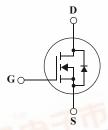


January 2007

SuperFET

FCP4N60 600V N-Channel MOSFET

Features


- 650V @T_J = 150°C
- Typ. $R_{DS(on)} = 1.0\Omega$
- Ultra low gate charge (typ. Q_g = 12.8nC)
- Low effective output capacitance (typ. C_{oss}.eff = 32pF)
- 100% avalanche tested

Description

SuperFETTM is, Farichild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

Absolute Maximum Ratings

Symbol	Parameter	V// L	FCP4N60	Unit		
V _{DSS}	Drain-Source Voltage		600	V		
I _D	Drain Current - Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		3.9 2.5	A A		
I _{DM}	Drain Current - Pulsed	(Note 1)	11.7	А		
V _{GSS}	Gate-Source voltage		± 30	V		
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	128	mJ		
I _{AR}	Avalanche Current	(Note 1)	3.9	A		
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ		
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns		
P_{D}	Power Dissipation (T _C = 25°C) - Derate above 25°C	E//0	50 0.4	W W/°C		
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C		
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C		

Thermal Characteristics

Symbol	Parameter	FCP4N60	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2.5	°C/W
POJA	Thermal Resistance, Junction-to-Ambient	83	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCP4N60	FCP4N60	TO-220			50

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Off Charac	Off Characteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250\mu A$, $T_J = 25^{\circ}C$	600			V	
		$V_{GS} = 0V$, $I_D = 250\mu A$, $T_J = 150^{\circ} C$		650		V	
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.6		V/°C	
BV _{DS}	Drain-Source Avalanche Breakdown Voltage	V _{GS} = 0V, I _D = 3.9A		700		٧	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600V, V _{GS} = 0V V _{DS} = 480V, T _C = 125°C			1 10	μ Α μ Α	
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30V, V _{DS} = 0V	-		100	nA	
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30V, V _{DS} = 0V	-		-100	nA	
On Charac	On Characteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3.0		5.0	V	
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 2.0A		1.0	1.2	Ω	
g _{FS}	Forward Transconductance	V _{DS} = 40V, I _D = 2.0A (Note 4)	-	3.2		S	
Dynamic C	haracteristics				•	•	
C _{iss}	Input Capacitance	V _{DS} = 25V, V _{GS} = 0V,		415	540	pF	
C _{oss}	Output Capacitance	f = 1.0MHz	-	210	275	pF	
C _{rss}	Reverse Transfer Capacitance		-	19.5		pF	
C _{oss}	Output Capacitance	V _{DS} = 480V, V _{GS} = 0V, f = 1.0MHz	-	12	16	pF	
C _{oss} eff.	Effective Output Capacitance	V _{DS} = 0V to 400V, V _{GS} = 0V	-	32		pF	
Switching	Characteristics				•		
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300V, I _D = 3.9A		16	45	ns	
t _r	Turn-On Rise Time	$R_G = 25\Omega$	-	45	100	ns	
t _{d(off)}	Turn-Off Delay Time			36	85	ns	
t _f	Turn-Off Fall Time	(Note 4, 5)		30	70	ns	
Q _g	Total Gate Charge	V _{DS} = 480V, I _D = 3.9A		12.8	16.6	nC	
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		2.4		nC	
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		7.1		nC	
Drain-Sour	rce Diode Characteristics and Maximur	n Ratings			•		
I _S	Maximum Continuous Drain-Source Diode Forward Current				3.9	Α	
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-		11.7	Α	
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 3.9A	-	-	1.4	V	
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 3.9A		277		ns	
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s $ (Note 4)		2.07		μС	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} = 1.9A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C
- 3. I_{SD} $\leq 3.9 \text{A}, \text{ di/dt} \leq 200 \text{A/}\mu\text{s}, \text{ V}_{DD} \leq \text{BV}_{DSS}, \text{ Starting T}_{J} = 25^{\circ}\text{C}$
- 4. Pulse Test: Pulse width $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$
- 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

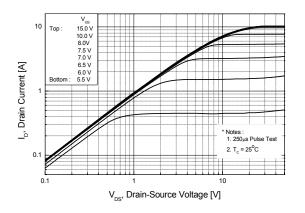


Figure 2. Transfer Characteristics

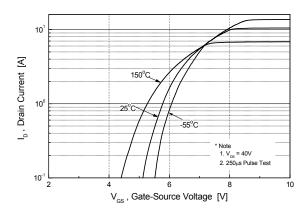


Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

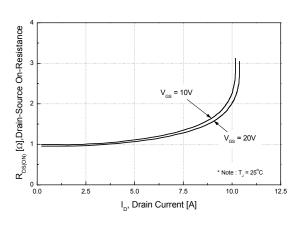


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

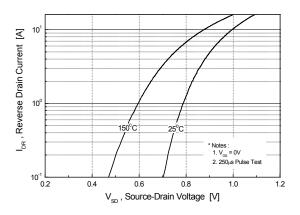


Figure 5. Capacitance Characteristics

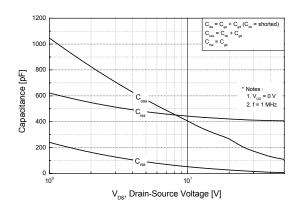
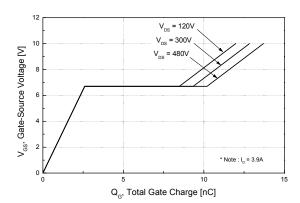



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

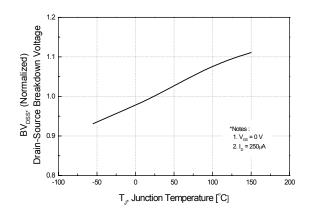


Figure 8. On-Resistance Variation vs. Temperature

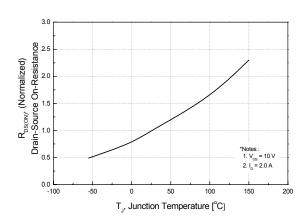


Figure 9. Maximum Safe Operating Area

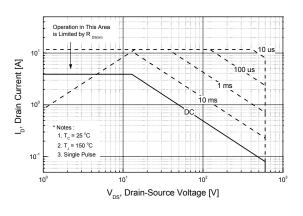
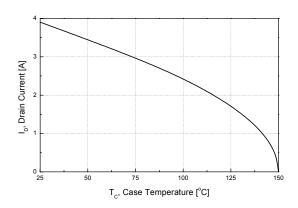
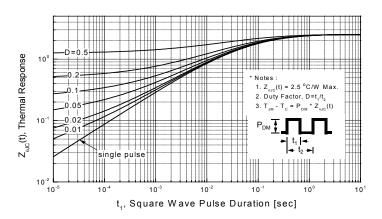
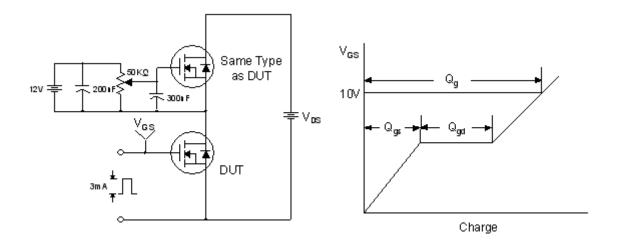
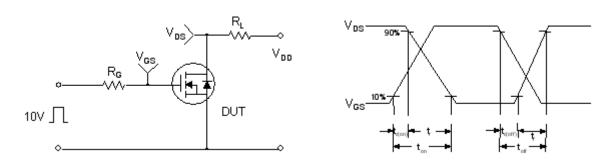
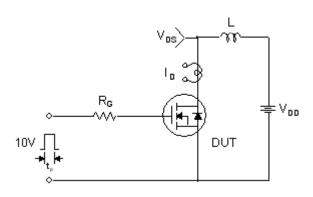
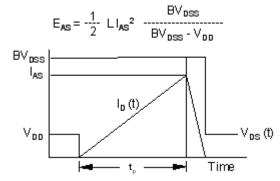


Figure 10. Maximum Drain Current vs. Case Temperature

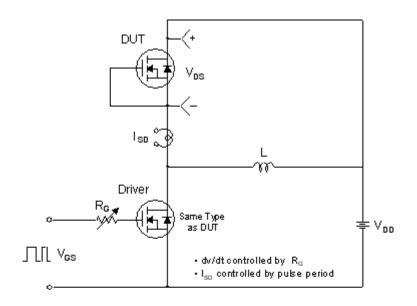




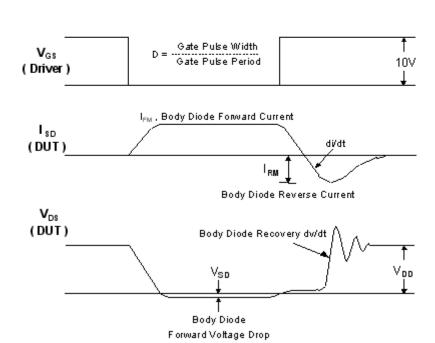

Figure 11-1. Transient Thermal Response Curve

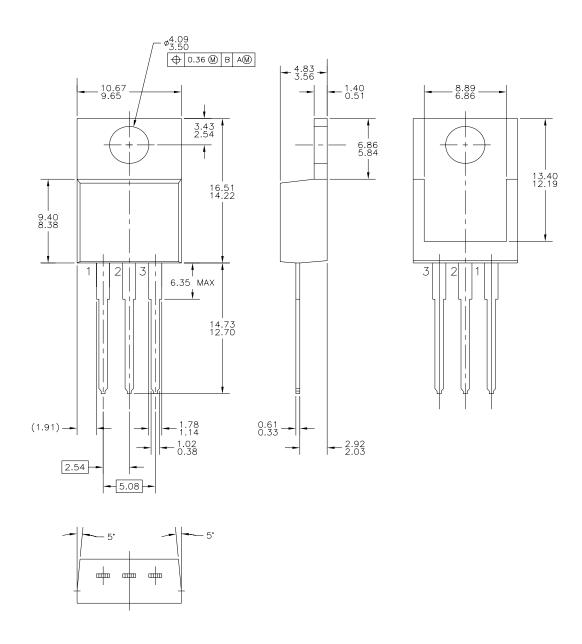

Gate Charge Test Circuit & Waveform



Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms


Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-220

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®]
Across the board. Around the world.™
ActiveArray™
Bottomless™
Build it Now™
CoolFET™
CROSSVOLT™

Current Transfer Logic[™]
DOME[™]
E²CMOS[™]
EcoSPARK[®]
EnSigna[™]

FACT Quiet Series™ FACT®

FAST[®] FASTr™ FPS™

GTO™

FRFET[®] GlobalOptoisolator™ HiSeC™

ImpliedDisconnect™
IntelliMAX™
ISOPLANAR™
MICROCOUPLER™
MicroPak™

MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR®
PACMAN™
POP™

Power220[®]
Power247[®]
PowerEdge[™]
PowerSaver[™]

PowerTrench® Programmable Active Droop™

QFET[®] QS™

QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
ScalarPump™
SMART START™
SDM®

SMART STAR
SPM®
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
TCM™

The Power Franchise®

⊕_™

TinyBoost™ TinyBuck™ TinyLogic®
TINYOPTO™
TinyPower™
TinyWire™
TruTranslation™
µSerDes™
UHC®

UniFET™

VCX™

Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I23