查询FDJ129P_07供应商

捷多邦,专业PCB打样工厂,24小时加急出货

FDJ129P

AIRCHILD

SEMICONDUCTOR

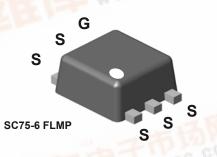
FDJ129P

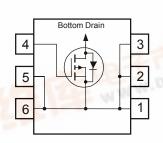
P-Channel -2.5 Vgs Specified PowerTrench[®] MOSFET

General Description

This P-Channel -2.5V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications


- Battery management
- Load switch


Features

- -4.2 A, -20 V. $R_{DS(ON)} = 70 \text{ m}\Omega \textcircled{0} V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 120 \text{ m}\Omega \textcircled{0} V_{GS} = -2.5 \text{ V}$
- Low gate charge
- High performance trench technology for extremely
 low R_{DS(ON)}
- Compact industry standard SC75-6 surface mount
 package
- RoHS Compliant

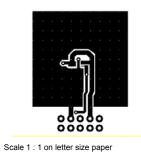
November 2007

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-20	V	
V _{GSS}	Gate-Source Voltage		± 12	V	
I _D	Drain Current – Continuous	(Note 1a)	-4.2	А	
	- Pulsed		-16	040-	
PD	Power Dissipation for Single Operation	(Note 1a)	1.6	W	
T _J , T _{STG}	Operating and Storage Junction Temperatu	re Range	-55 to +150	°C	

Thermal Characteristics

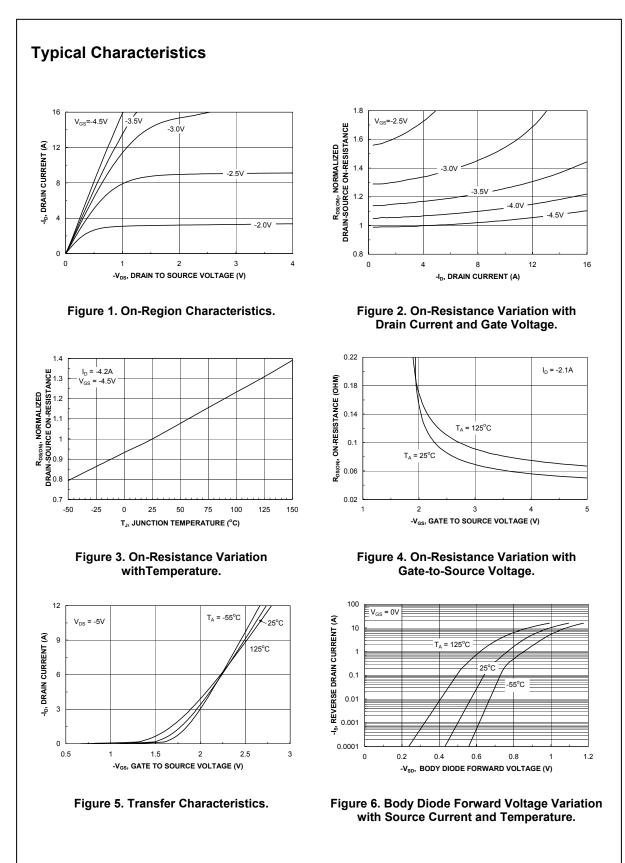
R _{eja}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	77	°C/W

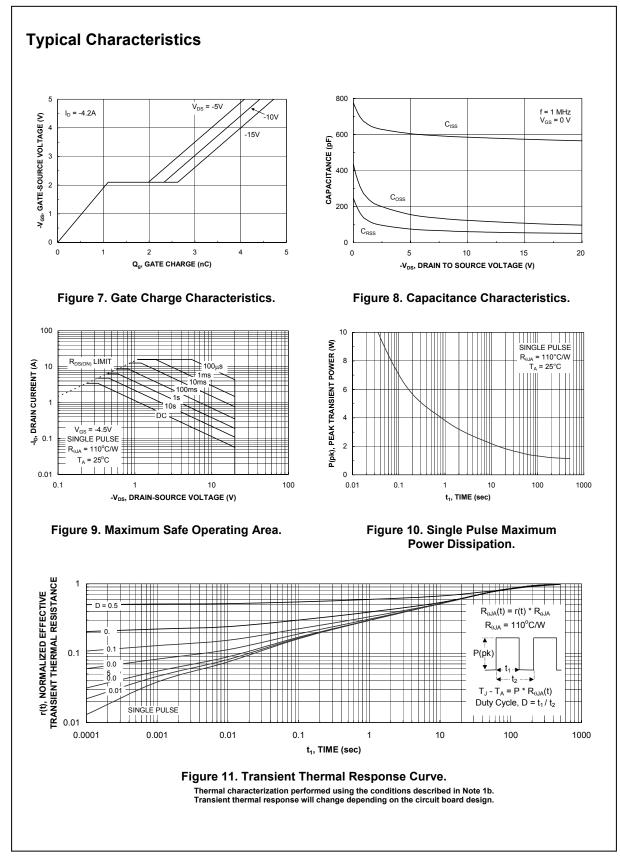

Package Marking and Ordering Information

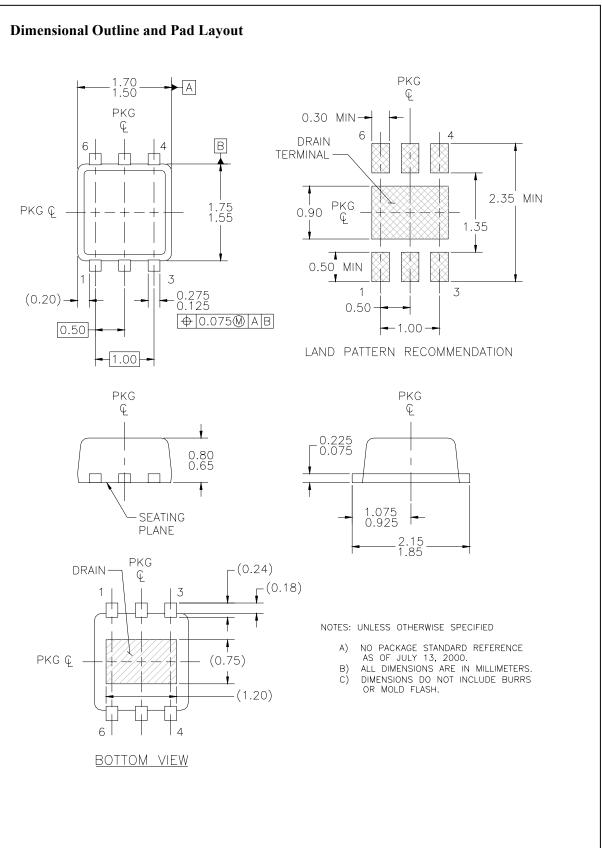
Device Marking	Device	Reel Size	Tape width	Quantity
.Α	FDJ129P	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Symbol	Parameter lest Conditions			тур	IVIAX	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_D = -250 \mu\text{A}$	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = -250 µA,Referenced to 25°C		-18		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA
I _{GSSF}	Gate–Body Leakage, Forward	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -12 V, V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.6	-1.1	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 µA,Referenced to 25°C		3		mV/°0
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 V, I_D = -4.2 A$ $V_{GS} = -2.5 V, I_D = -3.3 A$ $V_{GS} = -4.5 V, I_D = -4.2, T_J = 125^{\circ}C$		54 91 72	70 120 100	mΩ
I _{D(on)}	On–State Drain Current	$ \begin{array}{l} V_{GS} = -4.5 \ V, \ I_D = -4.2, T_J = 125^{\circ}C \\ V_{GS} = -4.5 \ V, \ V_{DS} = -5 \ V \end{array} $	-8			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_D = -4.2 A$		11		S
Dvnamic	Characteristics	·				
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		585	780	рF
C _{oss}	Output Capacitance	f = 1.0 MHz		124	170	рF
C _{rss}	Reverse Transfer Capacitance	1		61	95	pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		10	20	ns
t _r	Turn–On Rise Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		9	18	ns
t _{d(off)}	Turn–Off Delay Time	1		17	30	ns
t _f	Turn–Off Fall Time	1		10	20	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -4.2 A$,		4	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -4.5 V		1.1		nC
Q _{gd}	Gate-Drain Charge	1		1.2		nC
Drain-So	ource Diode Characteristics a	nd Maximum Ratings				
V _{SD}	Drain–Source Diode Forwar Voltage	$V_{GS} = 0 V$, $I_S = -1.5 A$ (Note 2)		-0.7	-1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_{\rm F} = -4.2 {\rm A},$		16		nS
Q _{rr}	Diode Reverse Recovery Charge	d _{iF} /d _t = 100 A/μs	-	13		nC

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%


a) 77°C/W when mounted on a 1in² pad of 2 oz copper.



b) 110°C/W when mounted on a minimum pad of 2 oz copper.

FDJ129P Rev G (W)

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FRFET [®] Global Power Resource SM	Green FPS [™] Green FPS [™] e-Series [™] GTO [™] <i>i-Lo</i> [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] [®] PDP-SPM [™] Power220 [®]	Power247 [®] POWEREDGE [®] Power-SPM™ PowerTrench [®] Programmable Active Droop™ QFET [®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM [®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P TinyBoost [™] TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPOWer [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
--	--	---	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		