
**TetraFET** 



# **D5017UK**

## METAL GATE RF SILICON FET

#### **MECHANICAL DATA**



|     | B. | M  |
|-----|----|----|
| . ) | n  | /1 |

| PIN 1 | SOURCE | PIN 2 | DRAIN |
|-------|--------|-------|-------|
| PIN 3 | SOURCE | PIN 4 | GATE  |

| DIM | mm        | Tol. | Inches     | Tol.  |
|-----|-----------|------|------------|-------|
| Α   | 24.76     | 0.13 | 0.975      | 0.005 |
| В   | 18.42     | 0.13 | 0.725      | 0.005 |
| С   | 45°       | 5°   | 45°        | 5°    |
| D   | 6.35      | 0.13 | 0.25       | 0.005 |
| Е   | 3.17 Dia. | 0.13 | 0.125 Dia. | 0.005 |
| F   | 5.71      | 0.13 | 0.225      | 0.005 |
| G   | 12.7 Dia. | 0.13 | 0.500 Dia. | 0.005 |
| Н   | 6.60      | REF  | 0.260      | REF   |
| 1   | 0.13      | 0.02 | 0.005      | 0.001 |
| J   | 4.32      | 0.13 | 0.170      | 0.005 |
| K   | 3.17      | 0.13 | 0.125      | 0.005 |
| M   | 26.16     | 0.25 | 1.03       | 0.010 |

# GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 150W – 50V – 175MHz SINGLE ENDED

### **FEATURES**

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW C<sub>rss</sub>
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

## **APPLICATIONS**

 HF/VHF/UHF COMMUNICATIONS from 1 MHz to 175 MHz

# ABSOLUTE MAXIMUM RATINGS (T<sub>case</sub> = 25°C unless otherwise stated)

| $\overline{P_D}$    | Power Dissipation                      | 220W         |
|---------------------|----------------------------------------|--------------|
| BV <sub>DSS</sub>   | Drain - Source Breakdown Voltage       | 125V         |
| BV <sub>GSS</sub>   | Gate - Source Breakdown Voltage        | ±20V         |
| I <sub>D(sat)</sub> | Drain Current                          | 18A          |
| $T_{stg}$           | Storage Temperature                    | −65 to 150°C |
|                     | Maximum Operating Junction Temperature | 200°C        |



# **D5017UK**

## **ELECTRICAL CHARACTERISTICS** (T<sub>case</sub> = 25°C unless otherwise stated)

| Parameter           |                              | Test                  | Min.                    | Тур. | Max. | Unit |      |
|---------------------|------------------------------|-----------------------|-------------------------|------|------|------|------|
| B\/                 | Drain-Source                 | V <sub>GS</sub> = 0   | I <sub>D</sub> = 100mA  | 125  |      |      | V    |
| BV <sub>DSS</sub>   | Breakdown Voltage            | VGS - V               | ID = 100IIIA            | 123  |      |      | V    |
| Zero Gate Voltage   |                              | V 50V V 0             |                         |      |      | 6    | mA   |
| IDSS                | Drain Current                | $V_{DS} = 50V$        | $V_{GS} = 0$            |      |      | U    | IIIA |
| I <sub>GSS</sub>    | Gate Leakage Current         | V <sub>GS</sub> = 20V | V <sub>DS</sub> = 0     |      |      | 1    | μА   |
| V <sub>GS(th)</sub> | Gate Threshold Voltage*      | I <sub>D</sub> = 10mA | $V_{DS} = V_{GS}$       | 1    |      | 7    | V    |
| 9 <sub>fs</sub>     | Forward Transconductance*    | V <sub>DS</sub> = 10V | I <sub>D</sub> = 3A     | 4.8  |      |      | S    |
| G <sub>PS</sub>     | Common Source Power Gain     | P <sub>O</sub> = 150W |                         | 10   |      |      | dB   |
| η                   | Drain Efficiency             | $V_{DS} = 50V$        | $I_{DQ} = 0.6A$         | 50   |      |      | %    |
| VSWR                | Load Mismatch Tolerance      | f = 175MHz            |                         | 20:1 |      |      | _    |
| C <sub>iss</sub>    | Input Capacitance            | V <sub>DS</sub> = 50V | $V_{GS} = -5V f = 1MHz$ |      |      | 360  | pF   |
| C <sub>oss</sub>    | Output Capacitance           | V <sub>DS</sub> = 50V | $V_{GS} = 0$ $f = 1MHz$ |      |      | 150  | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance | V <sub>DS</sub> = 50V | $V_{GS} = 0$ $f = 1MHz$ |      |      | 9    | pF   |

<sup>\*</sup> Pulse Test: Pulse Duration = 300  $\mu s$ , Duty Cycle  $\leq$  2%

#### HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

#### THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

#### THERMAL DATA

| R <sub>THi-case</sub> | Thermal Resistance Junction – Case | Max. 0.8°C / W |
|-----------------------|------------------------------------|----------------|



# **D5017UK**

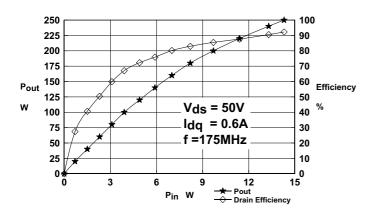



Figure 1
Power Output & Efficiency vs. Power Input

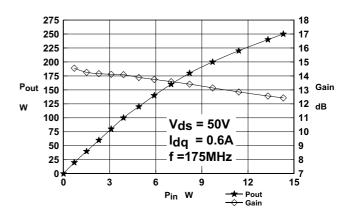



Figure 2
Power Output and Gain vs. Power Input

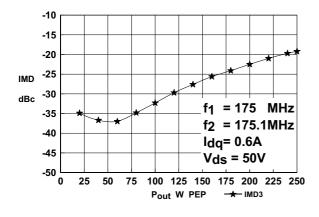



Figure 3
IMD3 vs Power Output

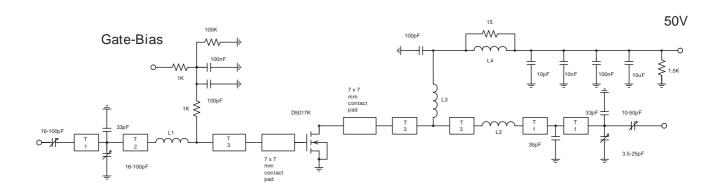
#### **OPTIMUM SOURCE AND LOAD IMPEDANCE**

| Frequency<br>MHz | $Z_S$      | Z <sub>L</sub> |  |  |
|------------------|------------|----------------|--|--|
| 175              | 2.6 + j1.8 | 4 + j1.2       |  |  |





# **Typical S Parameters**


! Vds=50V Idq=0.6A

# MHZ S MA R 50

| !Freq | S11          | S21   |      | S12   |      | S22          |
|-------|--------------|-------|------|-------|------|--------------|
| !Mhz  | mag ang      | mag   | ang  | mag   | ang  | mag ang      |
| 60    | 0.918 -167.2 | 5.927 | 98.5 | 0.01  | 29.1 | 0.713 -157.5 |
| 70    | 0.916 -168.2 | 5.073 | 91.8 | 0.01  | 29.2 | 0.713 -156.7 |
| 80    | 0.918 -168.7 | 4.541 | 86.3 | 0.009 | 29.3 | 0.719 -156.6 |
| 90    | 0.917 -170.3 | 3.985 | 79.7 | 0.009 | 31.5 | 0.732 -157.2 |
| 100   | 0.919 -170.8 | 3.634 | 75.6 | 0.009 | 35.2 | 0.742 -157.8 |
| 110   | 0.927 -171.8 | 3.224 | 69.3 | 0.008 | 40   | 0.762 -158.5 |
| 120   | 0.926 -172.6 | 2.933 | 65.4 | 0.008 | 45.2 | 0.771 -159.1 |
| 130   | 0.932 -173.3 | 2.612 | 61   | 0.008 | 51.9 | 0.79 -160.1  |
| 140   | 0.934 -173.7 | 2.384 | 57.1 | 0.009 | 57.5 | 0.799 -160.9 |
| 150   | 0.936 -174.8 | 2.136 | 52.9 | 0.009 | 63.2 | 0.815 -162   |
| 160   | 0.941 -175.3 | 1.968 | 49.7 | 0.01  | 67.3 | 0.827 -162.4 |
| 170   | 0.939 -176.2 | 1.766 | 46.3 | 0.011 | 72.2 | 0.837 -163.9 |
| 180   | 0.943 -177   | 1.594 | 43.5 | 0.011 | 76.4 | 0.849 -164.9 |
| 190   | 0.946 -177.5 | 1.482 | 42.2 | 0.012 | 80.5 | 0.857 -165.9 |
| 200   | 0.954 -177.8 | 1.347 | 39.6 | 0.013 | 82.4 | 0.871 -166.1 |
| 210   | 0.952 -178.8 | 1.253 | 39   | 0.014 | 85.4 | 0.881 -168   |
| 220   | 0.957 -179.3 | 1.169 | 37.8 | 0.016 | 86.8 | 0.889 -168.8 |
| 230   | 0.958 -179.4 | 1.102 | 36   | 0.017 | 87.8 | 0.891 -169.6 |
| 240   | 0.961 179.9  | 1.019 | 33   | 0.018 | 87.9 | 0.9 -170.6   |
| 250   | 0.965 179.2  | 0.957 | 31   | 0.019 | 88   | 0.899 -171.5 |
| 260   | 0.966 178.9  | 0.882 | 29.3 | 0.02  | 88.9 | 0.91 -172.4  |
| 270   | 0.962 178.2  | 0.84  | 28.2 | 0.021 | 89.9 | 0.913 -173   |
| 280   | 0.965 177.8  | 0.786 | 27.1 | 0.023 | 90.1 | 0.922 -173.3 |
| 290   | 0.969 177.5  | 0.733 | 26.7 | 0.024 | 91.1 | 0.927 -175.3 |
| 300   | 0.97 176.6   | 0.703 | 26.6 | 0.026 | 90.8 | 0.93 -175.2  |
| 310   | 0.97 176.6   | 0.669 | 25.3 | 0.027 | 90.2 | 0.934 -176.2 |
| 320   | 0.971 175.8  | 0.638 | 22.5 | 0.028 | 88.2 | 0.938 -177.1 |
| 330   | 0.972 175.7  | 0.598 | 20   | 0.029 | 86.7 | 0.939 -177.7 |
| 340   | 0.974 175    | 0.559 | 19.2 | 0.029 | 86.7 | 0.944 -178.4 |
| 350   | 0.976 175.1  | 0.516 | 17.8 | 0.03  | 87.5 | 0.944 -179.6 |
| 360   | 0.977 173.7  | 0.486 | 17.3 | 0.031 | 88.3 | 0.95 -180    |
| 370   | 0.976 173.3  | 0.455 | 17.8 | 0.032 | 89.6 | 0.952 179.3  |
| 380   | 0.975 173.4  | 0.437 | 18.2 | 0.034 | 89.8 | 0.952 178.4  |
| 390   | 0.977 172.8  | 0.413 | 18.8 | 0.035 | 89.5 | 0.958 177.5  |
| 400   | 0.976 172.2  | 0.402 | 20.5 | 0.037 | 90.4 | 0.959 177.7  |
| 410   | 0.979 172.2  | 0.396 | 19.4 | 0.039 | 89.6 | 0.962 176.3  |
| 420   | 0.978 171.6  | 0.377 | 17.6 | 0.04  | 88   | 0.962 176.3  |
| 430   | 0.977 171.3  | 0.362 | 16   | 0.04  | 86.3 | 0.965 175.4  |
| 440   | 0.982 170.7  | 0.341 | 14.9 | 0.041 | 86   | 0.966 174.5  |
| 450   | 0.979 170.4  | 0.327 | 15.1 | 0.041 | 86.4 | 0.966 174.4  |
| 460   | 0.978 170.5  | 0.31  | 15   | 0.042 | 86.5 | 0.97 174     |
| 470   | 0.98 169.9   | 0.3   | 15.9 | 0.043 | 87.3 | 0.967 173.2  |
| 480   | 0.982 169.6  | 0.289 | 16.3 | 0.045 | 87.4 | 0.972 172.6  |
| 490   | 0.979 169    | 0.28  | 16.5 | 0.046 | 87.7 | 0.968 171.7  |
| 500   | 0.98 168.8   | 0.271 | 16.6 | 0.047 | 87.4 | 0.969 171.7  |







## **D5017UK 175MHz Test Fixture**

Substrate 1.6mm PTFE/glass, Er = 2.5

All microstrip lines W= 5mm

T1 7.5mm

T2 12.5 mm

T3 6mm

L1 Hairpin loop 18 swg 10mm high, 6.5mm gap

L2 Hairpin loop 5mm wide ribbon, 7mm high, 3.5 mm gap

L3 9 turns 19swg enamelled copper wire, 6mm id.

L4 12 turns 19swg enamelled copper wire on Fair-Rite FT82 ferrite core