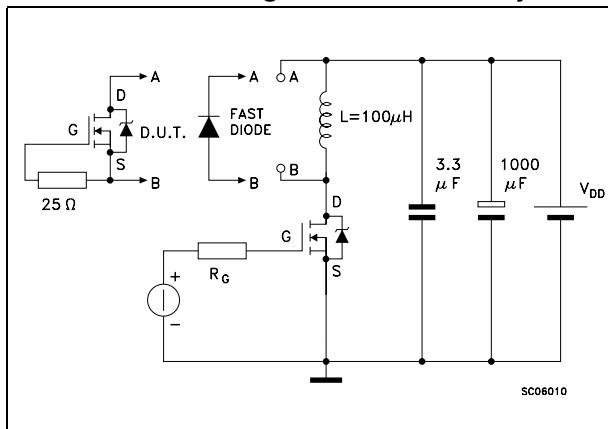
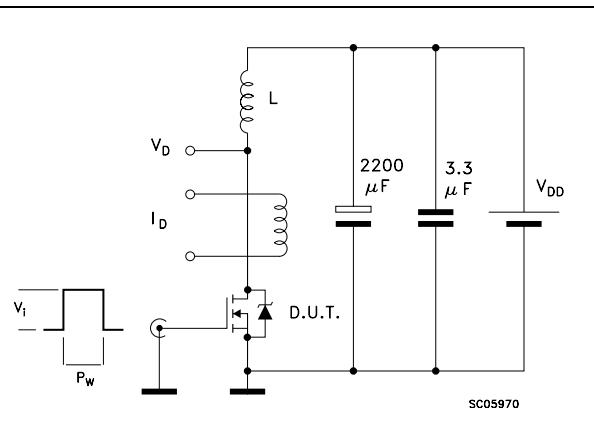




Figure 12. Normalized breakdown voltage vs temperature



3 Test circuit


Figure 13. Switching times test circuit for resistive load


Figure 14. Gate charge test circuit

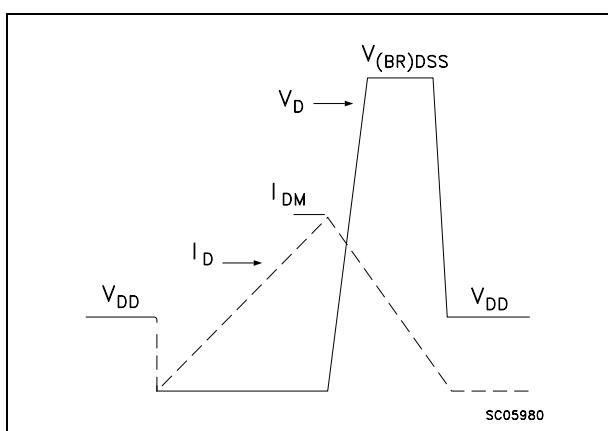
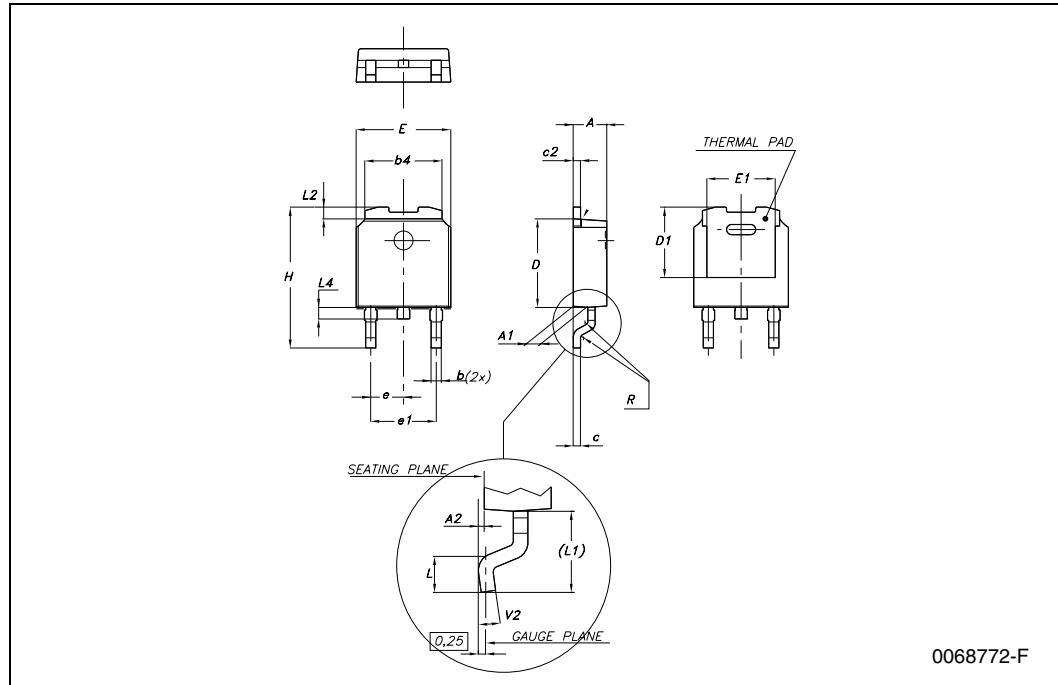

Figure 15. Test circuit for inductive load switching and diode recovery times

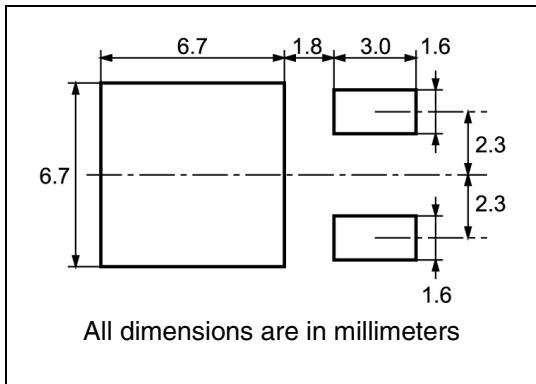
Figure 16. Unclamped Inductive load test circuit

Figure 17. Unclamped inductive waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


DPAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
C	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
e		2.28			0.090	
e1	4.4		4.6	0.173		0.181
H	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°

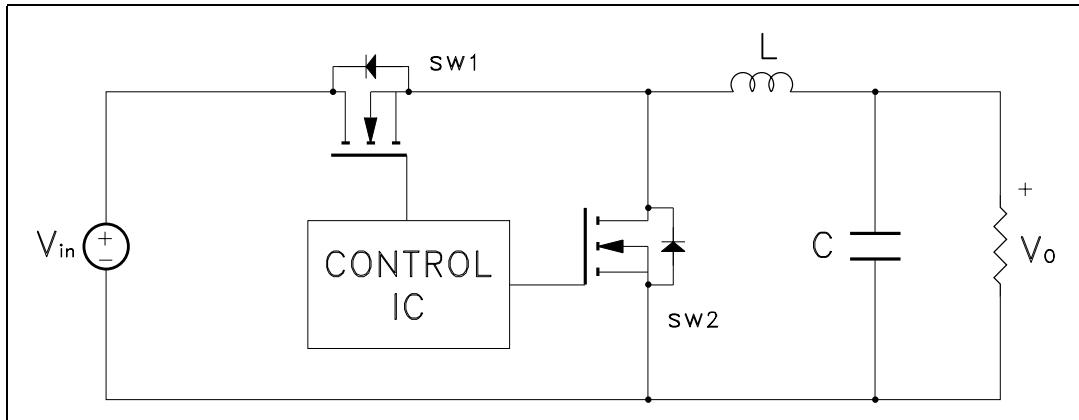
5 Packaging mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

TAPE MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	6.8	7	0.267	0.275
B0	10.4	10.6	0.409	0.417
B1		12.1		0.476
D	1.5	1.6	0.059	0.063
D1	1.5		0.059	
E	1.65	1.85	0.065	0.073
F	7.4	7.6	0.291	0.299
K0	2.55	2.75	0.100	0.108
P0	3.9	4.1	0.153	0.161
P1	7.9	8.1	0.311	0.319
P2	1.9	2.1	0.075	0.082
R	40		1.574	
W	15.7	16.3	0.618	0.641


REEL MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A			330	12.992
B	1.5		0.059	
C	12.8	13.2	0.504	0.520
D	20.2		0.795	
G	16.4	18.4	0.645	0.724
N	50		1.968	
T		22.4		0.881

BASE QTY	BULK QTY
2500	2500

Appendix A Buck converter - power losses estimation

Figure 18. Buck converter: power losses estimation

The power losses associated with the FETs in a synchronous buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

- The low side (SW2) device requires:
 - Very low $R_{DS(on)}$ to reduce conduction losses
 - Small Q_{Gls} to reduce the gate charge losses
 - Small C_{oss} to reduce losses due to output capacitance
 - Small Q_{rr} to reduce losses on SW1 during its turn-on
 - The C_{gd}/C_{gs} ratio lower than V_{th}/V_{gg} ratio especially with low drain to source voltage to avoid the cross conduction phenomenon;
 - The high side (SW1) device requires:
 - Small R_g and L_s to allow higher gate current peak and to limit the voltage feedback on the gate
 - Small Q_g to have a faster commutation and to reduce gate charge losses
 - Low $R_{DS(on)}$ to reduce the conduction losses.

Table 7. Power losses calculation

		High side switching (SW1)	Low side switch (SW2)
Pconduction		$R_{DS(on)SW1} * I_L^2 * \delta$	$R_{DS(on)SW2} * I_L^2 * (1 - \delta)$
Pswitching		$V_{in} * (Q_{gsth(SW1)} + Q_{gd(SW1)}) * f * \frac{I_L}{I_g}$	Zero Voltage Switching
Pdiode	Recovery (1)	Not applicable	$V_{in} * Q_{rr(SW2)} * f$
	Conductio n	Not applicable	$V_{f(SW2)} * I_L * t_{deadtime} * f$
Pgat(Q _G)		$Q_{g(SW1)} * V_{gg} * f$	$Q_{gls(SW2)} * V_{gg} * f$
P _{Qoss}		$\frac{V_{in} * Q_{oss(SW1)} * f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$

1. Dissipated by SW1 during turn-on

Table 8. Paramiters meaning

Parameter	Meaning
d	Duty-cycle
Q _{gsth}	Post threshold gate charge
Q _{gls}	Third quadrant gate charge
Pconduction	On state losses
Pswitching	On-off transition losses
Pdiode	Conduction and reverse recovery diode losses
Pgate	Gate drive losses
P _{Qoss}	Output capacitance losses

6 Revision history

Table 9. Revision history

Date	Revision	Changes
09-Sep-2004	6	Complete version
08-Aug-2006	7	New template, updated SOA

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com