捷多邦,专业PCB打样工厂,24小时加急出货

March 2008

SEMICONDUCTOR

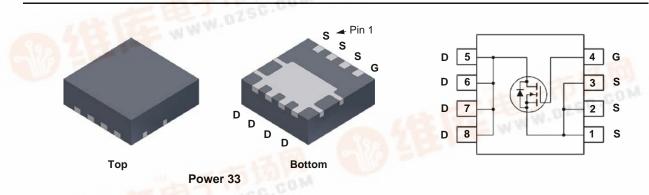
FDMC8462

N-Channel Power Trench[®] MOSFET 40V, 20A, 5.8m Ω

WWW.DZSC

Features

- Max $r_{DS(on)} = 5.8 m\Omega$ at $V_{GS} = 10V$, $I_D = 13.5A$
- Max $r_{DS(on)} = 8.0m\Omega$ at $V_{GS} = 4.5V$, $I_D = 11.8A$
- Low Profile 1mm max in Power 33
- 100% UIL Tested
- RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

DC - DC Conversion

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Package limited)	$T_C = 25^{\circ}C$		20	10.014	
	-Continuous (Silicon limited)	$T_{\rm C} = 25^{\circ}{\rm C}$		64		
	-Continuous	T _A = 25°C	(Note 1a)	14	A	
	-Pulsed	1 380 1	Left Party	50		
E _{AS}	Single Pulse Avalanche Energy	PTW(2)	(Note 3)	216	mJ	
P _D	Power Dissipation $T_{C} = 25^{\circ}C$			41	10/	
	Power Dissipation	T _A = 25°C	(Note 1a)	2.0	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

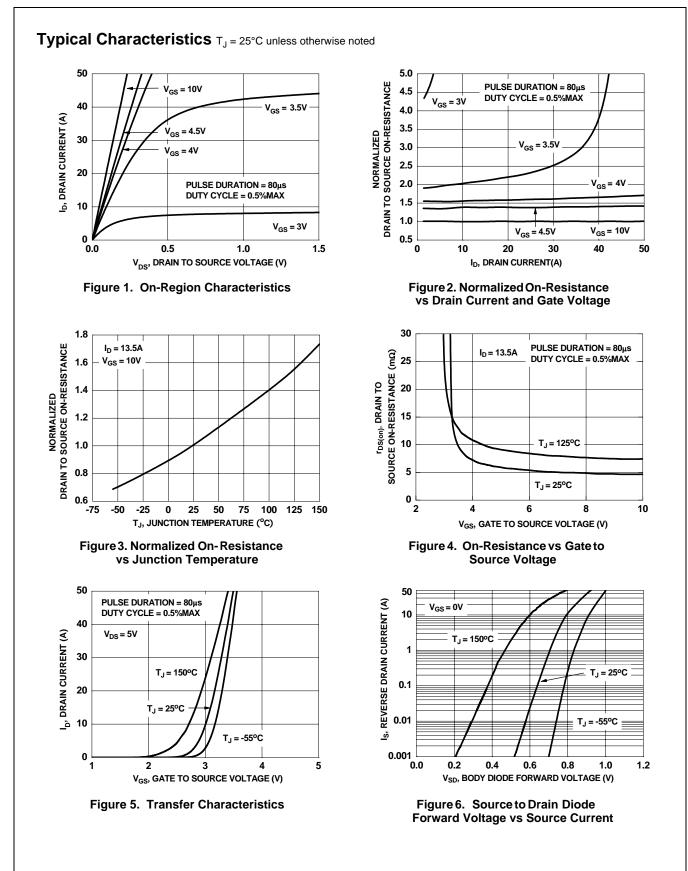
R _{0JC}	Thermal Resistance, Junction to Case	3	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient (Note 1a)	53	C/VV

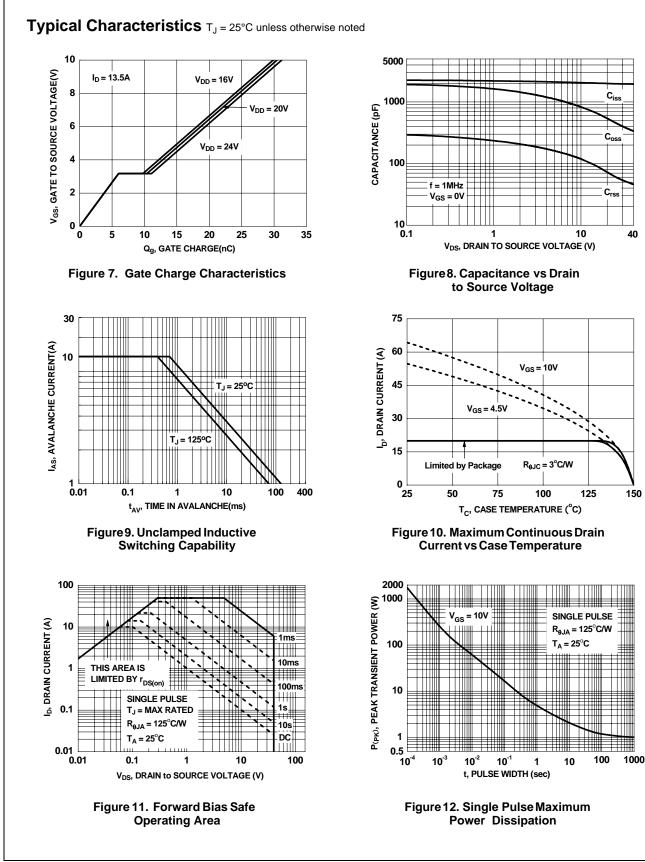
Package Marking and Ordering Information

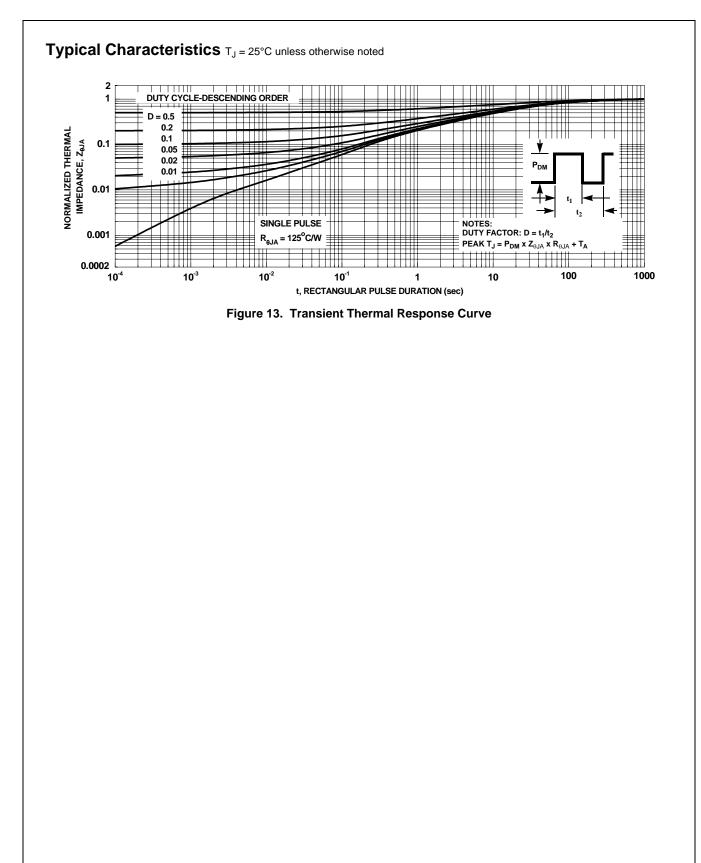
P Pevice Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8462	FDMC8462	Power 33	13"	12mm	3000 units

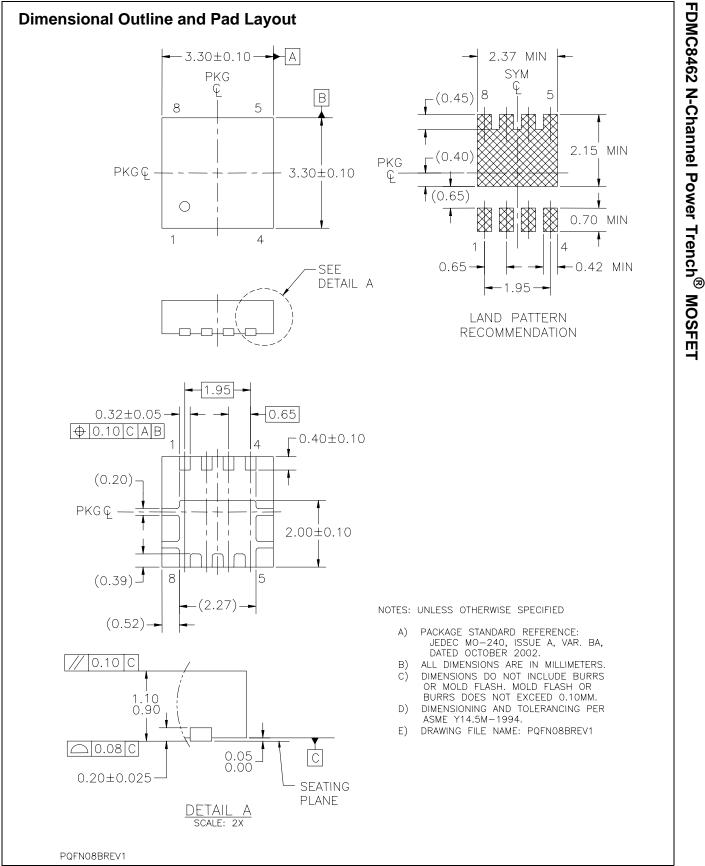
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		31		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 32V,$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
	cteristics			4		
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.0	2.0	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C	1.0	-6.6	0.0	mV/°C
ΔIJ		V _{GS} = 10V, I _D = 13.5A		4.7	5.8	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 11.8A$		6.4	8.0	mΩ
		$V_{GS} = 10V, I_D = 13.5A, T_J = 125^{\circ}C$		7.1	9.3	-
9 _{FS}	Forward Transconductance	$V_{DD} = 5V, I_D = 13.5A$		60	0.0	S
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 20V, V_{GS} = 0V,$ - f = 1MHz		545 80	725 120	pF pF
R _g	Gate Resistance	f = 1MHz		2.7		Ω
Switching	Characteristics					
-	g Characteristics			12	21	ns
t _{d(on)}	Characteristics Turn-On Delay Time Rise Time	Vop = 20V lp = 13.5A		12 4	21 10	ns ns
t _{d(on)} t _r	Turn-On Delay Time Rise Time	$V_{DD} = 20V, I_D = 13.5A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$				-
t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time			4	10	ns
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		4 27	10 43	ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$		4 27 3	10 43 10	ns ns ns
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$		4 27 3 30	10 43 10 43	ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$		4 27 3 30 15	10 43 10 43	ns ns ns nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$		4 27 3 30 15 6	10 43 10 43	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd} Drain-Sou	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_{D} = 13.5A$		4 27 3 30 15 6	10 43 10 43	ns ns nC nC nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd} Drain-Sou	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_{D} = 13.5A$		4 27 3 30 15 6 5	10 43 10 43 21	ns ns nC nC nC
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_d(off) \\ t_f \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_{D} = 13.5A$ $V_{GS} = 0V, I_{S} = 13.5A$ (Note 2)		4 27 3 30 15 6 5 0.8	10 43 10 43 21 	ns ns nC nC nC

1. R_{0LA} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.


3. Starting T_J = 25°C; N-ch: L = 3 mH, I_{AS} = 12A, V_{DD} = 40V, V_{GS} = 10V


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


a. 53°C/W when mounted on a 1 in² pad of 2 oz copper


00000

b. 125°C/W when mounted on a minimum pad of 2 oz copper

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Build it Now[™] CorePLUS[™] CorePOWER[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ **ISOPLANAR**[™] MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]**

PDP-SPM™ Power-SPM™ PowerTrench[®] Programmable Active Droop™ **QFET[®]** QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SuperMOS™

The Power Franchise[®] power franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.