FDMA1025P

Dual P－Channel PowerTrench ${ }^{\circledR}$ MOSFET －20V，－3．1A，105m Ω

Features

■ Max $r_{D S(o n)}=155 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}$
■ $\operatorname{Max} \mathrm{r}_{\mathrm{DS}(\mathrm{on})}=220 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A}$
－Low profile－ 0.8 mm maximum－in the new package MicroFET 2X2 mm＇
－RoHS Compliant

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra－ portable applications．It features two independent P－Channel MOSFETs with low on－state resistance for minimum conduction losses．When connected in the typical common source configuration，bi－directional current flow is possible．

The MicroFET 2X2 package offers exceptional thermal performance for its physical size and well suited to linear mode applications．

Application

－DC－DC Conversion

MOSFET Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		－20	V
$\mathrm{V}_{G S}$	Gate to Source Voltage		± 12	V
ID	Drain Current－Continuous	（Note 1a）	－3．1	A
	－Pulsed		－6	
P_{D}	Power Dissipation for Single Operation	（Note 1a）	1.4	W
	Power Dissipation	（Note 1b）	0.7	
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$R_{\theta J A}$	Thermal Resistance Single Operation，Junction to Ambient	（Note 1a）	86
$R_{\theta J A}$	Thermal Resistance Single Operation，Junction to Ambient	（Note 1b）	173
$R_{\theta J A}$	Thermal Resistance Dual Operation，Junction to Ambient		69
$R_{\theta J A}$	Thermal Resistance Dual Operation，Junction to Ambient		
${ }^{\circ} \mathrm{C} / \mathrm{W}$			

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
PDF 025	FDMA1025P	MLP2X2	$7 "$	8 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

$B V_{\text {DSs }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$,		-20			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$			14		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$V_{D S}=-16 \mathrm{~V}$,				-1	$\mu \mathrm{A}$
		$V_{G S}=0 V$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			-100	
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4	-0.9	-1.5	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		-3.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{r}_{\text {DS(on) }}$	Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}$		88	155	$\mathrm{m} \Omega$
		$\mathrm{V}_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.3 \mathrm{~A}$		144	220	
		$\mathrm{V}_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		121	220	
g_{FS}	Forward Transconductance	$V_{D S}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}$		6.2		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	340	450	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		80	105	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		45	70	pF

Switching Characteristics

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-10 \mathrm{~V}, I_{D}=-3.1 \mathrm{~A} \\ & V_{G S}=-4.5 \mathrm{~V}, R_{G E N}=6 \Omega \end{aligned}$	5	10	ns
t_{r}	Rise Time		14	26	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		13	24	ns
t_{f}	Fall Time		8	16	ns
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 4.5V	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to }-4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A} \end{aligned}$	3.4	4.8	nC
Q_{gs}	Gate to Source Gate Charge		0.8		nC
Q_{gd}	Gate to Drain "Miller" Charge		1.0		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.1 \mathrm{~A} \quad$ (Note 2)		-0.8	-1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=-3.1 \mathrm{~A}$, di/dt $=100 \mathrm{~A} / \mu \mathrm{s}$		17	26	ns
Q_{rr}	Reverse Recovery Charge			10	15	nC

Notes:

1: $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J \mathrm{C}}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design.
(a) $R_{\theta J A}=86^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime} \times 1.5^{\prime} \times 0.062^{\prime}$ thick PCB.
(b) $R_{\theta J A}=173^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper.

[^0]Typical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 9. Forward Bias Safe Operating Area

Figure 8. Capacitance vs Drain to Source Voltage

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FACT Quiet Series ${ }^{\text {TM }}$	OCX ${ }^{\text {T }}$	SILENT SWITCHER ${ }^{\circledR}$	UniFET ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	OCXPro ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$	UltraFET ${ }^{\circledR}$
Bottomless ${ }^{\text {™ }}$	GTO ${ }^{\text {¹ }}$	OPTOLOGIC ${ }^{\circledR}$	SPM ${ }^{\text {™ }}$	VCX ${ }^{\text {¹ }}$
Build it $\mathrm{Now}^{\text {™ }}$	$\mathrm{HiSeC}^{\text {тм }}$	OPTOPLANAR ${ }^{\text {TM }}$	Stealth ${ }^{\text {™ }}$	Wire ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	$\mathrm{I}^{2} \mathrm{C}^{\text {tm }}$	PACMAN ${ }^{\text {™ }}$	SuperFET ${ }^{\text {tm }}$	
CROSSVOLT ${ }^{\text {TM }}$	$i-L o^{\text {TM }}$	РОРтм	SuperSOT ${ }^{\text {TM }}$-3	
DOME ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {TM }}$	Power247 ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	
EcosPARK ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {™ }}$	PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-8	
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {¹ }}$	ISOPLANAR ${ }^{\text {m }}$	PowerSaver ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {TM }}$	LittleFET ${ }^{\text {M }}$	PowerTrench ${ }^{\circledR}$	TCM ${ }^{\text {¹ }}$	
$\mathrm{FACT}^{\circledR}$	MICROCOUPLER ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyBoost ${ }^{\text {TM }}$	
FAST $^{\circledR}$	MicroFET ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TinyBuck ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	MicroPak ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$	
FPS ${ }^{\text {™ }}$	MICROWIRE ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {™ }}$	TinyPower ${ }^{\text {TM }}$	
FRFET ${ }^{\text {™ }}$	MSX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\circledR}$	
	MSXPro ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {™ }}$	TINYOPTOT	
Across the board. Around the world. ${ }^{\text {TM }}$		μ SerDes ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {™ }}$	
The Power Franchise ${ }^{\circledR}$		ScalarPump ${ }^{\text {TM }}$	UHC ${ }^{\circledR}$	

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

[^0]: 2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0\%.

