0 0O EPS44801 OO [J goooogpcBOOO00O024000

Ali

—bD A

= N Stand-Alone Microsequencer

EPS448 SAMEPLD

| September 1991, ver. 3

Data Sheet |

Features

General
Description

vodC Ooododod o

oo

User-configurable Stand-Alone Microsequencer (SAM) for
implementing high-performance controllers

On-chip reprogrammable microcode EPROM up to 448 words deep
15 x 8-bit stack

Loop counter

Prioritized multiway control branching

8 general-purpose branch-control inputs and 16 general-purpose
control outputs

Cascadable to expand the number of outputs or states

Low-power CMOS technology

Available in 28-pin, 300-mil windowed ceramic dual in-line packages
(CerDIP) and 28-pin windowed ceramic and one-time-programmable
(OTP) plastic J-lead chip carriers (JLCC and PLCC)

Clock frequencies up to 30 MHz

High-level support with SAM+PLUS design tools includes Altera
State Machine Input Language (ASMILE), Assembly Language (ASM),
SAM Design Processor (SDP), and SAMSIM functional simulator.

The EPS448 EPLD is a function-specific, user-configurable Stand-Alone
Microsequencer (SAM). It is available in a 28-pin windowed ceramic and
OTP plastic J-lead chip carrier, and 300-mil windowed ceramic DIP
packages. See Figure 1.

Figure 1. EPS448 Package Pin-Out Diagrams

Package outlines not drawn to scale.

#

.
& F15] 1 28 [F1a
w Q x
o 2o £ 8 3 = e 72 E 27 (O F13
N nnnnun.oum s s B 26 O Fi2
4 3 2 1 28 27 2 f
ngs 25 B is 50 4 25 1 Fn
Ore a0s 24 [F10
e (2N D[S RYa\ gl i O !
ok] 6 23 [Fo9
F0o] 7 23 |1 F15
vee 0 7 22 [Fos
Fo1gs 22 p F14 nRESET [] 8 21 [J GND
Fo2 O 9 21 [F13 3] 9 20 3 Fo7
Fo3 . 10 20 [Fi2 2 10 19 [Fo6
ngn 18 [Fos
Fo4 . 11 EPS448 19 O FHl = g H
12 13 14 15 16 17 18 o 3 12 @ 17 1 Fod
O 0O 0 0 0 o g Foo] 13 A~ 16 [] Fo3
28598 3¢ ®
L & (Zg [Fo1] 14 15 [Fo2

J-Lead DiP

(0)]
-
7}
o
n
>
=

http://www.dzsc.com/ic/sell_search.html?keyword=EPS448
http://www.jdbpcb.com/J/
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

EPS448 SAM EPLD: Stand-Alone Microsequencer Data Sheet

Applications

The on-chip EPROM of each EPS448 device (up to 448 words) is integrated
with branch-control logic, a pipeline register, a stack, and a loop counter.
This generic microcoded architecture can efficiently implement a broad
range of high-performance controllers, from state machines to waveform-
generation applications.

The 1.2-micron CMOS EPROM technology allows the EP5448 EPLD to
operate at 30-MHZz clock frequency while still benefitting from low CMOS
power consumption. This technology also facilitates 100% generic testability,
which eliminates the need for post-programming testing.

Altera’s SAM+PLUS software provides design entry, logic optimization,
and functional simulation for EPS448 designs. With SAM+PLUS, designs
are entered in either state machine or microcoded format. The software
automatically performs logic minimization and design fitting. The designer
can then simulate the design or program it directly to create customized
working silicon. Programming takes only a few minutes with standard
Altera programming hardware and LogicMap II software. New users can
purchase the complete PLDS-SAM Development System with programming
hardware included; PLS-SAM is a software-only package for existing
Altera systems.

Ideal EPS448 applications include programmable sequence generators
(i.e., state machines), bus and memory control functions, graphics and DSP
algorithm controllers, and other high-performance control logic. EP5448
devices can be cascaded horizontally for greater output capabilities and
vertically for deeper microcode memory. See Application Brief 65 (Vertical
Cascading of EP5448 SAM EPLDs).

EPS448 as a State Machine

EPS448 architecture easily implements synchronous state machines. The
device’s internal EPROM memory and pipeline register allow up to 448
unique states to be specified. Its branch-control logic allows single-clock,
multiway branching based on the eight inputs, the current device state,
and the user-defined transition conditions. Design entry is simplified with
the Altera State Machine Input Language (ASMILE) supported by
SAM+PLUS software. This high-level language uses IF-THEN statements
to define state transitions and truth tables to define or tri-state the outputs
on a state-by-state basis.

EPS448 as a Microcoded Controller

EPS448 architecture provides several advanced features that make it suitable
for use as a complex microcoded controller. The EPS448 EPLD's 448-word
on-chip EPROM is integrated with a microcode sequencer consisting of
branch-controllogic, a stack, and a loop counter. The branch-control logic—

Data Sheet

EPS448 SAM EPLD: Stand-Alone Microsequencer |

Functional
Description

fed by the 8 general-purpose inputs, the counter, the stack, and the pipeline
register—provides flexible, multiway microcode branch capability in a
single clock cycle, enhancing throughput beyond that of conventional
controllers or sequencers.

For microcoded controllers, SAM+PLUS software offers the high-level
Assembly Language (ASM) design entry format. This language consists of
powerful instructions (i.e., opcodes) that easily implement conditional
branches, subroutine calls, multi-level FOR-NEXT loops, and dispatch
functions (i.e., branching to an externally specified address). For more
information, see “Instruction Set” later in this data sheet.

As shown in Figure 2, the EPS448 EPLD consists of microcode EPROM, a
36-bit pipeline register, branch-control logic, a 15 x 8-bit stack, and an 8-bit
loop counter.

Figure 2. EPS448 Block Diagram

inputs
Clock Reset (1010 17)
i 1
Stack Branch-Control
L sxamwe [l inid
% 768 Product Terms
i Zero Flag ‘ {}
Courtter (CREG)
) eas . EPROM
‘—‘_:> 448 % 36 Bits

N, Pipeline
. Register
Qutputs
(FO to F15)

sad3
WVS ® O1S

EPS448 SAM EPLD: Stand-Alone Microsequencer Data Sheet I

The branch-control logic generates the address of the next state and applies
it to the microcode memory. The outputs of the microcode memory
represent user-defined outputs and internal control values associated with
the next state. These new values are clocked into the pipeline register on
the leading edge of the clock and become the current state. The new values
in the pipeline register—along with the counter, stack, and inputs—are
used by the branch-control logic to generate the new next-state address.

Microcode EPROM and Pipeline Register

The microcode EPROM is organized into 448 36-bit words, each of which
can be viewed as a single state location. Each of the 36 bits is divided into
the following categories:

F-field (16 bits) consists of user-defined outputs at device pins.

Q-field (8 bits) provides the next-state address.

D-field (8 bits) is a general-purpose field used either as a constant or as
an alternative next-state address.

OP-field (3 bits) contains the instruction (opcode).

E-field (1 bit) enables or tri-states the device outputs.

Asshownin Figure 3, the microcode memory is organized as 256 addresses.
Addresses 0 through 191 contain a single 36-bit word, which is associated
with the desired next state. This state information is clocked into the
pipeline register on the rising edge of the clock, and the outputs become
valid one clock-to-output delay (tcp) later.

Figure 3. Microcode Memory

Next-State
Address
from Branch
Control

1-of-4

Branch Select

from Branch
Control

g=———> - 1
W Muttiway Branch Locations
941 |

Address

Single-Way
Branch Locations

Pipeline Register Q; 36

b oria

Clock

Data Sheet EPS448 SAM EPLD: Stand-Alone Microsequencer |

Addresses 192 through 255 access 4 unique 36-bit words, each of which
corresponds to a different possible next state. (The extensions .0, .1, .2,
and .3 are added to the addresses to distinguish the four states.) These 64
addresses make up the multiway branch locations, and are used to perform
single-clock, four-way branching. Whenever the next-state address falls
within the multiway branch locations, the branch-control logic makes the
necessary 1-of-4 selection based on the next-state address and user-defined
input conditions.

Branch-Control Logic Block

The branch-control logic is the key to the high-performance sequencing

ability of the EPS448 EPLD. This block determines the next state to be

clocked into the pipeline register, based on the current status of the pipeline -
register, the counter, the stack, and the eight input pins.

The branch-control logic is divided into two segments: the address
multiplexer and the branch-select logic. See Figure 4.

Figure 4. Branch-Control Logic Zero Flag Opcode
from Counter 3
Q-Field {} Next-State Address
8 8
D-Field Address
8 => Multiplexer
Top-of-Stack
8>
Branch-Select
Inputs (10 to 17) Logic 4
8 => 7
768 Product | 1-of-4 Branch Select
Torms

The address multiplexer provides the next-state address to the microcode
memory. The next-state address can come from the Q-field, the D-field, or
the top-of-stack. The selection is based on the instruction in the pipeline
register and the condition of the zero flag from the counter.

The branch-select logic is a programmable logic block with 768 product “
terms, 16 inputs, and 4 outputs. It is used to perform a 2-, 3-, or 4-way
branch based on user-defined input conditions. When the next-state address
falls within the multiway branch range of memory—i.e., any address
greater than 191—the branch-select logic performs the necessary 1-of-4
selection. When the next-state address is less than 192, no selection is
required and the branch-select logic is turned off.

m
)
r
O
7

WVS ® O1S

EPS448 SAM EPLD: Stand-Alone Microsequencer Data Sheet]

The conditions controlling the multiway branch are defined by the user
with a simple IF-THEN-ELSE format, as shown in the following example:

IF (cond3) THEN select 201.3
ELSEIF (cond2) THEN select 201.2
ELSEIF (condl) THEN select 201.1
ELSE select 201.0

The conditions are prioritized so that if the first condition (i.e., cond3) is
met, then microword 201.3 is selected and clocked into the pipeline
register, regardless of the results of cond2 and condl. If none of the
conditions are met, then microword 201.0 is clocked into the pipeline
register.

The three conditional expressions are user-defined. They may contain any
logical equation that is based on the inputs and can be reduced to four
product terms, as shown in the following example:

I1* /12 * /14

+ I3 * /14 * /I5 * /16 * /17
+ 10

+ 12 * /14 * /15

A unique set of 12 product terms is present in each of the 64 available
multiway branch locations for a total of 768 product terms. See Figure 5.

Figure 5. Branch Logic in a Multiway Branch Location

Programmable Logic
Priority Encoder

): Select .3

}3 Y
E

Select .1

4 -

h

Select .0

[Data Sheet EPS448 SAM EPLD: Stand-Alone Microsequencer

The EPS448 EPLD is designed so that the number of available product
terms is always sufficient for a design. Prioritization provides an effective
product-term count of more than 12 per location. A tradeoff between the
number of product terms and the number of possible branches can be
made simply by placing identical state information in 2 locations, as
shown in Figure 6.

Figure 6. Multiway Branching vs. Product-Term Needs

3-Way Branch 4-Way Branch

A /A% /B * [C A /A*/B=/C

Stack

The EPS448 stack is a Last-In First-Out (LIFO) arrangement that consists of
15 8-bit words. The top of stack may be used as the next-state address or
popped into the counter. Values may be pushed onto the stack from either
the D-field in the pipeline register or from the counter. Thus subroutines,
nested loops, and other iterative structures may be implemented efficiently.
The logic levels on the 8 dedicated input pins may also be pushed onto the
stack to allow external address specification in a dispatch function or to
externally load the counter. See Figure 7.

Figure 7. Stack

from Dedicated Input 8 to Counter or
Pins, D-field, or Counter jL Microcode Memory
AUFO)

The pushing or popping of the stack occurs on the leading edge of the
clock. The stack is “zero-filled” so that a pop from an empty stack will reset
all 8 bits to zero. On the other hand, a push to an already full stack will
write over the top-of-stack, leaving the other 14 values unchanged.

Loop Counter

The EPS448 EPLD contains an eight-bit loop counter called count register
(CREG), which is useful for controlling timing loops and determining
branch-control functions. The CREG is a down counter that may be loaded
directly from the D-field of the pipeline register or from the top-of-stack.

said3a
WVS B O1S

EPS448 SAM EPLD: Stand-Alone Microsequencer Data SheetJ

Output
Enable
Control

nRESET Pin

The value of the CREG may be saved and restored by pushing and
popping it to and from the stack. See Figure 8.

Figure 8. Loop Counter (CREG)

> Counter Zero Flag }

The CREG is loaded or decremented on the leading edge of the clock. It
will not decrement once it reaches zero, thereby preventing roll-over. A
zero flag indicates when the counter has reached zero. This flag is used
with the LOOPNZ command to control program flow. (See “Instruction Set”
later in this data sheet.) Single-instruction delay loops are easily constructed,
and nested loops or delays of arbitrary length may be generated in
combination with the stack.

Each microcode word contains an OE bit (i.e., the E-field) that enables the
outputs when E = 1, and causes high impedance when E = 0. This bit is
accessible through instruction set commands provided with SAM+PLUS
software. This output-enable capability allows EP5448 EPLDs to be vertically
cascaded to increase the number of states.

The nRESET pin acts as a master reset for the EPS448 EPLD, causing it to
empty the stack, clear the counter, and load the microword at address 0
into the pipeline register. The nRESET signal is useful for system reset or for
synchronizing several EPS448 devices that are cascaded vertically or
horizontally.

The nRESET signal must be held low for at least three rising clock edges to
reset the EPS448 EPLD. An nRESET of one rising clock edge causes the
EPS448 device to enter into a supervisor mode; an nRESET of two clock
edges leads to an undefined state.

The outputs of the startup address (00 Hex) appear at the pins when the
fourth clock edge after nRESET goes low, and are maintained until the third
clock edge after nRESET returns to high.

When the EPS448 EPLD is operating in noisy environments, a glitch on the
NnRESET pin during one setup cycle (tgyg) before the clock edge might
initiate a supervisor mode. To prevent this effect, a capacitor of at least
0.1 uF should be connected from the nRESET input to ground.

| Data Sheet EPS448 SAM EPLD: Stand-Alone Microsequencer

Horizontal EP5448 EPLDs, like memory- and bit-slice devices, can be cascaded to
. provide greater functionality (Figure 9). If an application requires more
and Vertical output lines, two or more EP5448 devices can be cascaded horizontally.
cascading Likewise, if an application requires more states, two or more EPS448
EPLDs can be cascaded vertically. In either case, no speed penalty is
incurred. The designer can also simultaneously cascade EPS448 devices
horizontally and vertically. Designs with horizontal cascading are fully
supported by the SAM+PLUS development software. However, vertical
cascading requires the designer to make certain tradeoffs to split the
design. Refer to Application Brief 65 (Vertical Cascading of EPS448 SAM
EPLDs) for more information.

Figure 9. Horizontal and Vertical Cascading

Horizontal Cascading Vertical Cascading
Inputs Clock N
IL— Inputs == EPS448 Control
N Outputs
Clock (N)
N
EPS448 EPS448 EP.
Inputs — > Ses
N N
Control Outputs (2N)
Instruction The instruction set used to enter designs for the EPS448 EPLD consists of a
compact assortment of powerful commands that allows efficient
Set implementation of multiway branching, subroutines, nested FOR-NEXT
P y &

loops, and dispatch functions. These instructions are used only with
Assembly Language (ASM) design entry.

Each command in the instruction set is described and illustrated here. In

the following descriptions, 1abela and labelB represent arbitrary labels

located in the ASM file. These symbolic labels are converted by the
SAM+PLUS software into 8-bit absolute addresses. (SAM+PLUS allows

the designer to use the high-level Assembly Language without worrying

about the actual values that are placed in the various fields.) The parameter

constant is any 8-bit number (0 to 255 decimal, 0 to FF hexadecimal) that n
represents an address, a mask, or a constant.

For simplicity, it is assumed that the sample destination labels in the
following descriptions are not in the multiway branch block. See “Multiway
Branching” later in this data sheet for more details about this capability.

$ad3
WVS B 91S

| EPS448 SAM EPLD: Stand-Alone Microsequencer

Data Sheﬂl

labelB

Stack
(P?)f))

Counter
(Load)

labelA

CONTINUE

This command causes execution to continue with the next sequential
instruction in the ASM file. In this example, the current address is 44, and
CONTTNUE instructs SAM+PLUS to go to address 45 in the ASM file.

JUMP labelA

This instruction causes execution to branch to the indicated location. In
this example, address 44 contains the instruction JUMP labela ; labelAis
located at address 73. The next instruction will come from labelA.

CALL labelA RETURNTO labelB

This instruction pushes the address of 1abelB onto the stack and makes
labelA the next-state address. CALL labela without the RETURNTO command
makes labelB default to the next instruction in the ASM file. In this
example, the address location 44 contains the instruction CALL labela;
labela is located at address 73. The instruction pushes the address of the
next instruction (45) onto the stack and causes the next instruction to come
from address 73. The RETURN instruction at address 75 returns the execution
to address 45. The CALL command is typically used to call a subroutine.

RETURN

This command causes the address of the next instruction to come from the
top-of-stack and pops that value off the stack. In this example, the instruction
at address 44 calls the subroutine at address 73 and pushes the value 45
onto the stack. The RETURN instruction at address 75 pops the value 45 off
of the top-of-stack and causes execution to continue with address 45.
RETURN is most frequently used to return from a subroutine.

LOADC constant GOTO labelA

This command loads the counter with the specified value and then executes
the instruction at labelA. If GOTO is not included in the instruction, labela
defaults to the next instruction in the ASM file. In this example, the
instruction LOADC 173D GOTO labelA is located at address 44. This means
that the decimal value 173 is loaded into the counter and the next state
comes from labelA at address 73. LOADC is typically used to load the
counter before entering a FOR-NEXT loop or a wait-state generator.

lﬂata Sheet EPS448 SAM EPLD: Stand-Alone Microsequencer

LOOPNZ labelB ONZERO labela

Counter This instruction jumps to one of two addresses based on the value of the
(Decrement) yeorg flag, and decrements the counter if it is not already zero. If it is zero
(i.e., zero flag = 1), the next instruction comes from labela. If it is not zero
(i.e., zero flag = 0), the next instruction comes from labelB. If the ONZERO
instruction is not included, labela defaults to the next instruction in the
ASM file. In this example, the instruction at address 44 is LOOPNZ 1abelB
ONZERO labelA, where labelB is located at address 42 and labelz at
address 73. If the counter is not at zero, the instruction at address 42 is
executed and the counter is decremented. If the counter is already at zero,
the instruction at address 73 is executed and the counter remains at zero.
LOOPNZ is typically used to implement FOR-NEXT loops.

N-1—» @ DECNZ GOTO labelA

Counter . RPN :
(Decrementy This command decrements the counter if it is not zero and then jumps to

the instruction specified at 1abelA. If GOTO is not included in the instruction,

labelA labelA defaults to the next instruction in the ASM file. In this example, the
instruction at address 44 is DECNZ GOTO labela, where 1abela is located

at address 73. The counter is decremented if it is not zero and the next
instruction comes from address 73. DECNZ is typically used to conditionally

decrement the counter.

const —p Counter PUSHLOADC constant GOTO labelA

(Load)
This instruction pushes the current value of the counter onto the stack,

Stack ~]oads a new value into the counter, and jumps to labelA. If the GOTO
abeia " **" instruction is not included, labelA defaults to the next instruction in the
ASM file. In this example, the instruction at address 44 is PUSHLOADC 153D
GOTO labeld, where labelA is located at address 73. The value in the
counter is pushed onto the stack, the decimal value 153 is loaded into the
counter, and the next instruction comes from address 73. PUSHLOADC is
useful for implementing FOR-NEXT loops.

~ ~
ElgH

Stack @ POPC GOTO labelA
(Pop) .)
This command pops the top-of-stack into the counter and jumps to labelA.
Counter . s . . .
(Loaq) If the GOTO instruction is notincluded, labela defaults to the next instruction “
labelA in the ASM file. In this example, the instruction at address 44 is POPC GOTO
labela, where labelA is located at address 73. The current value at the
top-of-stack is removed from the stack (i.e., popped) and loaded into the
counter. The next instruction comes from address 73. POPC is typically

used with the PUSHLOADC instruction to implement nested FOR-NEXT loops.

$and3
NVS B 1S

‘ EPS448 SAM EPLD: Stand-Alone Microsequencer Data Sheet

const —p

Stack
(Push)

labelA

Stack
(Push)

Stack
(POP)

const

IabeIA

Coumer
(Load)

PUSH constant GOTO labelA

This command pushes the value of the constant onto the stack and jumps
to labelA. If the GOTO instruction is not included, 1abela defaults to the
next instruction in the ASM file. In this example, the instruction at address
44 is PUSH 34D GOTO labeld, where labela is located at address 73. The
decimal value 34 is pushed onto the stack and the next instruction comes
from address 73. PUSH is typically used to store a value on the stack.

PUSHI GOTO labell

This instruction pushes the eight inputs (I7 to I0) onto the stack. If the GOTO
instruction is not included, labela defaults to the next instruction in the
ASM file. In this example, the instruction at address 44 is PUSHI GOTO
labelA, where labela is located at address 73. At the leading edge of the
clock, the eight inputs are pushed onto the stack. Typically, address 73
would have a RETURN instruction that would cause execution to jump to
the address represented by the recently pushed input pins, implementing
a dispatch function. This instruction can also be used to load the counter
with an externally specified variable. To do so in this example, address 73
would have a POPC instruction.

ANDPUSHI constant GOTO labelA

This command pushes the eight inputs (I7 to 10) onto the stack. It is
identical to the PUSHI GOTO labela command, except that the inputs are
first bit-wise ANDed with a constant to allow the masking of irrelevant
inputs. If the GOTO instruction is not included, 1abela defaults to the next
instruction in the ASM file. In this example, the instruction at address 44 is
ANDPUSHT 34D GOTO labelAd, where labela is located at address 73. At the
leading edge of the clock, the eight inputs are masked with the decimal
constant 34 and pushed onto the stack. The next instruction comes from
address 73. ANDPUSHT is an advanced instruction typically used to branch
to an externally specified resource or to externally load the counter.

POPXORC constant GOTO labelA

This instruction pops the top-of-stack, bit-wise XORs it with a constant,
loads the results into the counter, and jumps to labelAa. If the GOTO
instruction is not included, 1abela defaults to the next instruction in the
ASM file. In this example, the instruction at address 44 is POPXORC 25D
GOTO label’, where labela is located at address 73. The top-of-stack is
popped off the stack, XORed with decimal 25, and the result is loaded into
the counter. The next state comes from address 73. POPXORC is an advanced
instruction typically used to compare the inputs against a known value
and then branch on the basis of the result.

Data Sheet

EPS448 SAM EPLD: Stand-Alone Microsequencer

Table 1 summarizes the effects of each instruction on the address
multiplexer, the stack, and the counter.

Table 1. Instruction Set Summary
Instruction Definition Next-State Effect on Effect on
Address Stack Counter
CONTINUE Continue with next instruction labela None Hold
JUMP Jump to a label labela None Hold
CALL Call subroutine labela labelB Hold
RETURN Return from subroutine labelA Pop Hold
LOADC Load CREG labeln None Constant
LOOPNZ Loop/decrement on non-zero labelA or None Decrement
labelB
DECNZ Decrement CREG on non-zero labela None Decrement
PUSHLOADC Push CREG to stack and load CREG labela CREG Constant
POPC Pop stack to CREG labela Pop Stack
PUSH Push constant to stack labela Push Hold
PUSHI Push inputs to stack labelA Inputs Hold
ANDPUSHI Push masked inputs to stack labelA inputs (ANDed) Hold
Constant
POPXORC XOR stack with constant and send labela Pop Stack XOR
result to CREG Constant

Multiway

Multiway branching provides an added dimension to the capabilities of
the instruction set. For example, a JUMP labelA to an address within the

Branchin g multiway branch block forces the branch-select logic to decide which of the

four words to send to the pipeline register. This selection is based on user-

defined functions of the inputs. See Figure 10.
-
‘» 103

Figure 10. Jumping to a Multiway Branch Address

sdnd3
AVS B O1S

'E’SMB SAM EPLD: Stand-Alone Microsequencer

Data Sheet

Design
Security

Functional
Testing

Any of the 13 available commands can be enhanced with multiway
branching. For example, location 44 in Figure 10 can be a CALL to a
subroutine, and address 201 can contain the starting instruction for 4
unique subroutines. The routine that is actually executed depends on the
user-defined condition of the inputs. The following ASM code can be used
to implement this example:

44D: [Output Spec] CALL labeld;

201D: IF condl THEN [out 1] JUMP 102D;
ELSEIF cond2 THEN [out 2] JUMP 73D;
ELSEIF cond3 THEN {out 3] JUMP 53D;
FLSE [out 4] JUMP 34D;

The EPS448 EPLD contains a programmable design Security Bit that controls
access to the data programmed into the EPLD. If this Security Bit is used, a
proprietary design implemented in the EPLD cannot be copied or retrieved.
It provides a high level of design control because programmed data within
EPROM cells is invisible. The Security Bit, along with all other program
data, is reset by erasing the EPLD.

The EPS448 EPLD is fully functionally tested and guaranteed through
complete testing of each programmable EPROM bit and all internal logic
elements, thus ensuring 100% programming yield. AC test measurements
are performed under the conditions shown in Figure 11.

Figure 11. EPS448 AC Test Conditions

Power supply transients can affect AC vCC
measurements. Simultaneous transitions
of multiple outputs should be avoided for

accurate measurement. Threshold tests 427 Q

must not be performed under AC Device to Test
conditions. Large-amplitude, fast ground Output System
current transients normally occur as the = * —

device outputs discharge the load
capacitances. When these transients flow
through the parasitic inductance between
the device ground pin and the test system
ground, it can create significant -

reductions in observable input noise tri';eezrld;ar:L
immunity. =

270 Q C1 (includes
JIG capacitance)

Device input

Since the EPS448 EPLD is erasable, Altera can use and then erase test
programs during early stages of production flow. This ability to use
application-independent, general-purpose tests is called generic testing
and is unique among user-defined LSI logic devices. EPS448 EPLDs also
contain on-board test circuitry to allow verification of function and AC
specifications after they are packaged in windowless packages.

[Data Sheet EPS448 SAM EPLD: Stand-Alone MicrosequenceTl

Figure 12 shows output drive characteristics for EPS448 /O pins and
typical supply current versus frequency for the EPS448 EPLD.

Figure 12. EPS448 Output Drive Characteristics and I vs. Frequency

100 -

g 8o

= S o0 /

g lou =

= 60 <

= Vec=5.0V p: Vee=5.0V

g T, =25°C b Ty =25°C

3 2 -

40 - I3 o

.‘51 3 o

— [&]

3 lon =
—_ 20

-
— 101

: 1 ! 1 1 1 (1 1 I
045 4 2 3 4 5 1KHz 10KHz 100 KHz 1MHz 10 MHz 30 MHz
Vg Output Voitage (V) Maximum Frequency
Figure 13 shows EPS448 timing and reset timing waveforms.
Figure 13. EPS448 Switching Waveforms Timing Waveforms
tC\/C —
If nRESET i held low for more than three clock edges, then et el e tou s il
the outputs associated with the boot address (00 Hex) will Clock L ___ __
remain at the pins until the third clock after nRESET goes i e
high. Input 10 to 17 Xvalid Input
— t(:o -
Output FO to F15
-« oz -— tcz—u
Output FO to F15 ‘)”&“T:";:‘::m —

Reset Timing Waveforms

Clock I J LJLJ I-_J l—] l—

i e lgur —»i et

o — ie— loo—si e

Output FO to F15 X Invalid OQutput i X F (00) X

\ Counter and
stack cleared

wn
m3
LI
&g
=

rEPS448 SAM EPLD: Stand-Alone Microsequencer

Data Sheet]

Absolute Maximum Ratings

Note: See Operating Requirements for EPLDs in this data book.

Symbol Parameter Conditions Min Max | Unit
Vee Supply voltage With respect to GND -2.0 7.0 Vv
Vpp Programming supply voltage See Note (1) -2.0 14.0 \
Vi DC input voltage -2.0 7.0 \'
I MAX DC V¢ or GND current -250 250 mA
lout DC output current, per pin —25 25 mA
Pp Power dissipation 1200 mwW
Ts1g Storage temperature No bias —65 150 °C
T amB Ambient temperature Under bias -10 85 °C
Recommended Operating Conditions See Note (2)
Symbol Parameter Conditions Min Max | Unit
Voo Supply voltage 4.75(4.5)15.25(5.5)} V
V) Input voltage Vee \
Vo Output voltage Veeo \
Ta Operating temperature For commercial use 70 °C
Ta Operating temperature For industrial use —40 85 °C
Te Case temperature For military use -55 125 °C
tp Input rise time 500 (100) | ns
te Input fall time 500 (100) | ns
DC Operating Conditions ~ See Notes (2), (3), (4)
Symbol Parameter Conditions Min Typ Max | Unit
Viu High-level input voltage 2.0 Vee +03] V
ViL Low-level input voltage -0.3 0.8 \'
VoH High-level TTL output voltage loy = 8 mADC 24 v
VoH High-level CMOS output voltage loy = 4 mADC 3.84 \
VoL Low-level output voltage loL = 8(4)mADC 0.45 v
I Input leakage current V| =V¢e or GND, See Note (5) -10 10 HA
loz Tri-state output off-state current Vg =Vgc or GND -10 10 HA
lcot V ¢ supply current (standby) V| =V or GND, See Note (6) 60 95 (120) | mA
lcos V ¢ supply current (active) No load, 50% duty cycle, 90 140 (200) [mA
f = 1.0 MHz

Data Sheet EPS448 SAM EPLD: Stand-Alone Microsequencer

Capacitance See Note (7)

Symbol Parameter Conditions Min Max | Unit
Cin Input capacitance Vi = 0V, f = 1.0MHz 10 pF
Cout Output capacitance Vour = 0V, f = 1.0 MHz 15 pF
CcLk Clock pin capacitance Vi = 0V, f = 1.0MHz 10 pF
CRrsT nNRESET pin capacitance 75 pF

AC Operating Conditions See Note (3)

EPS448-30 | EPS448-25 | EPS448-20

Symbol Parameter Conditions Min |Max | Min |Max | Min | Max | Unit .
feve Maximum frequency C1 = 35pF 30 25 20 MHz
teve Minimum clock cycle 33.3 40 50 ns
ts Input setup time 16.5 20 22 ns
ty Input hold time 0 0 0 ns
tco Clock to output delay C1 = 35pF 16.5 20 22 ns
toz Clock to output disable or enable 16.5 20 22 ns
toL Global clock low time 11 12 15 ns
ten Global clock high time 11 12 15 ns
tsur nRESET setup time 16.5 18 18 ns
tyr nRESET hold time 5 5 5 ns

Notes to tables:
(1) Minimum DC input is -0.3 V. During transitions, the inputs may undershoot to —2.0 V or overshoot to 7.0 V for
periods less than 20 ns under no-load conditions.

(2) Numbers in parentheses are for military and industrial temperature versions.

(3) Operating conditions: Ve =5V 5%, T, = 0° C to 70° C for commercial use.
Vee =5V +10%, Ty =—40° C to 85° C for industrial use.
Vee =5V 110%, Te = -55° C to 125° C for military use.

(4) Typical values are for T, =25°C, Vo =5 V.

(5) For 1.0 < V] < 3.8, the nRESET pin will source up to 200 pA.

(6) This condition applies when the present state is a single-way branch location.

(7) Capacitance is measured at 25° C. Sample-tested only.

Product Availability
Operating Temperature Availbility
Commercial (0° C1070° C) EPS448-20, EPS448-25, EPS448-30 n
Industrial (—40° C to 85° C) EPS448-20
Military (-55° C to 125° C) EPS448-20

Note: Only military temperature-range EPLDs are listed above. MIL-STD-883B-compliant
product specifications are provided in Military Product Drawings (MPDs), available by
calling Altera’s Marketing Department at (408) 984-2800. These MPDs should be used to
prepare Source Control Drawings (SCDs). See Military Products in this data book.

sg1d3
NVS B O1S

