

November 2005

FDB8878 N-Channel PowerTrench[®] MOSFET

FDB8878 N-Channel Logic Level PowerTrench[®] MOSFET 30V, 48A, 14mΩ

General Descriptions

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(ON)}$ and fast switching speed.

Features

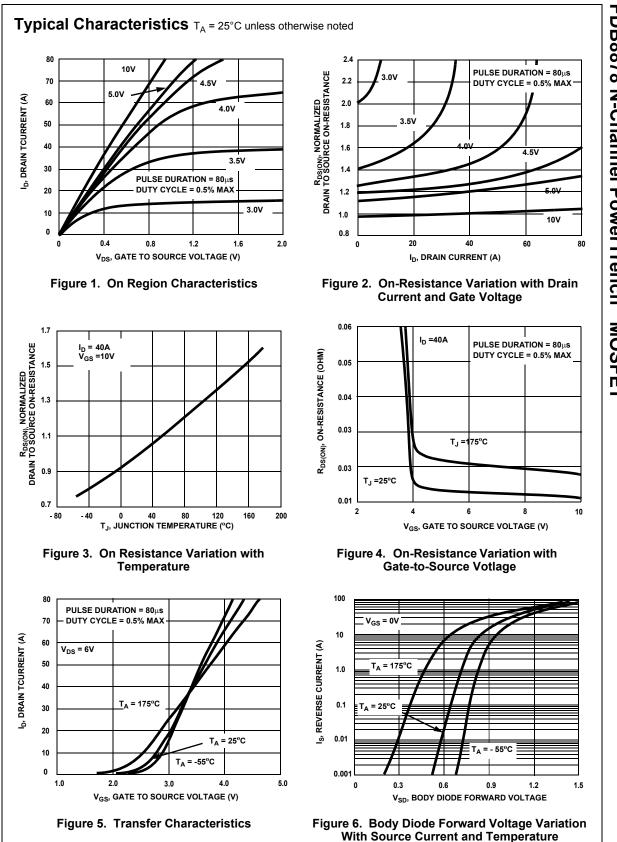
- r_{DS(ON)} = 14mΩ, V_{GS} = 10V, I_D = 40A
- r_{DS(ON)} = 18mΩ, V_{GS} = 4.5V, I_D = 36A
- High performance trench technology for extremely low rDS(ON)
- Low gate charge
- High power and current handling capability
- RoHS Compliant

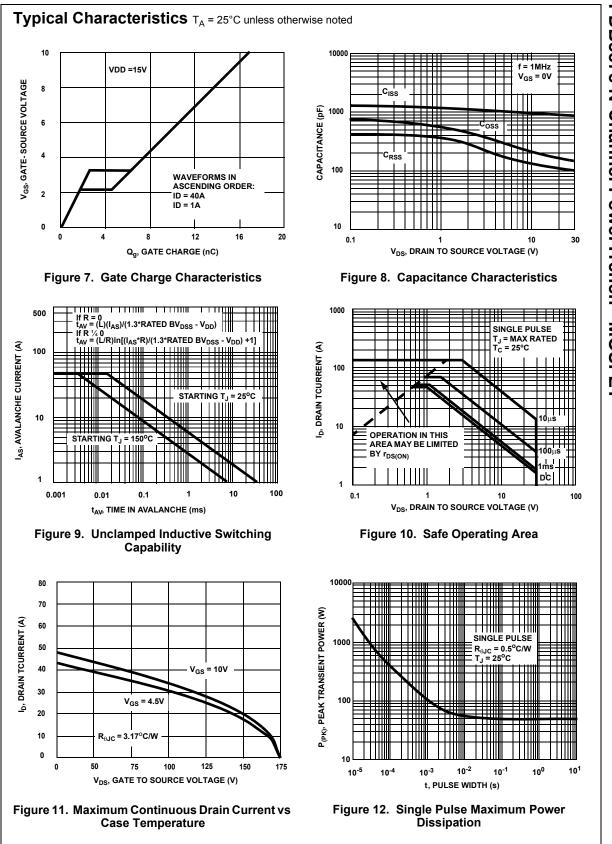
Go

MOSFET Maximum Ratings TA = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		30	V
V _{GS}	Gate to Source Voltage		±20	V
ID	Drain Current			
	Continuous (T _C = 25° C, V _{GS} = 10 V)		48	А
	Continuous (T _C = 25°C, V _{GS} = 4.5V)		42	Α
	Pulsed	(Note 4)	170	A
E _{AS}	Single Dulas Avelanaha Energy (Note 1)	L = 1mH, I _{AS} = 11A	60	mJ
	Single Pulse Avalanche Energy (Note 1)	L = 0.03mH,I _{AS} = 38A	21	
P _D	Power dissipation	61/0 2 -	47.3	W
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C	

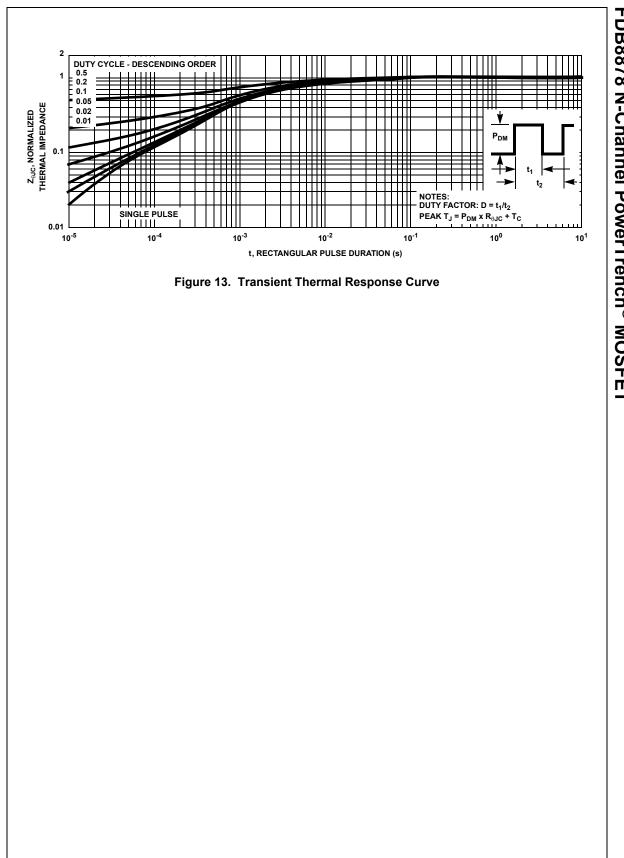
Thermal Characteristics


R _{0JC}	Thermal Resistance, Junction to Case (Note 2)	3.7	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3)	43	°C/W


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8878	FDB8878	TO-263	13"	24mm	800 units

$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ I_{DSS}	Drain to Source Breakdown Voltage					
ΔBV _{DSS} ΔT _J	-					
ΔΒV _{DSS} ΔT _J I _{DSS}		I _D = 250μA, V _{GS} = 0V	30	-	-	V
Δ1 _J I _{DSS}	Breakdown Voltage Temp. Coefficient	I _D = 250μA,		21		mV/ºC
	Breakdown Voltage Temp. Obenibient	Referenced to 25°C		21		
	Zero Gate Voltage Drain Current	$V_{DS} = 24V$	-	-	1	μA
GSS	-	$V_{GS} = 0V$ $T_A = 150^{\circ}C$	-	-	250	
	Gate to Source Leakage Current	V_{GS} = ±20V	-	-	±100	nA
On Charac	teristics					
V _{GS(TH)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1.2	1.7	2.5	V
$\Delta V_{GS(TH)}$	Gate to Source Threshold Voltage	I _D = 250μA,		-5		mV/ºC
ΔTJ	Temperature Coefficient	Referenced to 25°C		-5		11107 C
		I _D = 40A, V _{GS} = 10V	-	12	14	
r _{DS(ON)}	Drain to Source On Resistance	I _D = 36A, V _{GS} = 4.5V	-	15	18	mΩ
D3(0N)		I _D = 40, V _{GS} = 10V, T _A = 175 ^o C	-	19	21	
-	Characteristics			I		1
.00	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V,	-	927	1235	pF
C _{OSS}	Output Capacitance	-f = 1MHz	-	188	250	pF
C _{RSS}	Reverse Transfer Capacitance		-	117	175	pF
R _G	Gate Resistance	f = 1MHz		3.0		Ω
Q _{g(TOT)}	Total Gate Charge at 10V	V_{GS} = 0V to 10V V_{DD} = 15V	-	17.1	23	nC
Q _{g(5)}	Total Gate Charge at 5V	$V_{GS} = 0V$ to 5V $I_D = 40A$	-	9.2	12	nC
Q _{gs}	Gate to Source Gate Charge	I _g = 1.0mA	-	2.6	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		-	1.7	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	3.7	-	nC
Switching	Characteristics (V _{GS} = 10V)					
	Turn-On Time		-	255	383	ns
	Turn-On Delay Time	-	-	11.1		ns
u(011)	Rise Time	V _{DD} = 15V, I _D = 40A	-	244		ns
	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 16\Omega$	-	14.8		ns
α(0)	Fall Time		-	35.3		ns
t _{OFF}	Turn-Off Time		-	50	75	ns
					-	_
Jrain-Sour	rce Diode Characteristics				4.0-	
V _{SD}	Source to Drain Diode Voltage	$I_{SD} = 40A$	-	1.1	1.25	V V
	Reverse Recovery Time	I _{SD} = 3.2A I _{SD} = 40A, dI _{SD} /dt=100A/μs	-	0.85 14.4	1.2 18.8	
t _{rr} Q _{RR}	Reverse Recovered Charge	$I_{SD} = 40A, dI_{SD}/dt = 100A/\mu s$ $I_{SD} = 40A, dI_{SD}/dt = 100A/\mu s$	-	5.1	6.7	ns nC


2

4

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TinyLogic [®]
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics [™]	TINYOPTO™
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TruTranslation™
DOME™	HiSeC™	MSX™	RapidConfigure™	UHC™
EcoSPARK™	I²C™	MSXPro™	RapidConnect™	UltraFET [®]
E ² CMOS™	<i>i-L</i> o™	OCX™	µSerDes™	UniFET™
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	VCX™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER [®]	Wire™
FACT Quiet Serie	S TM	OPTOPLANAR™	SMART START™	
Aarooo the board	. Around the world.™	PACMAN™	SPM™	
The Power France		POP™	Stealth™	
		Power247™	SuperFET™	
Programmable A		PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.