

September 2006

FAN7383 Half-Bridge Gate-Drive IC

Features

- Floating Channel Designed for Bootstrap Operation to +600V.
- Typically 350mA/650mA Sourcing/Sinking Current Driving Capability for Both Channels
- Extended Allowable Negative V_S Swing to -9.8V for Signal Propagation at V_{DD}=V_{BS}=15V
- High-Side Output in Phase of IN Input Signal
- Built-in UVLO Functions for Both Channels
- Built-in Common-Mode dv/dt Noise Canceling Circuit
- Typically Internal 330nsec Minimum Dead Time
- Programmable Turn-On Delay Time Control (Dead Time)

Applications

- SMPS
- Motor Drive Inverter
- Fluorescent Lamp Ballast
- HID Ballast

Description

The FAN7383 is a half-bridge gate-drive IC with shutdown and programmable dead-time control functions for driving MOSFETs and IGBTs that operate up to +600V.

Fairchild's high voltage process and common-mode noise canceling technique give stable operation of high-side drivers under high-dv/dt noise circumstances.

An advanced level-shift circuit allows high-side gate driver operation up to V_S = -9.8V (typical) for V_{BS} =15V.

The UVLO circuits for both channels prevent malfunction when V_{DD} and V_{BS} are lower than the specified threshold voltage.

Output drivers typically source/sink 350mA/650mA, respectively, which is suitable for all kinds of half and full bridge inverter.

14-SOP

Ordering Information

Part Number	Package	Pb-Free	Operating Temperature Range	Packing Method
FAN7383M	14-SOP	Yes	-40°C ~ 125°C	Tube
FAN7383MX	14-30F	165	-40 6 123 6	Tape & Reel

Typical Application Circuit

Figure 1. Application Circuit for Half-Bridge Switching Power Supply

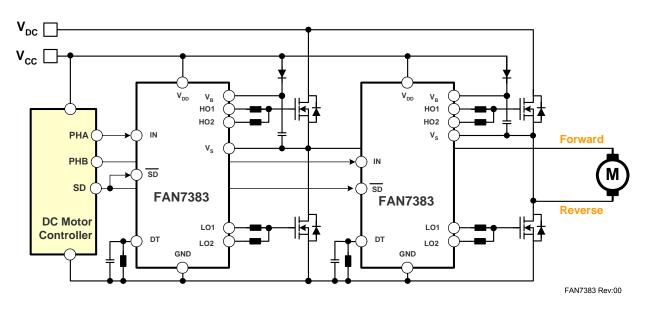


Figure 2. Application Circuit for Full-Bridge DC Motor Driver

Internal Block Diagram

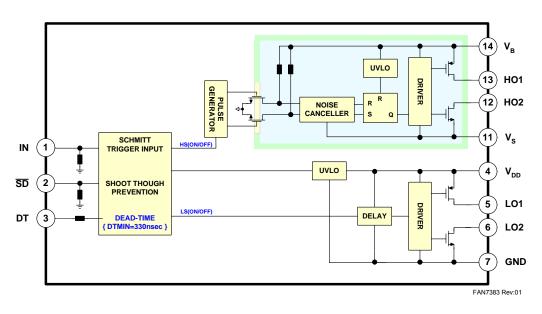


Figure 3. Functional Block Diagram of FAN7383

Pin Configuration

Figure 4. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description	
1	IN	Logic Input for Gate Driver	
2	SD	Logic Input for Shutdown (Active Low)	
3	DT	Programmable Dead-Time Control with External Resistor	
4	V _{DD}	Low Side Supply Voltage	
5	LO1	Low Side Driver Source Output	
6	LO2	Low Side Driver Sink Output	
7	GND	Ground	
8	NC	Not connected	
9	NC	Not connected	
10	NC	Not connected	
11	V _S	High Side Floating Supply Return	
12	HO2	High Side Driver Sink Output	
13	HO1	High Side Driver Source Output	
14	V _B	High Side Floating Supply	

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation. $T_A = 25$ °C unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
V _S	High-side offset voltage	V _B -25	V _B +0.3	V
V _B	High-side floating supply voltage	-0.3	625	V
V _{HO}	High-side floating output voltage HO1, HO2	V _S -0.3	V _B +0.3	V
V_{DD}	Low-side and logic fixed supply voltage	-0.3	25	V
V_{LO}	Low-side output voltage LO1, LO2	-0.3	V _{DD} +0.3	V
V _{IN}	Logic input voltage (IN)	-0.3	V _{DD} +0.3	V
V _{SD}	Shutdown logic input voltage	-0.3	V _{DD} +0.3	V
V _{DT}	Dead-time control voltage	-0.3	5.0	V
GND	Logic ground	V _{DD} -25	V _{DD} +0.3	V
dV _S /dt	Allowable offset voltage slew rate		50	V/nsec
P _D ⁽¹⁾⁽²⁾⁽³⁾	Power dissipation		1.0	W
$\theta_{\sf JA}$	Thermal resistance, junction-to-ambient		110	°C/W
TJ	Junction temperature		150	°C
T _{STG}	Storage temperature		150	°C

Notes:

- 1. When mounted on 76.2 x 114.3 x 1.6mm PCB. (FR-4 glass epoxy material).
- 2. Please refer to:
 - JESD51-2: Integral circuits thermal test method environmental conditions Natural convection JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages
- 3. Do not exceed P_D under any circumstances.

Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
V _B	High-side floating supply voltage		V _S +15	V _S +20	V
V _S	High-side floating supply offset voltage		6-V _{DD}	600	V
V_{DD}	Low-side supply voltage		15	20	V
V _{HO}	High-side (HO) output voltage		V _S	V _B	V
V_{LO}	Low-side (LO) output voltage		GND	V_{DD}	V
V _{IN}	Logic input voltage (IN)		GND	V_{DD}	V
T _A	Ambient temperature		-40	125	°C

Electrical Characteristics

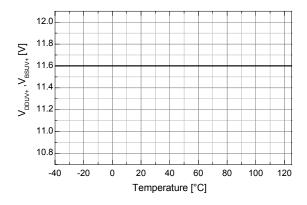
 V_{BIAS} (V_{DD} , V_{BS}) = 15.0V, R_{DT} = GND, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are referenced to GND and V_S is applicable to HO and LO.

Symbol	Characteristics Test Condition		Min.	Тур.	Max.	Unit	
SUPPLY (SUPPLY CURRENT SECTION						
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} =0V or 5V		35	90		
I _{QDD}	Quiescent V _{DD} supply current	V_{IN} =0V or 5V, R_{DT} =0 Ω		650	900		
I _{SD} ⁽⁴⁾	V _{DD} supply current at shutdown mode	SD=GND		650	900		
I _{PBS}	Operating V _{BS} supply current	f _{IN} =20kHz,rms value		400	700	μΑ	
I _{PDD}	Operating V _{DD} supply current	f_{IN} =20kHz,rms value, R_{DT} =0 Ω		950	1200		
I _{LK}	Offset supply leakage current	V _B =V _S =600V			10		
POWER S	SUPPLY SECTION		•				
V _{DDUV+} V _{BSUV+}	V _{DD} and V _{BS} supply under-voltage positive going threshold		10.7	11.6	12.5		
V _{DDUV-} V _{BSUV-}	V _{DD} and V _{BS} supply under-voltage negative going threshold		10.0	10.8	11.6	V	
V _{DDUVH} V _{BSUVH}	V _{DD} and V _{BS} supply under-voltage lockout hysteresis			0.8			
GATE DR	IVER OUTPUT SECTION						
V _{OH}	High-level output voltage, V _{BIAS} -V _O	I _O =20mA			1.0	V	
V _{OL}	Low-level output voltage, V _O				0.6	V	
I _{O+}	Output high short-circuit pulse current	V _O =0V, V _{IN} =5V with PW<10μs	250	350		mA	
I _{O-}	Output low short-circuit pulsed current	V _O =15V, V _{IN} =0V with PW<10μs	500	650		mA	
V _S	Allowable negative V _S pin voltage for IN signal propagation to HO			-9.8	-7.0	٧	
LOGIC IN	PUT SECTION (INPUT AND SHUTDOWN)	ı				
V _{IH}	Logic "1" input voltage		2.9			V	
V _{IL}	Logic "0" input voltage				1.2	V	
I _{IN+}	Logic "1" input bias current	V _{IN} =5V		50	100	μΑ	
I _{IN-}	Logic "0" input bias current	V _{IN} =0V			2.0	μΑ	
SD+	Shutdown "1" input voltage				1.2	V	
SD-	Shutdown "0" input voltage		2.9			V	
R _{PD}	Input pull-down resistance			100		ΚΩ	

Note:

4. This parameter, although guaranteed, is not 100% tested in production.

Dynamic Electrical Characteristics


 V_{BIAS} (V_{DD} , V_{BS}) = 15.0V, V_{S} = GND, C_{L} =1000pF, R_{DT} = GND, and T_{A} = 25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-on propagation delay	V _S =0V		500	670	
t _{OFF}	Turn-off propagation delay	V _S =0V		170	250	
t _R	Turn-on rise time			50	100	
t _F	Turn-off fall time			30	80	
t _{SD} ⁽⁵⁾	Shutdown propagation delay			100	180	nsec
DT1,	Dead-time LO OFF to HO ON and HO	R_{DT} = 0Ω	250	330	420	
DT2	OFF to LO ON	R _{DT} = 200KΩ	1.20	1.68	2.30	
DMT D	Donad time metablics	R_{DT} =0 Ω		0	60	
DIVIT	Dead-time matching	R _{DT} =200KΩ		0	150	

Note:

5. This parameter, although guaranteed, is not 100% tested in production.

Typical Characteristics

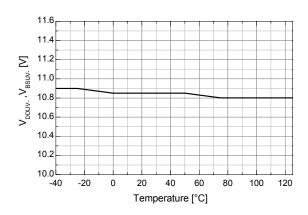
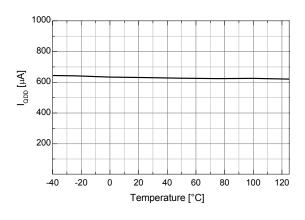



Figure 5. V_{DD}/V_{DD} UVLO (+) vs. Temperature

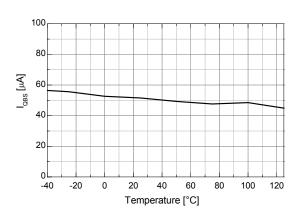
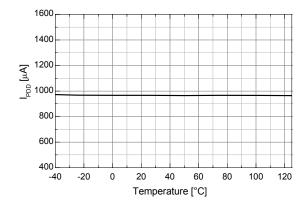



Figure 7. $V_{\rm DD}$ Quiescent Current vs. Temperature

Figure 8. V_{BS} Quiescent Current vs. Temperature

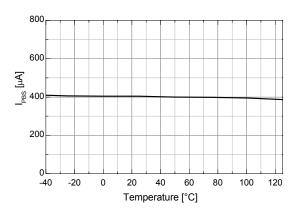
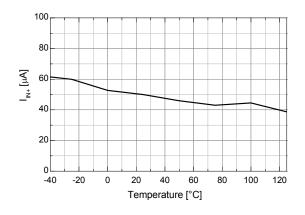



Figure 9. V_{DD} Operating Current vs. Temperature

Figure 10. V_{BS} Operating Current vs. Temperature

Typical Characteristics (Continued)

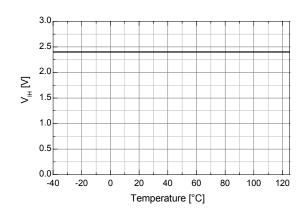
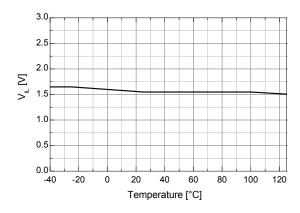



Figure 11. Logic Input Current vs. Temperature

Figure 12. Logic Input High Voltage vs. Temperature

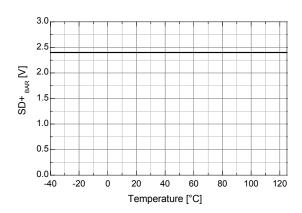
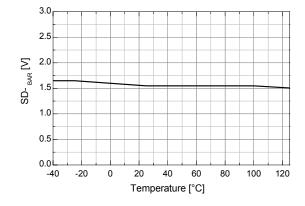



Figure 13. Logic Input Low Voltage vs. Temperature

Figure 14. SD Positive Threshold vs. Temperature

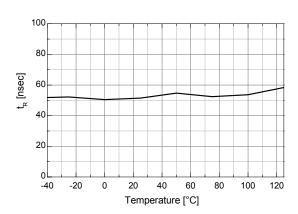



Figure 15. SD Negative Threshold vs. Temperature

Figure 16. Rising Time vs. Temperature

Typical Characteristics (Continued)

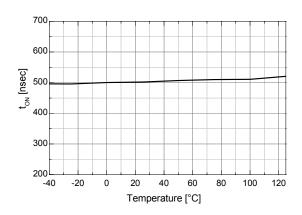
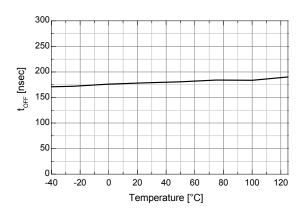



Figure 17. Falling Time vs. Temperature

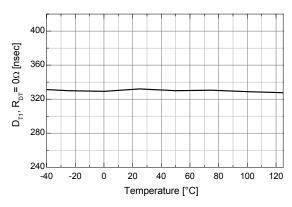
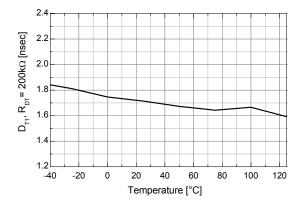



Figure 19. Turn-off Falling Time vs. Temperature

Figure 20. Dead-Time (R_{DT} =0k Ω) vs. Temperature

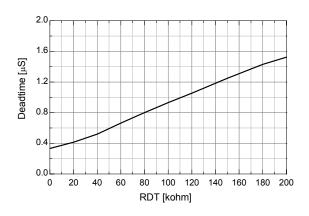


Figure 21. Dead-Time (RDT=200k Ω) vs. Temperature

Figure 22. $R_{\rm DT}$ vs. Dead-Time

Typical Characteristics (Continued)

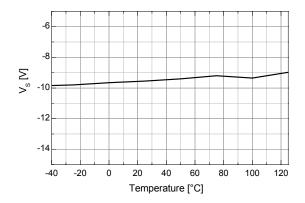


Figure 23. Allowable Negative $\rm V_S$ Voltage for Signal Propagation to High Side vs. Temperature

Switching Time Definitions

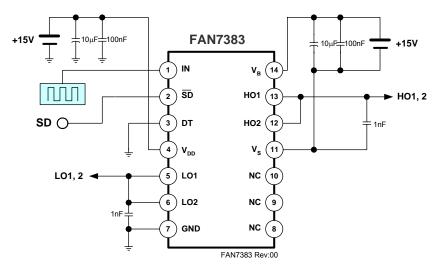


Figure 24. Switching Time Test Circuit

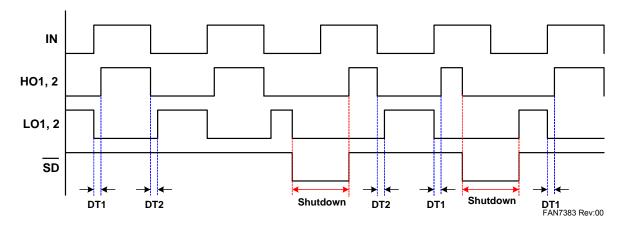


Figure 25. Input / Output Waveforms

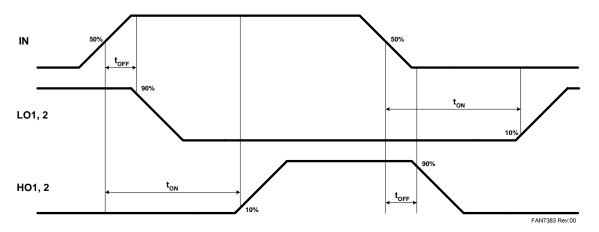


Figure 26. Switching Time Waveform Definitions

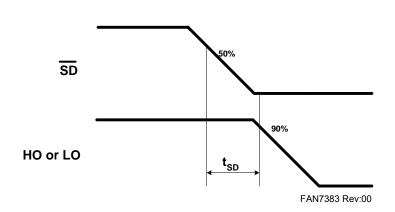


Figure 27. Shutdown Waveform Definition

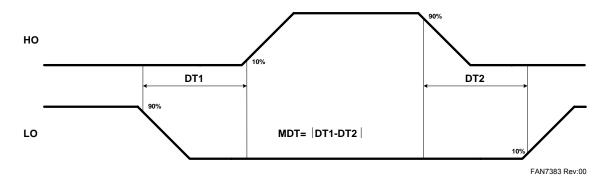


Figure 28. Dead-Time Waveform Definition

Typical Application Information

1. Normal Operating Consideration

The FAN7383 is a single PWM input half-bridge gatedrive IC with programmable dead-time and shutdown function.

The dead-time is set with a resistor(R_{DT}) at the DT pin. The wide dead-time programming range provides the flexibility to optimize drive signal timing for a selection of switching devices (MOSFET or IGBT) and applications.

The turn-on time delay circuitry (Dead-Time) accommodates resistor values from 0Ω to $200k\Omega$ with a dead-time proportional to the R_{DT} resistance.

Grounding the DT pin programs the FAN7383 to drive both outputs with minimum dead time.

If the SD pin voltage decreases below 1.2V in normal operation, the IC enters the shutdown mode.

2. Under Voltage Lockout (UVLO)

The FAN7383 has an under-voltage lockout (UVLO) protection circuitry for high and low side channels to prevent malfunction when V_{DD} or V_{BS} is lower than the specified threshold voltage. The UVLO circuitry monitors the supply voltage (V_{DD}) and bootstrap capacitor voltage (V_{RS}) indepently.

3. Layout Consideration

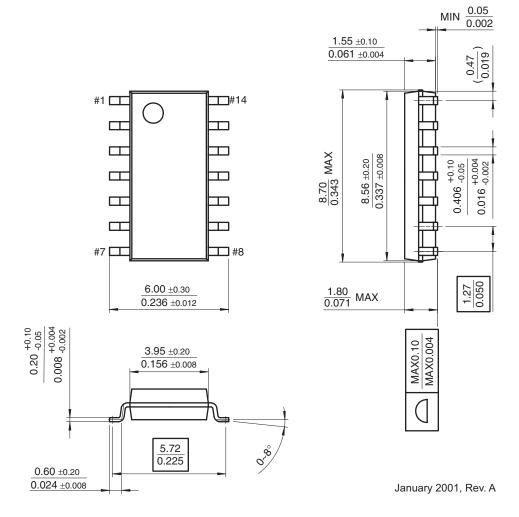
For optimum performance of high- and low-side gate drivers, considerations must be taken during printed circuit board (PCB) layout.

3.1 Supply Capacitors

If the output stages are able to quickly turn on the switching device with high value of current, the supply capacitors must be placed as close as possible to the device pins (V_{DD} and GND for the ground-tied supply, V_{B} and V_{S} for the floating supply) to minimize parasitic inductance and resistance.

3.2 Gate Drive Loop

Current loops behave like an antenna, able to receive and transmit noise. To reduce the noise coupling/emission and improve the power switch turn-on and off performances, gate drive loops must be reduced as much as possible.


3.3 Ground Plane

Ground plane must not be placed under or nearby the high-voltage floating side to minimize noise coupling.

Package Dimensions

14-SOP

Dimensions are in millimeters unless otherwise noted.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	GlobalOptoisolator™	OCXPro™	μSerDes™	TinyBuck™
ActiveArray™	GTO™ .	OPTOLOGIC®	SILENT SWITCHER®	TinyLogic [®]
Bottomless™	HiSeC™	OPTOPLANAR™	SMART START™	TINYOPTO™
Build it Now™	I^2C^{TM}	PACMAN™	SPM™	TinyPower™
CoolFET™	i-Lo™	POP™	Stealth™	TinyPWM™
$CROSSVOLT^{TM}$	ImpliedDisconnect™	Power247™	SuperFET™	TruTranslation™
DOME™	IntelliMAX™	PowerEdge™	SuperSOT™-3	UHC™
EcoSPARK™	ISOPLANAR™	PowerSaver™	SuperSOT™-6	UltraFET [®]
E ² CMOS™	LittleFET™	PowerTrench®	SuperSOT™-8	UniFET™
EnSigna™	MICROCOUPLER™	QFET [®]	SyncFET™	VCX^{TM}
FACT™	MicroFET™	QS™	TCM™	Wire™
FACT Quiet Series™	MicroPak™	QT Optoelectronics™	TinyBoost™	
FAST [®]	MICROWIRE™	Quiet Series™		
FASTr™	MSX™	RapidConfigure™	Across the board. Arour	nd the world.™
FPS™	MSXPro™	RapidConnect™	Programmable Active D	roop™

ScalarPump™

DISCLAIMER

FRFET™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

 OCX^{TM}

A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The Power Franchise®

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I20