

December 2006

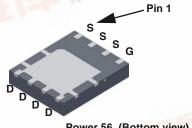
FDMS8670S

N-Channel PowerTrench® SyncFETTM

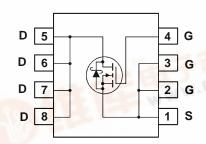
30V, **42A**, **3.5m** Ω

Features

- Max $r_{DS(on)} = 3.5 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 20 \text{A}$
- Max $r_{DS(on)} = 5.0 \text{m}\Omega$ at $V_{GS} = 4.5 \text{V}$, $I_D = 17 \text{A}$
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- RoHS Compliant



General Description


The FDMS8670S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{\mbox{\footnotesize{DS}}(\mbox{\footnotesize{on}})}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

Application

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/ GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

Power 56 (Bottom view)

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	$T_C = 25^{\circ}C$		42	1100
I _D	-Continuous (Silicon limited)	$T_C = 25^{\circ}C$	100	116	^
	-Continuous	$T_A = 25^{\circ}C$		20	A
	-Pulsed	0-11/6		200	
D	Power Dissipation	$T_C = 25^{\circ}C$		78	W
P_{D}	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	VV
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		1.6	°C/M
R _{AJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8670S	FDMS8670S	Power 56	7"	12mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

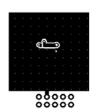
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0 \text{V}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 50mA, referenced to 25°C		17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$, $V_{GS} = 0V$			500	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1mA$	1	1.5	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 50mA, referenced to 25°C		-2.8		mV/°C
		$V_{GS} = 10V, I_D = 20A$		2.8	3.5	
r _{DS(on)}	r _{DS(on)} Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 17A$		3.6	5.0	mΩ
	$V_{GS} = 10V$, $I_D = 20A$, $T_J = 125$ °C		3.9	6.0		
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_{D} = 20A$		98		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45V V 0V	3005	4000	pF
Coss	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V$ f = 1MHz	865	1150	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	320	480	pF
R_g	Gate Resistance	f = 1MHz	1.4	5.0	Ω


Switching Characteristics

	J				
t _{d(on)}	Turn-On Delay Time	.,	14	26	ns
t _r	Rise Time	$V_{DD} = 15V, I_{D} = 20A$ $V_{GS} = 10V, R_{GEN} = 5\Omega$	19	35	ns
t _{d(off)}	Turn-Off Delay Time	$v_{GS} = 10V, R_{GEN} = 352$	37	60	ns
t _f	Fall Time		10	20	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	52	73	nC
Q _{g(4.5V)}	Total Gate Charge at 4.5V	$V_{GS} = 0V \text{ to } 4.5V V_{DS} = 15V$	24	34	nC
Q _{gs}	Gate to Source Gate Charge	$I_D = 20A$	8		nC
Q_{qd}	Gate to Drain "Miller" Charge		10		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V$, $I_S = 2A$	0.4	0.7	V
t _{rr}	Reverse Recovery Time	$I_{\rm F} = 20$ A, di/dt = 300A/us	26	42	ns
Q _{rr}	Reverse Recovery Charge	$I_{\rm F} = 20$ A, $I_{\rm F} = 300$ A/ $I_{\rm F}$	24	39	nC

 $R_{\theta JA}$ is determined with the device mounted on a 1in^2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 50°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

2: Pulse time < $300\mu s$, Duty cycle < 2%.

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

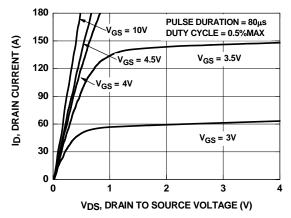


Figure 1. On Region Characteristics



Figure 3. Normalized On Resistance vs Junction Temperature

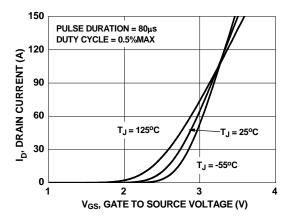


Figure 5. Transfer Characteristics

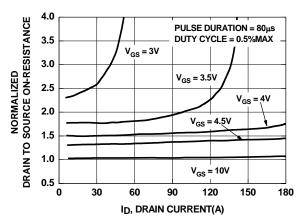


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

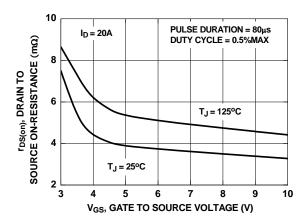


Figure 4. On-Resistance vs Gate to Source Voltage

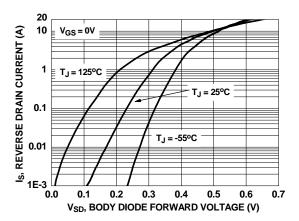


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

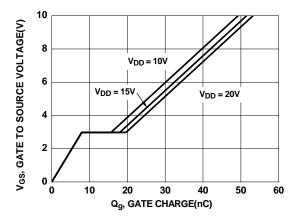


Figure 7. Gate Charge Characteristics

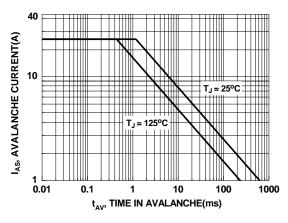


Figure 9. Unclamped Inductive Switching Capability

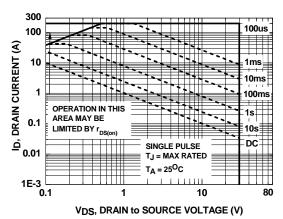


Figure 11. Forward Bias Safe Operating Area

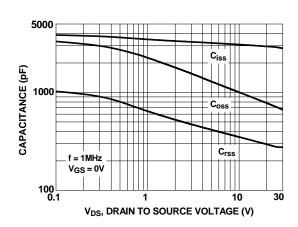


Figure 8. Capacitance vs Drain to Source Voltage

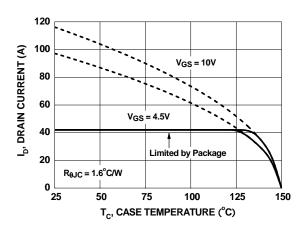


Figure 10. Maximum Continuous Drain Current vs Case Temperature

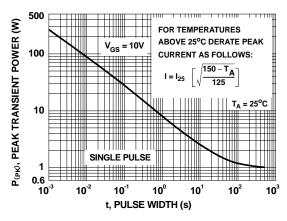


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

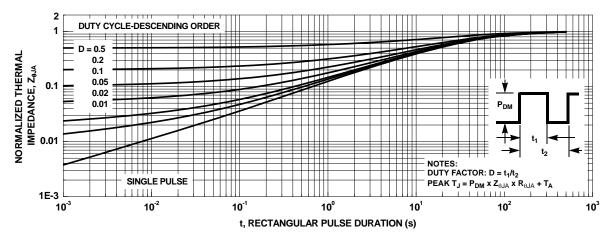


Figure 13. Transient Thermal Response Curve

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMS8670S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

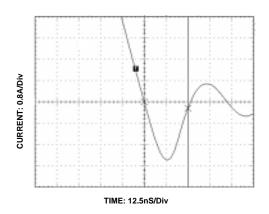


Figure 14. FDMS8670S SyncFET Body Diode reverse recovery characteristics

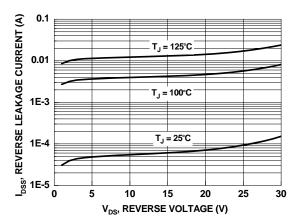
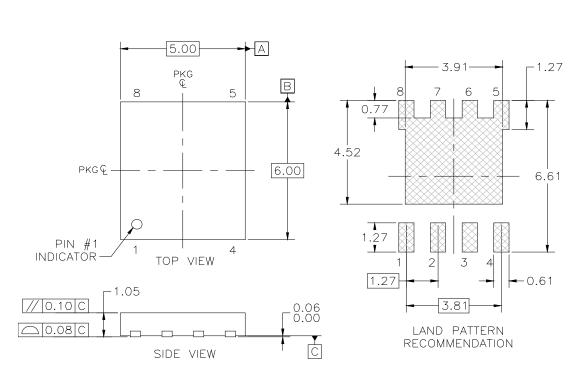
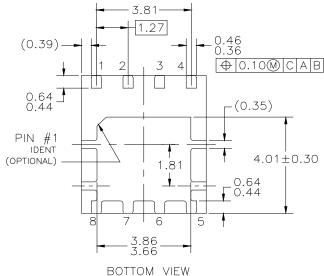




Figure 15. SyncFET Body Diode reverse leakage vs drain to source voltage

NOTES: UNLESS OTHERWISE SPECIFIED

- A) ALL DIMENSIONS ARE IN MILLIMETERS.
- B) NO JEDEC REFERENCE AS OF FEBRUARY 2006
- C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994

PQFN08AREVA

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
$CROSSVOLT^{TM}$	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT®	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. Aroun	d the world.™	μSerDes™	TruTranslation™
The Power Franchise®		ScalarPump™	UHC®

Programmable Active Droop™

DISCLAIMER

DISCLAIMEN
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO
IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE
OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE
RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS,
SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ VCX^{TM} Wire™

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 122