FAIRCHILD

SEMICロNDUCTロR＊

FAN7602B
 Green Current－Mode PWM Controller

Features

■ Green Current－Mode PWM Control
－Fixed 65 kHz Operation
－Internal High－Voltage Start－up Switch
－Burst－Mode Operation
－Line Voltage Feedforward to Limit Maximum Power
－Line Under－Voltage Protection
－Latch Protection \＆Internal Soft－Start（10ms）Function
－Overload Protection
－Over－Voltage Protection
■ Low Operation Current： 1 mA Typical
－8－pin DIP／SOP

Applications

－Adapter
－LCD Monitor Power
－Auxiliary Power Supply

Related Application Notes

－AN6014－Green Current Mode PWM Controller FAN7602

Description

The FAN7602B is a green current－mode PWM controller． It is specially designed for off－line adapter applications； DVDP，VCR，LCD monitor applications；and auxiliary power supplies．
The internal high－voltage start－up switch and the burst－ mode operation reduce the power loss in standby mode． As a result，it is possible to supply 0.5 W load，limiting the input power under 1W when the input line voltage is $265 \mathrm{~V}_{\mathrm{Ac}}$ ．On no－load condition，input power is under 0.3 W ．
The maximum power can be limited constantly，regard－ less of the line voltage change，using the power limit function．
The switching frequency is internally fixed at 65 kHz ．
The FAN7602B includes various protections for the sys－ tem reliability and the internal soft－start prevents the out－ put voltage over－shoot at start－up．

Ordering Information

Part Number	Operating Temp． Range	Pb－Free	Package	Packing Method	Marking Code
FAN7602BN	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Yes	8－DIP	Rail	FAN7602B
FAN7602BM			8－SOP	Rail	FAN7602B
FAN7602BMX				Tape \＆Reel	FAN7602B

Typical Application Diagram

Figure 1. Typical Flyback Application
Internal Block Diagram

Figure 2. Functional Block Diagram of FAN7602B

Pin Assignments

Figure 3. Pin Configuration (Top View)

Pin Definitions

Pin \#	Name	Description
1	LUVP	Line Under-Voltage Protection Pin. This pin is used to protect the set when the input voltage is lower than the rated input voltage range.
2	Latch/Plimit	Latch Protection and Power Limit Pin. When the pin voltage exceeds 4 V , the latch protection works; the latch protection is reset when the V_{CC} voltage is lower than 5 V . For the power limit function, the OCP level decreases as the pin voltage increases.
3	CS/FB	Current Sense and Feedback Pin. This pin is used to sense the MOSFET current for the current mode PWM and OCP. The output voltage feedback information and the current sense information are added using an external RC filter.
4	GND	Ground Pin. This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated.
5	OUT	Gate Drive Output Pin. This pin is an output pin to drive an external MOSFET. The peak sourcing current is 450 mA and the peak sinking current is 600 mA . For proper operation, the stray inductance in the gate driving path must be minimized.
6	V_{cc}	Supply Voltage Pin. IC operating current and MOSFET driving current are supplied using this pin.
7	NC	No Connection.
8	$\mathrm{V}_{\text {STR }}$	Start-up Pin. This pin is used to supply IC operating current during IC start-up. After start-up, the internal JFET is turned off to reduce power loss.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	20	V
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	Peak Drive Output Current	$+450 /-600$	mA
$\mathrm{~V}_{\mathrm{CS} / \mathrm{FB}}$	CS/FB Input Voltage	-0.3 to 20	V
$\mathrm{~V}_{\text {LUVP }}$	LUVP Input Voltage	-0.3 to 10	V
$\mathrm{~V}_{\text {Latch }}$	Latch/Plimit Input Voltage	-0.3 to 10	V
$\mathrm{~V}_{\text {STR }}$	V $_{\text {STR }}$ Input Voltage	600	V
$\mathrm{~T}_{\mathrm{J}}$	Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature Range	-25 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation	1.2	W
$\mathrm{~V}_{\text {ESD_HBM }}$	ESD Capability, Human Body Model	2.0	kV
$\mathrm{V}_{\text {ESD_MM }}$	ESD Capability, Machine Model	200	V
$\mathrm{~V}_{\text {ESD_CDM }}$	ESD Capability, Charged Device Model	500	V

Thermal Impedance

Symbol	Parameter		Value	Unit
$\theta_{\text {JA }}$	Thermal Resistance, Junction-to-Ambient	8-DIP	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.

Electrical Characteristics

$V_{C C}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$, unless otherwise specified

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
START UP SECTION						
$I_{\text {STR }}$	$V_{\text {STR }}$ Start-up Current	$\mathrm{V}_{\text {STR }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.7	1.0	1.4	mA
UNDER VOLTAGE LOCK OUT SECTION						
$\mathrm{V}_{\text {th }}$ (start)	Start Threshold Voltage	V_{CC} increasing	11	12	13	V
$\mathrm{V}_{\text {th }}$ (stop)	Stop Threshold Voltage	V_{CC} decreasing	7	8	9	V
HY(uvlo)	UVLO Hysteresis		3.6	4.0	4.4	V
SUPPLY CURRENT SECTION						
$I_{\text {STR }}$	Start-up Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		250	320	$\mu \mathrm{A}$
I_{CC}	Operating Supply Current	Output no switching		1.0	1.5	mA
SOFT-START SECTION						
${ }^{\text {tss }}$	Soft-Start Time ${ }^{(1)}$		5	10	15	ms
PWM SECTION						
$\mathrm{f}_{\text {OSC }}$	Operating Frequency	$\mathrm{V}_{\text {CS/FB }}=0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	59	65	73	kHz
$\mathrm{V}_{\text {CS/FB1 }}$	CS/FB Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.9	1.0	1.1	V
t_{D}	Propagation Delay to Output ${ }^{(1)}$			100	150	ns
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Cycle		70	75	80	\%
$\mathrm{D}_{\text {MIN }}$	Minimum Duty Cycle				0	\%
BURST MODE SECTION						
$\mathrm{V}_{\text {CS/FB2 }}$	Burst On Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.84	0.95	1.06	V
$\mathrm{V}_{\text {CS/FB3 }}$	Burst Off Threshold Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.77	0.88	0.99	V
POWER LIMIT SECTION						
K ${ }_{\text {Plimit }}$	Offset Gain	$\mathrm{V}_{\text {Latch/Plimit }}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12	0.16	0.20	
OUTPUT SECTION						
V_{OH}	Output Voltage High	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {source }}=100 \mathrm{~mA}$	11.5	12.0	14.0	V
V_{OL}	Output Voltage Low	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {sink }}=100 \mathrm{~mA}$		1.0	2.5	V
t_{R}	Rising Time ${ }^{(1)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		45	150	ns
t_{F}	Falling Time ${ }^{(1)}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$		35	150	ns
PROTECTION SECTION						
$\mathrm{V}_{\text {Latch }}$	Latch Voltage		3.6	4.0	4.4	V
tolp	Overload Protection Time ${ }^{(1)}$		20	22	24	ms
$\mathrm{t}_{\text {OLP_ST }}$	Overload Protection Time at Startup		30	37	44	ms
$\mathrm{V}_{\text {OLP }}$	Overload Protection Level			0	0.1	V
$V_{\text {LUVPoff }}$	Line Under-Voltage Protection On to Off	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.9	2.0	2.1	V
V LUVPon	Line Under-Voltage Protection Off to On	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.4	1.5	1.6	V
$\mathrm{V}_{\text {OVP }}$	Over-Voltage Protection	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	18	19	20	V

Note:

1. These parameters, although guaranteed by design, are not tested in production.

Typical Performance Characteristics

Figure 4. Start Threshold Voltage vs. Temp.

Figure 6. UVLO Hysteresis vs. Temp.

Figure 8. Operating Supply Current vs. Temp.

Figure 5. Stop Threshold Voltage vs. Temp.

Figure 7. Start-up Supply Current vs. Temp.

Figure 9. $\mathrm{V}_{\text {STR }}$ Star-up Current vs. Temp.

Typical Performance Characteristics (Continued)

Figure 10. Burst On/Off Voltage vs. Temp.

Figure 12. Offset Gain vs. Temp.

Figure 14. OVP Voltage vs. Temp.

Figure 11. Operating Frequency vs. Temp.

Figure 13. Maximum Duty Cycle vs. Temp.

Figure 15. Latch Voltage vs. Temp.

Typical Performance Characteristics (Continued)

Figure 16. LUVP On-to-Off Voltage vs. Temp.

Figure 18. CS/FB Threshold Voltage vs. Temp.

Applications Information

1. Start-up Circuit and Soft Start Block

The FAN7602B contains a start-up switch to reduce the power loss of the external start-up circuit of the conventional PWM converters. The internal start-up circuit charges the V_{CC} capacitor with 0.9 mA current source if the AC line is connected. The start-up switch is turned off 15 ms after IC starts up, as shown in Figure 19. The softstart function starts when the V_{CC} voltage reaches the start threshold voltage of 12 V and ends when the internal soft-start voltage reaches 1 V . The internal start-up circuit starts charging the V_{CC} capacitor again if the Vcc voltage is lowered to the minimum operating voltage, 8 V . The UVLO block shuts down the output drive circuit and some blocks to reduce the IC operating current and the internal soft-start voltage drops to zero. If the V_{CC} voltage reaches the start threshold voltage, the IC starts switching again and the soft-start block works as well.
During the soft-start, the pulse-width modulated (PWM) comparator compares the CS/FB pin voltage with the soft-start voltage. The soft-start voltage starts from 0.5 V and the soft-start ends when it reaches 1 V and the softstart time is 10 ms . The start-up switch is turned off when the soft-start voltage reaches 1.5 V .

Figure 19. Start-up Current and \mathbf{V}_{Cc} Voltage

2. Oscillator Block

The oscillator frequency is set internally. The switching frequency is 65 kHz .

3. Current Sense and Feedback Block

The FAN7602B performs the current sensing for the cur-rent-mode PWM and the output voltage feedback with only one pin, pin3. To achieve the two functions with one pin, an internal leading edge blanking (LEB) circuit to filter the current-sense noise is not included because the external RC filter is necessary to add the output voltage feedback information and the current-sense information. Figure 20 shows the current-sense and feedback circuits. R_{S} is the current-sense resistor to sense the switch current. The current-sense information is filtered by an $R C$ filter composed of R_{F} and C_{F}. According to the output voltage feedback information, I_{FB} charges or stops
charging C_{F} to adjust the offset voltage. If I_{FB} is zero, C_{F} is discharged through R_{F} and R_{S} to lower offset voltage.
Figure 21 shows typical voltage waveforms of the CS/FB pin. The current-sense waveform is added to the offset voltage, as shown in Figure 21. The CS/FB pin voltage is compared with PWM + that is 1 V - Plimit offset. If the CS/ FB voltage meets PWM+, the output drive is shut off. If the feedback offset voltage is low, the switch on time is increased. If the feedback offset voltage is high, the switch on time is decreased. In this way, the duty cycle is controlled according to the output load condition. In general, the maximum output power increases as the input voltage increases because the current slope during switch on-time increases.

To limit the output power of the converter constantly, a power-limit function is included. Sensing the converter input voltage through the Latch/Plimit pin, the Plimit offset voltage is subtracted from 1V. As shown in Figure 21, the Plimit offset voltage is subtracted from 1 V and the switch on-time decreases as the Plimit offset voltage increases. If the converter input voltage increases, the switch on-time decreases, keeping the output power constant. The offset voltage is proportional to the Latch/ Plimit pin voltage and the gain is 0.16 ; if the Latch/Plimit voltage is 1 V , the offset voltage is 0.16 V .

Figure 20. Current-Sense and Feedback Circuits

Figure 21. CS/FB Pin Voltage Waveforms

4. Burst-Mode Block

The FAN7602B contains the burst-mode block to reduce the power loss at a light load and no load. A hysteresis comparator senses the offset voltage of the Burst+ for the burst mode, as shown in Figure 22. The Burst+ is the sum of the CS/FB voltage and Plimit offset voltage. The FAN7602B enters burst mode when the offset voltage of the Burst+ is higher than 0.95 V and exits the burst mode when the offset voltage is lower than 0.88 V . The offset voltage is sensed during the switch off time.

Figure 22. Burst-Mode Block

5. Protection Block

The FAN7602B contains several protection functions to improve system reliability.

5.1 Overload Protection (OLP)

The FAN7602B contains the overload protection function. If the output load is higher than the rated output current, the output voltage drops and the feedback error amplifier is saturated. The offset of the CS/FB voltage representing the feedback information is almost zero. As shown in Figure 23, the CS/FB voltage is compared with 50 mV reference when the internal clock signal is high and, if the voltage is lower than 50 mV , the OLP timer starts counting. If the OLP condition persists for 22 ms , the timer generates the OLP signal. This protection is reset by the UVLO. The OLP block is enabled after the soft-start finishes.

Figure 23. Overload Protection Circuit

5.2 Line Under-Voltage Protection

If the input voltage of the converter is lower than the minimum operating voltage, the converter input current increases too much, causing component failure. Therefore, if the input voltage is low, the converter should be protected. In the FAN7602B, the LUVP circuit senses the input voltage using the LUVP pin and, if this voltage is lower than 2 V , the LUVP signal is generated. The comparator has 0.5 V hysteresis. If the LUVP signal is generated, the output drive block is shut down, the output
voltage feedback loop is saturated, and the OLP initiates if the LUVP condition persists more than 22 ms .

Figure 24. Line UVP Circuit

5.3 Latch Protection

The latch protection is provided to protect the system against abnormal conditions using the Latch/Plimit pin. The Latch/Plimit pin can be used for the output overvoltage protection and/or other protections. If the Latch/ Plimit pin voltage is made higher than 4 V by an external circuit, the IC is shut down. The latch protection is reset when the $\mathrm{V}_{C C}$ voltage is lower than 5 V .

5.4 Over-Voltage Protection (OVP)

If the V_{CC} voltage reaches 19 V , the IC shuts down and the OVP protection is reset when the V_{CC} voltage is lower than 5 V .

6. Output Drive Block

The FAN7602B contains a single totem-pole output stage to drive a power MOSFET. The drive output is capable of up to 450 mA sourcing current and 600 mA sinking current with typical rise and fall time of 45 ns and 35 ns , respectively, with a 1 nF load.

Typical Application Circuit

Application	Output Power	Input Voltage	Output Voltage
Adapter	48 W	Universal input $\left(85 \sim 265 \mathrm{~V}_{\mathrm{AC}}\right)$	12 V

Features

- Low stand-by power ($<0.3 \mathrm{~W}$ at $265 \mathrm{~V}_{\mathrm{AC}}$)
- Constant output power control

Key Design Notes

- All the IC-related components should be placed close to IC, especially C107 and C110.

■ If R106 value is too low, there can be subharmonic oscillation.

- R109 should be designed carefully to make V_{CC} voltage higher than 8 V when the input voltage is $265 \mathrm{~V}_{\mathrm{AC}}$ at no load.
- R110 should be designed carefully to make V_{CC} voltage lower than OVP when the input voltage is $85 \mathrm{~V}_{\mathrm{AC}}$ at full load.
- R103 should be designed to keep the MOSFET $V_{D S}$ voltage lower than maximum rating when the output is shorted.

1. Schematic

Figure 25. Schematic

2. Inductor Schematic Diagram

Figure 26. Inductor Schematic Diagram
3. Winding Specification

No	Pin ($\mathrm{s} \rightarrow \mathrm{f}$)	Wire	Turns	Winding Method
Np1	$3 \rightarrow 2$	$0.3^{\text {¢ }} \times 2$	31	Solenoid Winding
Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}, 2$ Layers				
Shield	5	Copper Tape	0.9	Not Shorted
Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}$, 2 Layers				
Ns	$12 \rightarrow 9$	$0.65{ }^{\dagger} \times 3$	10	Solenoid Winding
Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}$, 2 Layers				
Shield	5	Copper Tape	0.9	Not Shorted
Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}$, 2 Layers				
$\mathrm{N}_{\mathrm{Vcc}}$	$6 \rightarrow 5$	$0.2^{\text {¢ }} \times 1$	10	Solenoid Winding
Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}$, 2 Layers				
Np2	$2 \rightarrow 1$	$0.3^{\text {¢ }} \times 2$	31	Solenoid Winding
Outer Insulation: Polyester Tape $\mathrm{t}=0.03 \mathrm{~mm}, 2$ Layers				

4. Electrical Characteristics

	Pin	Specification	Remarks
Inductance	$1-3$	$607 \mu \mathrm{H}$	$100 \mathrm{kHz}, 1 \mathrm{~V}$
Inductance	$1-3$	$15 \mu \mathrm{H}$	$9-12$ shorted

5. Core \& Bobbin

- Core: EER2828
- Bobbin: EER2828
- $\mathrm{Ae}\left(\mathrm{mm}^{2}\right)$: 82.1

6. Demo Circuit Part List

Part	Value	Note	Part	Value	Note
Fuse			Capacitor		
FUSE	1A/250V		C101	220nF/275V	Box Capacitor
NTC			C102	150nF/275V	Box Capacitor
RT101	5D-9		C103, C104	102/1kV	Ceramic
Resistor			C105	150 $\mathrm{F} / 400 \mathrm{~V}$	Electrolytic
$\begin{aligned} & \text { R102, } \\ & \text { R112 } \end{aligned}$	$10 \mathrm{M} \Omega$	1/4W	C106	103/630V	Film
R103	$56 \mathrm{k} \Omega$	1/2W	C107	271	Ceramic
R104	150Ω	1/4W	C108	103	Ceramic
R105	$1 \mathrm{k} \Omega$	1/4W	C109	$22 \mu \mathrm{~F} / 25 \mathrm{~V}$	Electrolytic
R106	0.5Ω	1/2W	C110	473	Ceramic
R107	$56 \mathrm{k} \Omega$	1/4W	C201, C202	1000 $\mu \mathrm{F} / 25 \mathrm{~V}$	Electrolytic
R108	$10 \mathrm{k} \Omega$	1/4W	C203	102	Ceramic
R109	0Ω	1/4W	C204	102	Ceramic
R110	$1 \mathrm{k} \Omega$	1/4W	C222	222/1kV	Ceramic
R111	$6 \mathrm{k} \Omega$	1/4W	MOSFET		
R113	$180 \mathrm{k} \Omega$	1/4W	Q101	FQPF8N60C	Fairchild Semiconductor
R114	$50 \mathrm{k} \Omega$	1/4W	Diode		
R201	$1.5 \mathrm{k} \Omega$	1/4W	D101, D102	UF4007	Fairchild Semiconductor
R202	$1.2 \mathrm{k} \Omega$	1/4W	D103	1N5819	Fairchild Semiconductor
R203	$20 \mathrm{k} \Omega$	1/4W	D202, D204	FYPF2010DN	Fairchild Semiconductor
R204	$27 \mathrm{k} \Omega$	1/4W	ZD101, ZD201	1N4744	Fairchild Semiconductor
R205	$7 \mathrm{k} \Omega$	1/4W	BD101	KBP06	FairchildSemiconductor
R206	10Ω	1/2W	TNR		
R207	$10 \mathrm{k} \Omega$	1/4W	R101	471	470V
IC			Filter		
IC101	FAN7602B	Fairchild Semiconductor	LF101	23mH	0.8A
IC201	KA431	Fairchild Semiconductor	L201	$10 \mu \mathrm{H}$	4.2A
OP1, OP2	H11A817B	Fairchild Semiconductor			

7. PCB Layout

Figure 27. PCB Layout Recommendations for FAN7602B

8. Performance Data

	$\mathbf{8 5 V}_{\text {AC }}$	$\mathbf{1 1 0 V}_{\mathbf{A C}}$	$\mathbf{2 2 0 V}_{\mathbf{A C}}$	$\mathbf{2 6 5 V}_{\mathbf{A C}}$
Input Power at No Load	105.4 mW	119.8 mW	184.7 mW	205.5 mW
Input Power at 0.5W Load	739.4 mW	761.4 mW	825.4 mW	872.2 mW
OLP Point	4.42 A	4.66 A	4.60 A	4.40 A

Mechanical Dimensions

8-DIP
Dimensions are in inches (millimeters) unless otherwise noted.

Figure 28. 8-Lead Small Dual In-line Package (DIP)

Mechanical Dimensions (Continued)

8-SOP

Dimensions are in millimeters unless otherwise noted.

Figure 29. 8-Lead Small Outline Package (SOP)

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	$\mathrm{HiSeC}^{\text {cm }}$	Programmable Active Droop ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	$i-L{ }^{\text {om }}$	QFET ${ }^{\text {® }}$	TINYOPTO ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Build it Now ${ }^{\text {m }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {m }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	ScalarPump ${ }^{\text {™ }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME'M	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {TM }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProtm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	
$\mathrm{FACT}^{\text {® }}$	PACMAN ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {™ }}$-8	
FAST $^{\text {® }}$	POP'M	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM ${ }^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSavertm	TinyBoost ${ }^{\text {TM }}$	
GTO'M	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

